1. Getting Started with ‘vsperf’¶
1.1. Requirements¶
VSPERF requires a traffic generators to run tests, automated traffic gen support in VSPERF includes:
- IXIA traffic generator (IxNetwork hardware) and a machine that runs the IXIA client software.
- Spirent traffic generator (TestCenter hardware chassis or TestCenter virtual in a VM) and a VM to run the Spirent Virtual Deployment Service image, formerly known as “Spirent LabServer”.
If you want to use another traffic generator, please select the Dummy generator option as shown in Traffic generator instructions
Supported OSes include:
- CentOS Linux release 7.1.1503 (Core) host.
- Fedora 21 and 22.
- Ubuntu 14.04
1.2. vSwitch Requirements¶
The vSwitch must support Open Flow 1.3 or greater. VSPERF supports both:
- OVS
- OVS with DPDK
1.3. VSPERF Installation¶
Follow the installation instructions to install.
1.4. Traffic Generator Setup¶
Follow the Traffic generator instructions to install and configure a suitable traffic generator.
1.5. Cloning and building src dependencies¶
In order to run VSPERF, you will need to download DPDK and OVS. You can do this manually and build them in a preferred location, OR you could use vswitchperf/src. The vswitchperf/src directory contains makefiles that will allow you to clone and build the libraries that VSPERF depends on, such as DPDK and OVS. To clone and build simply:
$ cd src
$ make
VSPERF can be used with stock OVS (without DPDK support). When build is finished, the libraries are stored in src_vanilla directory.
The ‘make’ builds all options in src:
- Vanilla OVS
- OVS with vhost_user as the guest access method (with DPDK support)
- OVS with vhost_cuse s the guest access method (with DPDK support)
The vhost_user build will reside in src/ovs/ The vhost_cuse build will reside in vswitchperf/src_cuse The Vanilla OVS build will reside in vswitchperf/src_vanilla
To delete a src subdirectory and its contents to allow you to re-clone simply use:
$ make clobber
1.6. Configure the ./conf/10_custom.conf
file¶
The 10_custom.conf
file is the configuration file that overrides
default configurations in all the other configuration files in ./conf
The supplied 10_custom.conf
file MUST be modified, as it contains
configuration items for which there are no reasonable default values.
The configuration items that can be added is not limited to the initial
contents. Any configuration item mentioned in any .conf file in
./conf
directory can be added and that item will be overridden by
the custom configuration value.
1.7. Using a custom settings file¶
If your 10_custom.conf
doesn’t reside in the ./conf
directory
of if you want to use an alternative configuration file, the file can
be passed to vsperf
via the --conf-file
argument.
$ ./vsperf --conf-file <path_to_custom_conf> ...
Note that configuration passed in via the environment (--load-env
)
or via another command line argument will override both the default and
your custom configuration files. This “priority hierarchy” can be
described like so (1 = max priority):
- Command line arguments
- Environment variables
- Configuration file(s)
1.8. vloop_vnf¶
vsperf uses a VM called vloop_vnf for looping traffic in the PVP and PVVP deployment scenarios. The image can be downloaded from http://artifacts.opnfv.org/.
$ wget http://artifacts.opnfv.org/vswitchperf/vloop-vnf-ubuntu-14.04_20151216.qcow2
Alternatively you can use your own QEMU image.
1.9. Executing tests¶
Before running any tests make sure you have root permissions by adding the following line to /etc/sudoers:
username ALL=(ALL) NOPASSWD: ALL
username in the example above should be replaced with a real username.
To list the available tests:
$ ./vsperf --list
To run a single test:
$ ./vsperf $TESTNAME
Where $TESTNAME is the name of the vsperf test you would like to run.
To run a group of tests, for example all tests with a name containing ‘RFC2544’:
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf --tests="RFC2544"
To run all tests:
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf
Some tests allow for configurable parameters, including test duration (in seconds) as well as packet sizes (in bytes).
$ ./vsperf --conf-file user_settings.py
--tests RFC2544Tput
--test-param "duration=10;pkt_sizes=128"
For all available options, check out the help dialog:
$ ./vsperf --help
1.10. Executing Vanilla OVS tests¶
- If needed, recompile src for all OVS variants
$ cd src
$ make distclean
$ make
2. Update your ‘‘10_custom.conf’’ file to use the appropriate variables for Vanilla OVS:
VSWITCH = 'OvsVanilla'
VSWITCH_VANILLA_PHY_PORT_NAMES = ['$PORT1', '$PORT1']
Where $PORT1 and $PORT2 are the Linux interfaces you’d like to bind to the vswitch.
- Run test:
$ ./vsperf --conf-file=<path_to_custom_conf>
Please note if you don’t want to configure Vanilla OVS through the configuration file, you can pass it as a CLI argument; BUT you must set the ports.
$ ./vsperf --vswitch OvsVanilla
1.11. Executing PVP and PVVP tests¶
To run tests using vhost-user as guest access method:
- Set VHOST_METHOD and VNF of your settings file to:
VHOST_METHOD='user'
VNF = 'QemuDpdkVhost'
- If needed, recompile src for all OVS variants
$ cd src
$ make distclean
$ make
- Run test:
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf
To run tests using vhost-cuse as guest access method:
- Set VHOST_METHOD and VNF of your settings file to:
VHOST_METHOD='cuse'
VNF = 'QemuDpdkVhostCuse'
- If needed, recompile src for all OVS variants
$ cd src
$ make distclean
$ make
- Run test:
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf
1.12. Executing PVP tests using Vanilla OVS¶
To run tests using Vanilla OVS:
- Set the following variables:
VSWITCH = 'OvsVanilla'
VNF = 'QemuVirtioNet'
VANILLA_TGEN_PORT1_IP = n.n.n.n
VANILLA_TGEN_PORT1_MAC = nn:nn:nn:nn:nn:nn
VANILLA_TGEN_PORT2_IP = n.n.n.n
VANILLA_TGEN_PORT2_MAC = nn:nn:nn:nn:nn:nn
VANILLA_BRIDGE_IP = n.n.n.n
or use --test-param
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf
--test-param "vanilla_tgen_tx_ip=n.n.n.n;
vanilla_tgen_tx_mac=nn:nn:nn:nn:nn:nn"
- If needed, recompile src for all OVS variants
$ cd src
$ make distclean
$ make
- Run test:
$ ./vsperf --conf-file<path_to_custom_conf>/10_custom.conf
1.13. Selection of loopback application for PVP and PVVP tests¶
To select loopback application, which will perform traffic forwarding inside VM, following configuration parameter should be configured:
GUEST_LOOPBACK = ['testpmd', 'testpmd']
or use –test-param
$ ./vsperf --conf-file=<path_to_custom_conf>/10_custom.conf
--test-param "guest_loopback=testpmd"
Supported loopback applications are:
'testpmd' - testpmd from dpdk will be built and used
'l2fwd' - l2fwd module provided by Huawei will be built and used
'linux_bridge' - linux bridge will be configured
'buildin' - nothing will be configured by vsperf; VM image must
ensure traffic forwarding between its interfaces
Guest loopback application must be configured, otherwise traffic will not be forwarded by VM and testcases with PVP and PVVP deployments will fail. Guest loopback application is set to ‘testpmd’ by default.
1.14. Executing Packet Forwarding tests¶
To select application, which will perform packet forwarding, following configuration parameter should be configured:
VSWITCH = 'none' PKTFWD = 'TestPMD' or use --vswitch and --fwdapp $ ./vsperf --conf-file user_settings.py --vswitch none --fwdapp TestPMD
Supported Packet Forwarding applications are:
'testpmd' - testpmd from dpdk
1. Update your ‘‘10_custom.conf’’ file to use the appropriate variables for selected Packet Forwarder:
# testpmd configuration TESTPMD_ARGS = [] # packet forwarding mode: io|mac|mac_retry|macswap|flowgen|rxonly|txonly|csum|icmpecho TESTPMD_FWD_MODE = 'csum' # checksum calculation layer: ip|udp|tcp|sctp|outer-ip TESTPMD_CSUM_LAYER = 'ip' # checksum calculation place: hw (hardware) | sw (software) TESTPMD_CSUM_CALC = 'sw' # recognize tunnel headers: on|off TESTPMD_CSUM_PARSE_TUNNEL = 'off'
- Run test:
$ ./vsperf --conf-file <path_to_settings_py>
1.15. VSPERF modes of operation¶
VSPERF can be run in different modes. By default it will configure vSwitch, traffic generator and VNF. However it can be used just for configuration and execution of traffic generator. Another option is execution of all components except traffic generator itself.
Mode of operation is driven by configuration parameter -m or –mode
-m MODE, --mode MODE vsperf mode of operation;
Values:
"normal" - execute vSwitch, VNF and traffic generator
"trafficgen" - execute only traffic generator
"trafficgen-off" - execute vSwitch and VNF
In case, that VSPERF is executed in “trafficgen” mode, then configuration of traffic generator should be configured through –test-param option. Supported CLI options useful for traffic generator configuration are:
'traffic_type' - One of the supported traffic types. E.g. rfc2544,
back2back or continuous
Default value is "rfc2544".
'bidirectional' - Specifies if generated traffic will be full-duplex (true)
or half-duplex (false)
Default value is "false".
'iload' - Defines desired percentage of frame rate used during
continuous stream tests.
Default value is 100.
'multistream' - Defines number of flows simulated by traffic generator.
Value 0 disables MultiStream feature
Default value is 0.
'stream_type' - Stream Type is an extension of the "MultiStream" feature.
If MultiStream is disabled, then Stream Type will be
ignored. Stream Type defines ISO OSI network layer used
for simulation of multiple streams.
Default value is "L4".
Example of execution of VSPERF in “trafficgen” mode:
$ ./vsperf -m trafficgen --trafficgen IxNet --conf-file vsperf.conf
--test-params "traffic_type=continuous;bidirectional=True;iload=60"
1.16. Code change verification by pylint¶
Every developer participating in VSPERF project should run pylint before his python code is submitted for review. Project specific configuration for pylint is available at ‘pylint.rc’.
Example of manual pylint invocation:
$ pylint --rcfile ./pylintrc ./vsperf
1.17. GOTCHAs:¶
1.17.1. OVS with DPDK and QEMU¶
If you encounter the following error: “before (last 100 chars): ‘-path=/dev/hugepages,share=on: unable to map backing store for hugepages: Cannot allocate memoryrnrn” with the PVP or PVVP deployment scenario, check the amount of hugepages on your system:
$ cat /proc/meminfo | grep HugePages
By default the vswitchd is launched with 1Gb of memory, to change this, modify –socket-mem parameter in conf/02_vswitch.conf to allocate an appropriate amount of memory:
VSWITCHD_DPDK_ARGS = ['-c', '0x4', '-n', '4', '--socket-mem 1024,0']
Revision: 11ea896d3dee85a79316c57838adef8807784359
Build date: January 25, 2016