> 0PNFV

Yardstick Overview
Release draft (ff5cb95)

OPNFV

February 08, 2016

CONTENTS

1 Introduction

1.1

Contact Yardstick e e e e e e

2 Methodology

2.1
22
23

ADSIIact e e e e e e e
ETSI-NEV o e e e e e e
MELTICS . . . o o e e e e e

3 Virtual Traffic Classifier

3.1
32
33
34
3.5
3.6
3.7
3.8

ADSIract e e e e e e e e e e e

CONCEPLS .« o v o o e e e e e e e e e e e e
Architecture e e
Graphical OVerview i i e e e e e e e e e e e e e e
Install oL
Run . . o e e
Development Environmento e e

4 Yardstick Test Cases

4.1
42
43
4.4

ADSIIaCt o e e e e e e e e e e e
Generic NFVI Test Case Descriptions i it i it i e ettt e
OPNFV Feature Test Cases o v v v v i ittt e e e e e e e e e e e s e e
Templates o v e e e e e e e e e e e e e e e e

5 Yardstick Glossary

Index

—_ -

W W W W

0 00 00 0 00 N 3 I

CHAPTER
ONE

INTRODUCTION

Welcome to Yardstick’s documentation !
Yardstick is an OPNFV Project.
The project’s goal is to verify infrastructure compliance, from the perspective of a VNF.

The Project’s scope is the development of a test framework, Yardstick, test cases and test stimuli to enable NFVI
verification. The Project also includes a sample VNF, the VTC and its experimental framework, ApexLake !

The chapter Methodology describes the methodology implemented by the Yardstick Project for NF'VI verification. The
chapter Yardstick Test Cases includes a list of available Yardstick test cases.

Yardstick is used for verifying the OPNFV infrastructure and some of the OPNFV features, listed in Yardstick Test
Cases.

The Yardstick framework is deployed in several OPNFV community labs. It is installer, infrastructure and application
independent.

See also:

Pharos for information on OPNFV community labs.

1.1 Contact Yardstick

Feedback? Contact us

https://wiki.opnfv.org/yardstick
https://wiki.opnfv.org/pharos
mailto:opnfv-users@lists.opnfv.org

Yardstick Overview, Release draft (ff5cb95)

2 Chapter 1. Introduction

CHAPTER
TWO

METHODOLOGY

2.1 Abstract

This chapter describes the methodology implemented by the Yardstick project for verifying the NFV Infrastructure
from the perspective of a VNF.

2.2 ETSI-NFV

The document ETSI GS NFV-TSTO001, “Pre-deployment Testing; Report on Validation of NFV Environments and
Services”, recommends methods for pre-deployment testing of the functional components of an NFV environment.

The Yardstick project implements the methodology described in chapter 6, “Pre- deployment validation of NFV in-
frastructure”.

The methodology consists in decomposing the typical VNF work-load performance metrics into a number of charac-
teristics/performance vectors, which each can be represented by distinct test-cases.

The methodology includes five steps:

 Stepl: Define Infrastruture - the HW, SW and corresponding configuration target for validation; the OP-
NFV infrastructure, in OPNFV community labs.

Step2: 1dentify VNF type - the application for which the infrastructure is to be validated, and its require-
ments on the underlying infrastructure.

» Step3: Select test cases - depending on the workload that represents the application for which the infras-
truture is to be validated, the relevant test cases amongst the list of available Yardstick test cases.

 Step4: Execute tests - define the duration and number of iterations for the selected test cases, tests runs
are automated via OPNFYV Jenkins Jobs.

e Step5: Collect results - using the common API for result collection.

2.3 Metrics

The metrics, as defined by ETSI GS NFV-TSTO001, are shown in Tablel, Table2 and Table3.

In OPNFV Brahmaputra release, generic test cases covering aspects of the listed metrics are available; further OPNFV
releases will provide extended testing of these metrics. The view of available Yardstick test cases cross ETSI defini-
tions in Tablel, Table2 and Table3 is shown in Table4. It shall be noticed that the Yardstick test cases are examples,
the test duration and number of iterations are configurable, as are the System Under Test (SUT) and the attributes (or,
in Yardstick nomemclature, the scenario options). Table 1 - Performance/Speed Metrics

https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-deployment_Validation/

Yardstick Overview, Release draft (ff5cb95)

Category

Performance/Speed

Compute

» Latency for random memory access

» Latency for cache read/write operations

* Processing speed (instructions per second)

* Throughput for random memory access (bytes per
second)

Network

* Throughput per NFVI node (frames/byte per sec-
ond)

* Throughput provided to a VM (frames/byte per
second)

» Latency per traffic flow

* Latency between VMs

» Latency between NFVI nodes

 Packet delay variation (jitter) between VMs

e Packet delay variation (jitter) between NFVI
nodes

Storage

* Sequential read/write IOPS

* Random read/write IOPS

» Latency for storage read/write operations

» Throughput for storage read/write operations

Table 2 - Capacity/Scale Metrics

Chapter 2. Methodology

Yardstick Overview, Release draft (ff5cb95)

Category Capacity/Scale

C t
ompute e Number of cores and threads- Available memory

size

¢ Cache size

* Processor utilization (max, average, standard de-
viation)

* Memory utilization (max, average, standard devi-
ation)

* Cache utilization (max, average, standard devia-
tion)

Network .
¢ Number of connections

* Number of frames sent/received

* Maximum throughput between VMs (frames/byte
per second)

e Maximum throughput between NFVI nodes
(frames/byte per second)

* Network utilization (max, average, standard devi-
ation)

* Number of traffic flows

St
orage Storage/Disk size

 Capacity allocation (block-based, object-based)

* Block size

¢ Maximum sequential read/write IOPS

e Maximum random read/write IOPS

e Disk utilization (max, average, standard devia-
tion)

Table 3 - Availability/Reliability Metrics

Category Auvailability/Reliability

Compute S S
P * Processor availability (Error free processing time)

* Memory availability (Error free memory time)
* Processor mean-time-to-failure

* Memory mean-time-to-failure

* Number of processing faults per second

Network S Lo
* NIC availability (Error free connection time)

 Link availability (Error free transmission time)
¢ NIC mean-time-to-failure

¢ Network timeout duration due to link failure

¢ Frame loss rate

St
orage » Disk availability (Error free disk access time)

* Disk mean-time-to-failure
* Number of failed storage read/write operations
per second

Table 4 - Yardstick Generic Test Cases

2.3. Metrics 5

Yardstick Overview, Release draft (ff5cb95)

Cate- Performance/Speed Capacity/Scale Auvailability/Reliability
gory

Com- TCO003 TC004 TCO14 TCO003 TC004 TCO10 TCO013 "TCO15 T

pute TCO024 TCO12

Net- TC002 TCO11 TCO001 TC008 TC009 TCO016 T TCO18 !
work

Storage | TC005 TC005 TCO17!

Note: The description in this OPNFV document is intended as a reference for users to understand the scope of the
Yardstick Project and the deliverables of the Yardstick framework. For complete description of the methodology, refer

to the ETSI document.

ITo be included in future deliveries.

Chapter 2. Methodology

CHAPTER
THREE

VIRTUAL TRAFFIC CLASSIFIER

3.1 Abstract

This chapter provides an overview of the virtual Traffic Classifier, a contribution to OPNFV Yardstick from the EU
Project TNOVA. Additional documentation is available in TNOVAresults.

3.2 Overview

The virtual Traffic Classifier VNF, the VTC, comprises of a VNFC. The VNFC contains both the Traffic Inspection
module, and the Traffic forwarding module, needed to run the VNF. The exploitation of DPI methods for traffic
classification is built around two basic assumptions:

* third parties unaffiliated with either source or recipient are able to
inspect each IP packet’s payload

* the classifier knows the relevant syntax of each application’s packet
payloads (protocol signatures, data patterns, etc.).

The proposed DPI based approach will only use an indicative, small number of the initial packets from each flow in
order to identify the content and not inspect each packet.

In this respect it follows the PBFS. This method uses a table to track each session based on the 5-tuples (src address,
dest address, src port,dest port, transport protocol) that is maintained for each flow.

3.3 Concepts

* Traffic Inspection: The process of packet analysis and application
identification of network traffic that passes through the V7C.

* Traffic Forwarding: The process of packet forwarding from an incoming
network interface to a pre-defined outgoing network interface.

* Traffic Rule Application: The process of packet tagging, based on a

predefined set of rules. Packet tagging may include e.g. 70S field modification.

https://wiki.opnfv.org/yardstick
http://www.t-nova.eu/
http://www.t-nova.eu/results/

Yardstick Overview, Release draft (ff5cb95)

3.4 Architecture

The Traffic Inspection module is the most computationally intensive component of the VNF'. It implements filtering and
packet matching algorithms in order to support the enhanced traffic forwarding capability of the VNF. The component
supports a flow table (exploiting hashing algorithms for fast indexing of flows) and an inspection engine for traffic
classification.

The implementation used for these experiments exploits the nDPI library. The packet capturing mechanism is imple-
mented using libpcap. When the DPI engine identifies a new flow, the flow register is updated with the appropriate
information and transmitted across the Traffic Forwarding module, which then applies any required policy updates.

The Traffic Forwarding moudle is responsible for routing and packet forwarding. It accepts incoming network traffic,
consults the flow table for classification information for each incoming flow and then applies pre-defined policies
marking e.g. 70S/DSCP multimedia traffic for QoS enablement on the forwarded traffic. It is assumed that the traffic
is forwarded using the default policy until it is identified and new policies are enforced.

The expected response delay is considered to be negligible, as only a small number of packets are required to identify
each flow.

3.5 Graphical Overview

777777777777 >
ethA ethB

o +

‘ ~

\ \

v \
o +
| \
| Virtual Switch |
| \
fom +

3.6 Install

run the build.sh with root privileges

3.7 Run

sudo ./pfbridge -a ethl -b eth2

3.8 Development Environment

Ubuntu 14.04

8 Chapter 3. Virtual Traffic Classifier

CHAPTER
FOUR

YARDSTICK TEST CASES

4.1 Abstract

This chapter lists available Yardstick test cases. Yardstick test cases are divided in two main categories:
* Generic NFVI Test Cases - Test Cases developed to realize the methodology

described in Methodology
* OPNFYV Feature Test Cases - Test Cases developed to verify one or more

aspect of a feature delivered by an OPNFV Project, including the test cases developed for the V7C.

Yardstick Overview, Release draft (ff5cb95)

4.2 Generic NFVI Test Case Descriptions

4.2.1 Yardstick Test Case Description TC001

Network Performance

test case id

OPNFV_YARDSTICK_TC001_NW PERF

metric

Number of flows and throughput

test purpose

To evaluate the IaaS network performance with regards
to flows and throughput, such as if and how different
amounts of flows matter for the throughput between
hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of
flows running through it. Also performance of other
equipment or entities can depend on the number of flows
or the packet sizes used. The purpose is also to be able
to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution un-
derstanding between different OPNFV versions and/or
configurations.

configuration

file: opnfv_yardstick_tc001.yaml

Packet size: 60 bytes Number of ports: 10, 50, 100,
500 and 1000, where each runs for 20 seconds. The
whole sequence is run twice. The client and server are
distributed on different HW. For SLA max_ppm is set to
1000. The amount of configured ports map to between
110 up to 1001000 flows, respectively.

test tool

pktgen

(Pktgen is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

references

pktgen
ETSI-NFV-TST001

applicability

Test can be configured with different packet sizes,

amount of flows and test duration. Default values ex-

ist.

SLA (optional): max_ppm: The number of packets pe
packets sent that are acceptable to loose, not re-
ceived.

pre-test conditions

The test case image needs to be installed into Glance
with pktgen included in it.
No POD specific requirements have been identified.

test sequence

description and expected result

step 1

The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.
Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case
execution problem.

10

Chapter 4. Yardstick Test Cases

r million

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (ff5cb95)

4.2.2 Yardstick Test Case Description TC002

Network Latency

test case id | OPNFV_YARDSTICK_TC002_NW LATENCY

metric RTT, Round Trip Time

test To do a basic verification that network latency is within acceptable boundaries when packets travel
purpose between hosts located on same or different compute blades. The purpose is also to be able to spot

trends. Test results, graphs and similar shall be stored for comparison reasons and product evolution
understanding between different OPNFV versions and/or configurations.
configura- | file: opnfv_yardstick_tc002.yaml

tion Packet size 100 bytes. Total test duration 600 seconds. One ping each 10 seconds. SLA RTT is set
to maximum 10 ms.
test tool ping

Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part
of the Yardstick Docker image. (For example also a Cirros image can be downloaded from
cirros-image, it includes ping)

references | Ping man page

ETSI-NFV-TST001

applicabil- | Test case can be configured with different packet sizes, burst sizes, ping intervals and test duration.
ity SLA is optional. The SLA in this test case serves as an example. Considerably lower RTT is
expected, and also normal to achieve in balanced L2 environments. However, to cover most
configurations, both bare metal and fully virtualized ones, this value should be possible to achieve
and acceptable for black box testing. Many real time applications start to suffer badly if the RTT
time is higher than this. Some may suffer bad also close to this RTT, while others may not suffer at
all. It is a compromise that may have to be tuned for different configuration purposes.

pre-test The test case image needs to be installed into Glance with ping included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. Ping is invoked and logs are produced and stored.

Result: Logs are stored.
test verdict | Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

4.2. Generic NFVI Test Case Descriptions 11

https://download.cirros-cloud.net

Yardstick Overview, Release draft (ff5cb95)

4.2.3 Yardstick Test Case Description TC005

Storage Performance
test case id | OPNFV_YARDSTICK_TCO005_Storage Performance

metric IOPS, throughput and latency

test To evaluate the [aaS storage performance with regards to IOPS, throughput and latency. The

purpose purpose is also to be able to spot trends. Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura- | file: opnfv_yardstick_tc005.yaml

tion IO types: read, write, randwrite, randread, rw 1O block size: 4KB, 64KB, 1024KB, where each runs

for 30 seconds(10 for ramp time, 20 for runtime).

For SLA minimum read/write iops is set to 100, minimum read/write throughput is set to 400 KB/s,
and maximum read/write latency is set to 20000 usec.

test tool fio

(fio is not always part of a Linux distribution, hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux image with fio included.)

references | fio

ETSI-NFV-TSTO001

applicabil- | Test can be configured with different read/write types, IO block size, IO depth, ramp time (runtime

ity required for stable results) and test duration. Default values exist.

pre-test The test case image needs to be installed into Glance with fio included in it.
conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The host is installed and fio is invoked and logs are produced and stored.

Result: Logs are stored.
test verdict | Fails only if SLA is not passed, or if there is a test case execution problem.

12 Chapter 4. Yardstick Test Cases

http://www.bluestop.org/fio/HOWTO.txt

Yardstick Overview, Release draft (ff5cb95)

4.2.4 Yardstick Test Case Description TC008

Packet Loss Extended Test

test case id

OPNFV_YARDSTICK_TC008_NW PEREF, Packet loss Extended Test

metric Number of flows, packet size and throughput

test To evaluate the IaaS network performance with regards to flows and throughput, such as if and how

purpose different amounts of packet sizes and flows matter for the throughput between VMs on different
compute blades. Typically e.g. the performance of a vSwitch depends on the number of flows
running through it. Also performance of other equipment or entities can depend on the number of
flows or the packet sizes used. The purpose is also to be able to spot trends. Test results, graphs ans
similar shall be stored for comparison reasons and product evolution understanding between
different OPNFV versions and/or configurations.

configura- | file: opnfv_yardstick_tc008.yaml

tion Packet size: 64, 128, 256, 512, 1024, 1280 and 1518 bytes.
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each packet_size/port_amount combination is run ten times, for 20
seconds each. Then the next packet_size/port_amount combination is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references | pktgen
ETSI-NFV-TST001

applicabil- | Test can be configured with different packet sizes, amount of flows and test duration. Default values

ity exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test The test case image needs to be installed into Glance with pktgen included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.

Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

4.2. Generic NFVI Test Case Descriptions 13

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (ff5cb95)

4.2.5 Yardstick Test Case Description TC009

Packet Loss

test case id | OPNFV_YARDSTICK_TC009_NW PEREF, Packet loss

metric Number of flows, packets lost and throughput

test To evaluate the IaaS network performance with regards to flows and throughput, such as if and how

purpose different amounts of flows matter for the throughput between VMs on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura- | file: opnfv_yardstick_tc009.yaml

tion Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each port amount is run ten times, for 20 seconds each. Then the next
port_amount is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references | pktgen
ETSI-NFV-TST001

applicabil- | Test can be configured with different packet sizes, amount of flows and test duration. Default values

ity exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test The test case image needs to be installed into Glance with pktgen included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.

Result: logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

14

Chapter 4. Yardstick Test Cases

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (ff5cb95)

4.2.6 Yardstick Test Case Description TC010

Memory Latency

test case id

OPNFV_YARDSTICK_TCO010_Memory Latency

metric

Latency in nanoseconds

test purpose

Measure the memory read latency for varying memory
sizes and strides. Whole memory hierarchy is measured
including all levels of cache.

configuration

File: opnfv_yardstick_tc010.yaml
¢ SLA (max_latency): 30 nanoseconds
* Stride - 128 bytes
* Stop size - 64 megabytes
* Iterations: 10 - test is run 10 times iteratively.
* Interval: 1 - there is 1 second delay between each
iteration.

test tool

Lmbench

Lmbench is a suite of operating system microbench-
marks. This test uses lat_mem_rd tool from that suite.
Lmbench is not always part of a Linux distribution,
hence it needs to be installed in the test image

references

man-pages
McVoy, Larry W.,and Carl Staelin. “Imbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference 1996.

applicability

Test can be configured with different:

¢ strides;

* stop_size;

* iterations and intervals.
There are default values for each above-mentioned op-
tion.
SLA (optional) : max_latency: The maximum memory
latency that is accepted.

pre-test conditions

The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence

description and expected result

step 1

The host is installed as client. Lmbench’s lat_mem_rd
tool is invoked and logs are produced and stored.
Result: logs are stored.

test verdict

Test fails if the measured memory latency is above the
SLA value or if there is a test case execution problem.

4.2. Generic NFVI Test Case Descriptions

15

http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

Yardstick Overview, Release draft (ff5cb95)

4.2.7 Yardstick Test Case Description TCO011

Packet delay variation between VMs

test case id

OPNFV_YARDSTICK_TCO11_Packet delay variation
between VMs

metric

jitter: packet delay variation (ms)

test purpose

Measure the packet delay variation sending the packets
from one VM to the other.

configuration

File: opnfv_yardstick_tc011.yaml
 options: protocol: udp # The protocol used by
iperf3 tools bandwidth: 20m # It will send the
given number of packets
without pausing
 runner: duration: 30 # Total test duration 30 sec-
onds.
* SLA (optional): jitter: 10 (ms) # The maximum
amount of jitter that is
accepted.

test tool

iperf3

iPerf3 is a tool for active measurements of the maximum
achievable bandwidth on IP networks. It supports tun-
ing of various parameters related to timing, buffers and
protocols. The UDP protocols can be used to measure
jitter delay.

(iperf3 is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

references

iperf3
ETSI-NFV-TST001

applicability

Test can be configured with different

¢ bandwidth: Test case can be configured with dif]
bandwidth

e duration: The test duration can be configured

e jitter: SLA is optional. The SLA in this test case

serves as an example.

pre-test conditions

The test case image needs to be installed into Glance
with iperf3 included in the image.
No POD specific requirements have been identified.

test sequence

description and expected result

step 1

The hosts are installed, as server and client. iperf3 is
invoked and logs are produced and stored.
Result: Logs are stored.

test verdict

Test should not PASS if any jitter is above the optional
SLA value, or if there is a test case execution problem.

16

Chapter 4. Yardstick Test Cases

ferent

https://iperf.fr/

Yardstick Overview, Release draft (ff5cb95)

4.2.8 Yardstick Test Case Description TC012

Memory Bandwidth
test case id OPNFV_YARDSTICK_TCO012_Memory Bandwidth
metric Megabyte per second (MBps)

test purpose

Measure the rate at which data can be read from and
written to the memory (this includes all levels of mem-
ory).

configuration

File: opnfv_yardstick_tc012.yaml

* SLA (optional): 15000 (MBps) min_bw: The
minimum amount of memory bandwidth that is
accepted.

» Size: 10 240 kB - test allocates twice that size
(20 480kB) zeros it and then measures the time it
takes to copy from one side to another.

* Benchmark: rdwr - measures the time to read data
into memory and then write data to the same lo-
cation.

e Warmup: O - the number of iterations to perform
before taking actual measurements.

e Iterations: 10 - test is run 10 times iteratively.

e Interval: 1 - there is 1 second delay between each
iteration.

test tool

Lmbench

Lmbench is a suite of operating system microbench-
marks. This test uses bw_mem tool from that suite. Lm-
bench is not always part of a Linux distribution, hence it
needs to be installed in the test image.

references

man-pages
McVoy, Larry W., and Carl Staelin. “Imbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference. 1996.

applicability

Test can be configured with different:

* memory sizes;

e memory operations (such as rd, wr, rdwr, cp, frd,

fwr, fcp, bzero, bcopy);

e number of warmup iterations;

* iterations and intervals.
There are default values for each above-mentioned op-
tion.

pre-test conditions

The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence

description and expected result

step 1

The host is installed as client. Lmbench’s bw_mem tool
is invoked and logs are produced and stored.
Result: logs are stored.

test verdict

Test fails if the measured memory bandwidth is below
the SLA value or if there is a test case execution prob-
lem.

4.2. Generic NFVI Test Case Descriptions

17

http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

Yardstick Overview, Release draft (ff5cb95)

4.2.9 Yardstick Test Case Description TC014

Processing speed

test case id

OPNFV_YARDSTICK_TCO014_Processing speed

metric score of single cpu running, score of parallel running

test To evaluate the [aaS processing speed with regards to score of single cpu running and parallel

purpose running The purpose is also to be able to spot trends. Test results, graphs and similar shall be stored
for comparison reasons and product evolution understanding between different OPNFV versions
and/or configurations.

configura- | file: opnfv_yardstick_tcO14.yaml

tion run_mode: Run unixbench in quiet mode or verbose mode test_type: dhry2reg, whetstone and so on
For SLA with single_score and parallel_score, both can be set by user, default is NA

test tool unixbench
(unixbench is not always part of a Linux distribution, hence it needs to be installed. As an example
see the /yardstick/tools/ directory for how to generate a Linux image with unixbench included.)

references | unixbench
ETSI-NFV-TSTO001

applicabil- | Test can be configured with different test types, dhry2reg, whetstone and so on.

ity

pre-test The test case image needs to be installed into Glance with unixbench included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as a client. unixbench is invoked and logs are produced and stored.

Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

18

Chapter 4. Yardstick Test Cases

https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench

Yardstick Overview, Release draft (ff5cb95)

4.2.10 Yardstick Test Case Description TC024

CPU Load

test case id | OPNFV_YARDSTICK_TC024_CPU Load

metric CPU load

test To evaluate the CPU load performance of the IaaS. This test case should be run in parallel to other

purpose Yardstick test cases and not run as a stand-alone test case.
The purpose is also to be able to spot trends. Test results, graphs ans similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura- | file: cpuload.yaml (in the ‘samples’ directory)

tion There is are no additional configurations to be set for this TC.

test tool mpstat

(mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. However, if mpstat is not present the TC instead uses /proc/stats as source
to produce “mpstat” output.

references | man-pages

applicabil- | Run in background with other test cases.

1ty

pre-test The test case image needs to be installed into Glance with mpstat included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The host is installed. The related TC, or TCs, is invoked and mpstat logs are produced and stored.

Result: Stored logs
test verdict | None. CPU load results are fetched and stored.

4.2. Generic NFVI Test Case Descriptions 19

http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

Yardstick Overview, Release draft (ff5cb95)

4.2.11 Yardstick Test Case Description TC037

Latency, CPU Load, Throughput, Packet Loss

test case id

OPNFV_YARDSTICK_TCO037_Latency,CPU Load,Throughput,Packet Loss

metric Number of flows, latency, throughput, CPU load, packet loss

test To evaluate the IaaS network performance with regards to flows and throughput, such as if and how

purpose different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura- | file: opnfv_yardstick_tc037.yaml

tion Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references | Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil- | Test can be configured with different packet sizes, amount of flows and test duration. Default values

ity exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test The test case image needs to be installed into Glance with pktgen included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.

Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

20

Chapter 4. Yardstick Test Cases

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (ff5cb95)

4.2.12 Yardstick Test Case Description TC038

Latency, CPU Load, Throughput, Packet Loss (Extended measurements)

test case id

OPNFV_YARDSTICK_TCO038_Latency,CPU Load,Throughput,Packet Loss

metric Number of flows, latency, throughput, CPU load, packet loss

test To evaluate the IaaS network performance with regards to flows and throughput, such as if and how

purpose different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura- | file: opnfv_yardstick_tc038.yaml

tion Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run ten times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references | Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil- | Test can be configured with different packet sizes, amount of flows and test duration. Default values

ity exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test The test case image needs to be installed into Glance with pktgen included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.

Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

4.2. Generic NFVI Test Case Descriptions 21

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (ff5cb95)

22 Chapter 4. Yardstick Test Cases

Yardstick Overview, Release draft (ff5cb95)

4.3 OPNFV Feature Test Cases

43.1 HA

Yardstick Test Case Description TC019

Control Node Openstack Service High Availability

test case id

OPNFV_YARDSTICK_TCO019_HA: Control node
Openstack service down

test purpose

This test case will verify the high availability of the
service provided by OpenStack (like nova-api, neutro-
server) on control node.

test method

This test case kills the processes of a specific Openstack
service on a selected control node, then checks whether
the request of the related Openstack command is OK
and the killed processes are recovered.

attackers

In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name
of the specified OpenStack service. If there are multiple
processes use the same name on the host, all of them are
killed by this attacker. 3) host: which is the name of a
control node being attacked.

e.g. -fault_type: “kill-process” -process_name: ‘“nova-
api” -host: nodel

monitors

In this test case, two kinds of monitor are needed: 1. the

“openstack-cmd” monitor constantly request a specific
Openstack command, which needs two pa-
rameters:

1) monitor_type: which is used for finding the moni-

tor class and related scritps. It should be always set to

“openstack-cmd” for this monitor. 2) command_name:

which is the command name used for request

2. the “process” monitor check whether a process is

running on a specific node, which needs three pa-
rameters:

1) monitor_type: which used for finding the monitor

class and related scritps. It should be always set to “pro-

cess” for this monitor. 2) process_name: which is the

process name for monitor 3) host: which is the name of

the node runing the process

e.g. monitorl: -monitor_type: ‘“openstack-cmd”

-command_name: “nova image-list” monitor2: -

monitor_type: “process” -process_name: ‘“nova-api” -

host: nodel

metrics

In this test case, there are two metrics: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request. 2)process_recover_time: which indicates the
maximun time (seconds) from the process being killed
to recovered

test tool

Developed by the project. Please see folder: “yard-

stick/benchmark/scenarios/availability/ha_tools” 02

references

ETSI NFV REL001 -

configuration

This test case needs two configuration files: 1) test case
file: opnfv_yardstick_tc019.yaml -Attackers: see above

“attanlare’ Aicrrintfion _wattino fime* whirch 1c the time

Yardstick Overview, Release draft (ff5cb95)

24 Chapter 4. Yardstick Test Cases

Yardstick Overview, Release draft (ff5cb95)

Yardstick Test Case Description TC025

OpenStack Controller Node abnormally shutdown High Availability

test case id

OPNFV_YARDSTICK_TC025_HA: OpenStack Con-
troller Node abnormally shutdown

test purpose

This test case will verify the high availability of con-
troller node. When one of the controller node abnor-
mally shutdown, the service provided by it should be
OK.

test method

This test case shutdowns a specified controller node with
some fault injection tools, then checks whether all ser-
vices provided by the controller node are OK with some
monitor tools.

attackers

In this test case, an attacker called “host-shutdown”
is needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “host-shutdown” in
this test case. 2) host: the name of a controller node
being attacked.

e.g. -fault_type: “host-shutdown” -host: nodel

monitors

In this test case, one kind of monitor are needed: 1. the
“openstack-cmd” monitor constantly request a specific
Openstack command, which needs two pa-
rameters
1) monitor_type: which is used for finding the moni-
tor class and related scritps. It should be always set to
“openstack-cmd” for this monitor. 2) command_name:
which is the command name used for request
There are four instance of the “openstack-cmd” mon-
itor: monitorl: -monitor_type: ‘“openstack-cmd” -
api_name: ‘“nova image-list” monitor2: -monitor_type:
“openstack-cmd” -api_name: “neutron router-list” mon-
itor3: -monitor_type: “openstack-cmd” -api_name:
“heat stack-list” monitor4: -monitor_type: “openstack-
cmd” -api_name: “cinder list”

metrics

In this test case, there is one metric: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request.

test tool

Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references

ETSINFV RELO0O1

configuration

This test case needs two configuration files: 1) test case
file: opnfv_yardstick_tc019.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription

2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence

description and expected result

step 1

start monitors: each monitor will run with independently
process
Result: The monitor info will be collected.

uA3PBPNFV Feature Test Cases

do attacker: connect the host through SSH, and then eY5
ecute shutdown script on the host
Result: The host will be shutdown.

step 3

stop monitors after a period of time specified by “wait-

Ty F1naan’?

Yardstick Overview, Release draft (ff5cb95)

4.3.2 IPv6

Yardstick Test Case Description TC027

IPv6 connectivity between nodes on the tenant network
test case id | OPNFV_YARDSTICK_TCO002_IPv6 connectivity

metric RTT, Round Trip Time
test To do a basic verification that IPv6 connectivity is within acceptable boundaries when ipv6 packets
purpose travel between hosts located on same or different compute blades. The purpose is also to be able to

spot trends. Test results, graphs and similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

configura- | file: opnfv_yardstick_tc027.yaml

tion Packet size 56 bytes. SLA RTT is set to maximum 10 ms.

test tool ping6

Ping6 is normally part of Linux distribution, hence it doesn’t need to be installed.

references | ipv6

ETSI-NFV-TST001

applicabil- | Test case can be configured with different run step you can run setup, run benchmakr, teardown

ity independently SLA is optional. The SLA in this test case serves as an example. Considerably lower
RTT is expected.

pre-test The test case image needs to be installed into Glance with ping6 included in it.

conditions | No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The hosts are installed, as server and client. Ping is invoked and logs are produced and stored.

Result: Logs are stored.
test verdict | Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

26 Chapter 4. Yardstick Test Cases

https://wiki.opnfv.org/ipv6_opnfv_project

Yardstick Overview, Release draft (ff5cb95)

4.3.3 KVM

Yardstick Test Case Description TC028

KVM Latency measurements

test case id

OPNFV_YARDSTICK_TC028_KVM Latency measurements

metric min, avg and max latency

test To evaluate the TaaS KVM virtualization capability with regards to min, avg and max latency. The

purpose purpose is also to be able to spot trends. Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura- | file: samples/cyclictest-node-context.yaml

tion

test tool Cyclictest
(Cyclictest is not always part of a Linux distribution, hence it needs to be installed. As an example
see the /yardstick/tools/ directory for how to generate a Linux image with cyclictest included.)

references | Cyclictest

applicabil- | This test case is mainly for kvm4nfv project CI verify. Upgrade host linux kernel, boot a gust vim

ity update it’s linux kernel, and then run the cyclictest to test the new kernel is work well.

pre-test The test kernel rpm, test sequence scripts and test guest image need put the right folders as specified

conditions | in the test case yaml file. The test guest image needs with cyclictest included in it.
No POD specific requirements have been identified.

test description and expected result

sequence

step 1 The host and guest os kernel is upgraded. Cyclictest is invoked and logs are produced and stored.

Result: Logs are stored.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.

4.3. OPNFV Feature Test Cases 27

https://rt.wiki.kernel.org/index.php/Cyclictest

Yardstick Overview, Release draft (ff5cb95)

4.3.4 Parser

Yardstick Test Case Description TC040

Verify Parser Yang-to-Tosca

test case id

OPNFV_YARDSTICK_TCO040 Verify Parser Yang-to-
Tosca

metric

1. tosca file which is converted from yang file by
Parser

2. result whether the output is same with expected
outcome

test purpose

To verify the function of Yang-to-Tosca in Parser.

configuration

file: opnfv_yardstick_tc040.yaml

yangfile: the path of the yangfile which you want to con-
vert toscafile: the path of the toscafile which is your ex-
pected outcome.

test tool

Parser

(Parser is not part of a Linux distribution, hence it
needs to be installed. As an example see the /yard-
stick/benchmark/scenarios/parser/parser_setup.sh ~ for
how to install it manual. Of course, it will be installed
and uninstalled automatically when you run this test
case by yardstick)

references

Parser

applicability

Test can be configured with different path of yangfile
and toscafile to fit your real environment to verify Parser

pre-test conditions

No POD specific requirements have been identified. it
can be run without VM

test sequence

description and expected result

step 1

parser is installed without VM, running Yang-to-Tosca
module to convert yang file to tosca file, validating out-
put against expected outcome.

Result: Logs are stored.

test verdict

Fails only if output is different with expected outcome
or if there is a test case execution problem.

28

Chapter 4. Yardstick Test Cases

https://wiki.opnfv.org/parser

Yardstick Overview, Release draft (ff5cb95)

4.3. OPNFV Feature Test Cases 29

Yardstick Overview, Release draft (ff5cb95)

4.3.5 virtual Traffic Classifier

Yardstick Test Case Description TC006

Network Performance

test case id

OPNFV_YARDSTICK_TCO006_Virtual Traffic Classi-
fier Data Plane Throughput Benchmarking Test.

metric

Throughput

test purpose

To measure the throughput supported by the virtual Traf-
fic Classifier according to the RFC2544 methodology
for a user-defined set of vTC deployment configurations.

configuration

file: file: opnfv_yardstick_tc006.yaml
packet_size: size of the packets to be used during the
throughput calculation. Allowe values: [64, 128,
256, 512, 1024, 1280, 1518]
vnic_type: type of VNIC to be used.
Allowed values are:
* normal: for default OvS port configura-
tion
e direct: for SR-IOV port configuration
Default value: None
vtc_flavor: OpenStack flavor to be used for the vI'C
Default available values are: m1.small,
ml.medium, and ml.large, but the user can
create his/her own flavor and give it as input
Default value: None
vlan_sender: vlan tag of the network on which the vT
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

C will

vlan_receiver: vlan tag of the network on which the vI'C

will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that

is used for access to the internet from the vTC
(VNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1

(information available through Neutron).
vlan_subnet_1_name: Subnet Neutron name for VLA
(information available through Neutron).

vlan_net_2 name: Neutron Name for VLAN Network 2

(information available through Neutron).
vlan_subnet_2_name: Subnet Neutron name for VLA
(information available through Neutron).

N Network 1

N Network 2

test tool

DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references

DPDK Pktgen: DPDKpktgen
ETSI-NFV-TST001
RFC 2544: rfc2544

applicability

Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.

30

The vNIC type andliptar MU Yarbis tiicifisst alés

user.

pre-test

The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the

AanrnlAaxrvv ot

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (ff5cb95)

4.3. OPNFV Feature Test Cases 31

Yardstick Overview, Release draft (ff5cb95)

Yardstick Test Case Description TC007

Network Performance
test case id . L
OPNFV_YARDSTICK_TCO007_Virtual Traffic Classifier Data Plane
Throughput Benchmarking Test in Presence of
Noisy neighbours
metric Throughput
test purpose To measure the throughput supported by the virtual Traf-
fic Classifier according to the RFC2544 methodology
for a user-defined set of vI'C deployment configurations
in the presence of noisy neighbours.
configuration file: opnfv_yardstick_tc007.yaml
packet_size: size of the packets to be used during the
throughput calculation. Allowe values: [64, 128,
256,512, 1024, 1280, 1518]
vnic_type: type of VNIC to be used.
Allowed values are:
* normal: for default OvS port configura-
tion
e direct: for SR-IOV port configuration
vtc_flavor: OpenStack flavor to be used for the vI'C
Default available values are: m1.small,
ml.medium, and ml.large, but the user can
create his/her own flavor and give it as input
num_of_neighbours: Number of noisy neighbours (VMs) to be
instantiated during the experiment. Allowed val-
ues: range (1, 10)
amount_of_ram: RAM to be used by each neighbor.
Allowed values: [250M’, ‘1G’, ‘2G’, ‘3G’, ‘4G’| ‘5G’,
‘6G’, “71G’, ‘8G’, ‘9G’, ‘10G’]
Deault value: 256M
number_of_cores: Number of noisy neighbours (VMs) to be
instantiated during the experiment. Allowed val-
ues: range (1, 10) Default value: 1
vlan_sender: vlan tag of the network on which the vT'C will
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)
vlan_receiver: vlan tag of the network on which the vI'C
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)
default_net_name: neutron name of the defaul network that
is used for access to the internet from the vTC
(VNIC 1).
default_subnet_name: subnet name for vNIC1
(information available through Neutron).
vlan_net_1 name: Neutron Name for VLAN Network| 1
(information available through Neutron).
vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1
(information available through Neutron).
vlan_net_2_name: Neutron Name for VLAN Network 2
(information available through Neutron).
vlan_subnet 2 _name: Subnet Neutron name for VLAN Network 2
32 (informationChaiptiele 4ar HatdStickohest Cases
test tool DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (ff5cb95)

4.3. OPNFV Feature Test Cases 33

Yardstick Overview, Release draft (ff5cb95)

Yardstick Test Case Description TC020

Network Performance

test case id

OPNFV_YARDSTICK_TC0020_Virtual Traffic Classi-
fier Instantiation Test

metric

Failure

test purpose

To verify that a newly instantiated vTC is ‘alive’ and
functional and its instantiation is correctly supported by
the infrastructure.

configuration

file: opnfv_yardstick_tc020.yaml
vnic_type: type of VNIC to be used.
Allowed values are:
» normal: for default OvS port configura-
tion
e direct: for SR-IOV port configuration
Default value: None
vtc_flavor: OpenStack flavor to be used for the vI'C
Default available values are: ml.small,
ml.medium, and ml.large, but the user can
create his/her own flavor and give it as input
Default value: None
vlan_sender: vlan tag of the network on which the vT
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

C will

vlan_receiver: vlan tag of the network on which the vI'C

will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that

is used for access to the internet from the vTC
(VNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1

(information available through Neutron).
vlan_subnet_1_name: Subnet Neutron name for VLA
(information available through Neutron).

vlan_net_2_name: Neutron Name for VLAN Network 2

(information available through Neutron).
vlan_subnet_2 name: Subnet Neutron name for VLA
(information available through Neutron).

N Network 1

N Network 2

test tool

DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references

DPDKpktgen
ETSI-NFV-TST001
rfc2544

applicability

Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.
The vNIC type and flavor MUST be specified by the
user.

pre-test

The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the
deployment

34

configuratio S. .
+ Multieast 6 GHERTLOT Nerdstick Test Cases| |

The Data network switches need to be con-
figured in order to manage multicast traffic.
In<tallation and conficuiration of <smceronte

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (ff5cb95)

4.3. OPNFV Feature Test Cases 35

Yardstick Overview, Release draft (ff5cb95)

Yardstick Test Case Description TC021

Network Performance

test case id

OPNFV_YARDSTICK_TC0021_Virtual Traffic Classi-
fier Instantiation Test in Presence of Noisy Neighbours

metric

Failure

test purpose

To verify that a newly instantiated vTC is ‘alive’ and
functional and its instantiation is correctly supported by
the infrastructure in the presence of noisy neighbours.

configuration

file: opnfv_yardstick_tc021.yaml
vnic_type: type of VNIC to be used.
Allowed values are:
» normal: for default OvS port configura-
tion
e direct: for SR-IOV port configuration
Default value: None
vtc_flavor: OpenStack flavor to be used for the vI'C
Default available values are: ml.small,
ml.medium, and ml.large, but the user can
create his/her own flavor and give it as input
Default value: None
num_of_neighbours: Number of noisy neighbours (V]
instantiated during the experiment. Allowed val-
ues: range (1, 10)
amount_of_ram: RAM to be used by each neighbor.

Allowed values: [250M°, ‘1G’, ‘2G’, ‘3G’ ‘4G’
‘6G’, “71G’, ‘8G’, 9G’, ‘10G’]

Deault value: 256M

number_of_cores: Number of noisy neighbours (VMs
instantiated during the experiment. Allowed val-
ues: range (1, 10) Default value: 1

vlan_sender: vlan tag of the network on which the vT
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

vlan_receiver: vlan tag of the network on which the v’
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul networ
is used for access to the internet from the vTC
(VNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1 name: Neutron Name for VLAN Network|
(information available through Neutron).

vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1

(information available through Neutron).
vlan_net_2_name: Neutron Name for VLAN Network
(information available through Neutron).

vlan_subnet_2 name: Subnet Neutron name for VLAN Network 2

(information available through Neutron).

test tool

DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence

26

N
references

it needs to be instajled by the Usgy, -
DPDK Pktgen: DPDE B&gen’: ii?HEpE%gen
ETSI-NFV-TST001

RFC 2544: rfc2544

Vis) to be

‘SG’,

to be

C will

rc

k that

2

annlicabilitv

Test can be conficured with different flavors vNIC tvpe

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (ff5cb95)

4.4 Templates

4.4.1 Yardstick Test Case Description TCXXX

test case slogan e.g. Network Latency
test case id | e.g. OPNFV_YARDSTICK_TCO001_NW Latency

metric what will be measured, e.g. latency

test describe what is the purpose of the test case

purpose

configura- what .yaml file to use, state SLA if applicable, state test duration, list and describe the scenario
tion options used in this TC and also list the options using default values.

test tool e.g. ping

references | e.g. RFCxxx, ETSI-NFVyyy
applicabil- | describe variations of the test case which can be performend, e.g. run the test for different packet
ity sizes

pre-test describe configuration in the tool(s) used to perform the measurements (e.g. fio, pktgen),
conditions | POD-specific configuration required to enable running the test
test description and expected result
sequence
step 1 use this to describe tests that require sveveral steps e.g collect logs.
Result: what happens in this step e.g. logs collected
step 2 remove interface
Result: interface down.
step N what is done in step N

Result: what happens
test verdict | expected behavior, or SLA, pass/fail criteria

4.4.2 Task Template Syntax
Basic template syntax
A nice feature of the input task format used in Yardstick is that it supports the template syntax based on Jinja2. This

turns out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this
task in some way. For example, imagine your input task file (task.yaml) runs a set of Ping scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
type: Ping
options:
packetsize: 200
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:

4.4. Templates 37

Yardstick Overview, Release draft (ff5cb95)

max_rtt: 10
action: monitor

context:

Let’s say you want to run the same set of scenarios with the same runner/ context/sla, but you want to try another
packetsize to compare the performance. The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
type: Ping
options:
packetsize: {{packetsize}}
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10

action: monitor

context:

and then pass the argument value for {{packetsize}} when starting a task with this configuration file. Yardstick
provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
-—task-args'{"packetsize":"200"}"

2.Refer to a file that specifies the argument values (JSON/YAML):

’yardstick task start samples/ping-template.yaml —--task-args-file args.yaml

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be
set using the {% set ... %} clause (task.yaml). For example:

Sample benchmark task config file

measure network latency using ping
schema: "yardstick:task:0.1"

{% set packetsize = packetsize or "100" %}
scenarios:

38 Chapter 4. Yardstick Test Cases

Yardstick Overview, Release draft (ff5cb95)

type: Ping

options:

packetsize: {{packetsize}}
host: athena.demo

target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

If you don’t pass the value for {{packetsize}} while starting a task, the default one will be used.

Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in func-
tions. As an example, let us make up a task file that will do a block storage performance test. The input task file
(fio-template.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

scenarios:
{%$ for bs in ['4k', '8k', '64k', '1024k'] %}
{%$ for rw in ['read', 'write', 'randwrite', 'randread', 'rw']

o\
—

type: Fio
options:
filename: /home/ubuntu/data.raw
bs: {{bs}}
rw: {{rw}}
ramp_time: 10
host: fio.demo
runner:
type: Duration
duration: 60
interval: 60

{% endfor %}
{% endfor %}
context

4.4. Templates 39

Yardstick Overview, Release draft (ff5cb95)

40 Chapter 4. Yardstick Test Cases

CHAPTER
FIVE

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

NFVI Network Function Virtualization Infrastructure
PBFS Packet Based per Flow State

QoS Quality of Service

ToS Type of Service

VNF Virtual Network Function

VNFC Virtual Network Function Component

VTC Virtual Traffic Classifier

YARDSTICK GLOSSARY

41

Yardstick Overview, Release draft (ff5cb95)

42 Chapter 5. Yardstick Glossary

D

DPI, 41
DSCP, 41

N

NFVIL, 41

P

PBFS, 41

Q

QoS, 41

T

ToS, 41

\Y

VNF, 41
VNFC, 41
VTC, 41

INDEX

43

	Introduction
	Contact Yardstick

	Methodology
	Abstract
	ETSI-NFV
	Metrics

	Virtual Traffic Classifier
	Abstract
	Overview
	Concepts
	Architecture
	Graphical Overview
	Install
	Run
	Development Environment

	Yardstick Test Cases
	Abstract
	Generic NFVI Test Case Descriptions
	OPNFV Feature Test Cases
	Templates

	Yardstick Glossary
	Index

