Yardstick Release Note Release draft (b5bcf31) **OPNFV** # CONTENTS | 1 | OPN. | FV Brahmaputra Release Note for Yardstick | |---|------|---| | | 1.1 | Abstract | | | 1.2 | License | | | 1.3 | Version History | | | | Important Notes | | | | Summary | | | | Release Data | **CHAPTER** ONE # OPNFV BRAHMAPUTRA RELEASE NOTE FOR YARDSTICK # 1.1 Abstract This document compiles the release notes for the OPNFV Brahmaputra release for Yardstick framework as well as Yardstick Project deliverables. ### 1.2 License The Yardstick framework, the Yardstick test cases and the ApexLake experimental framework are opensource software, licensed under the terms of the Apache License, Version 2.0. # 1.3 Version History | Date | Version | Comment | |---------------|---------|---------------------| | Apr 27th,2016 | 3.0 | Brahmaputra release | | Mar 30th,2016 | 2.0 | Brahmaputra release | | Feb 25th,2016 | 1.0 | Brahmaputra release | # 1.4 Important Notes The software delivered in the OPNFV Yardstick Project, comprising the *Yardstick framework*, the *Yardstick test cases* and the experimental framework *Apex Lake* is a realization of the methodology in ETSI-ISG NFV-TST001. The Yardstick framework is installer, infrastructure and application independent. # 1.5 Summary This Brahmaputra release provides *Yardstick* as a framework for NFVI testing and OPNFV feature testing, automated in the OPNFV CI pipeline, including: - Documentation generated with Sphinx - User Guide - Code Documentation - Release notes (this document) - Results - Automated Yardstick test suite (daily, weekly) - Jenkins Jobs for OPNFV community labs - Automated Yardstick test results visualization - Dashboard using Grafana (user:opnfv/password: opnfv), influxDB used as backend - · Yardstick framework source code - · Yardstick test cases yaml files For Brahmaputra release, the *Yardstick framework* is used for the following testing: - OPNFV platform testing generic test cases to measure the categories: - Compute - Network - Storage - Test cases for the following OPNFV Projects: - High Availability - IPv6 - KVM - Parser - Test cases added in Brahmaputra2.0: - virtual Traffic Classifier The Yardstick framework is developed in the OPNFV community, by the Yardstick team. The virtual Traffic Classifier is a part of the Yardstick Project. **Note:** The test case description template used for the Yardstick test cases is based on the document ETSI-ISG NFV-TST001; the results report template used for the Yardstick results is based on the IEEE Std 829-2008. # 1.6 Release Data | Project | Yardstick | |----------------------------|---------------------------| | Repo/tag | yardstick/brahmaputra.3.0 | | Yardstick Docker image tag | brahmaputra.3.0 | | Release designation | Brahmaputra | | Release date | Apr 27th, 2016 | | Purpose of the delivery | OPNFV Brahmaputra release | # 1.6.1 Version Change #### **Module Version Changes** This is the third tracked release of Yardstick. It is based on following upstream versions: · OpenStack Liberty · OpenDaylight Beryllium #### **Document Version Changes** This is the third tracked version of the Yardstick framework in OPNFV. It includes the following documentation updates: - Yardstick User Guide: corrected faulty links - Yardstick Code Documentation: no changes - Yardstick Release Notes for Yardstick: this document - Test Results report for Brahmaputra testing with Yardstick: updated listed of verified scenarios and limitations Documentation updates on the second tracked version: - · Yardstick User Guide: added software architecture chapter - Yardstick Code Documentation: no changes - · Yardstick Release Notes for Yardstick: this document - Test Results report for Brahmaputra testing with Yardstick: added test cases and results for virtual Traffic Classifier #### 1.6.2 Reason for Version #### **Feature additions** No new features. Brahmaputra.2.0: | JIRA REFERENCE | SLOGAN | |---------------------|-------------------------| | JIRA: YARDSTICK-227 | Heat HTTPS SSL support. | #### **Corrected Faults** No corrected faults. Brahmaputra.2.0: | JIRA REFERENCE | SLOGAN | |----------------|---| | JIRA: - | Change copyrights for base scenario, runners, dispatchers, cover. | | JIRA: - | Update setup.py and dependencies | | JIRA: - | Add missing dependencies to docker file | | JIRA: - | Fix Heat template for noisy neighbors deploy | 1.6. Release Data 3 #### **Known Faults** | JIRA REFERENCE | SLOGAN | |---------------------|---| | JIRA: YARDSTICK-175 | Running test suite, if a test cases running failed, the test is stopped. | | JIRA: YARDSTICK-176 | Fix plotter bug since Output format has been changed. | | JIRA: YARDSTICK-216 | ArgsAlreadyParsedError: arguments already parsed: cannot register CLI option. | | JIRA: YARDSTICK-231 | Installation instructions on Wiki not accurate | **Note:** The faults not related to *Yardstick* framework, addressing scenarios which were not fully verified, are listed in the OPNFV installer's release notes. # 1.6.3 Deliverables #### **Software Deliverables** # Yardstick framework source code

 trahmaputra.3.0> | Project | Yardstick | |----------------------------|---------------------------| | Repo/tag | yardstick/brahmaputra.3.0 | | Yardstick Docker image tag | brahmaputra.3.0 | | Release designation | Brahmaputra | | Release date | Apr 27th, 2016 | | Purpose of the delivery | OPNFV Brahmaputra release | #### **Contexts** | Context | Description | | |---------|---|--| | Heat | Models orchestration using OpenStack Heat | | | Node | Models Baremetal, Controller, Compute | | #### **Runners** | Runner | Description | |------------|--| | Arithmetic | Steps every run arithmetically according to specified input value | | Duration | Runs for a specified period of time | | Iteration | Runs for a specified number of iterations | | Sequence | Selects input value to a scenario from an input file and runs all entries sequentially | ### **Scenarios** | Category | Delivered | |--------------|--| | Availability | Attacker: | | | baremetal, process | | | HA tools: | | | check host, openstack, process, service | | | • kill process | | | • start/stop service | | | Monitor: | | | • command, process | | Compute | cpuload cyclictest lmbench perf unixbench | | Networking | iperf3 netperf ping ping6 pktgen sfc sfc with tacker vtc instantion validation vtc instantion validation with noisy neighbors vtc throughput vtc throughput in the presence of noisy neighbors | | Parser | Tosca2Heat | | 1 61.50. | 10304211041 | ### **API to Other Frameworks** | Frame- | Description | | |----------|---|--| | work | | | | ApexLake | Experimental framework that enables the user to validate NFVI from the perspective of a VNF. A | | | | virtual Traffic Classifier is utilized as VNF. Enables experiments with SR-IOV on Compute Node. | | # **Test Results Output** | Dispatcher | Description | |------------|------------------------| | file | Log to a file. | | http | Post data to html. | | influxdb | Post data to influxdB. | #### **Delivered Test cases** - Generic NFVI test cases - OPNFV_YARDSTICK_TCOO1 NW Performance - OPNFV_YARDSTICK_TCOO2 NW Latency - OPNFV_YARDSTICK_TCOO5 Storage Performance - OPNFV_YARDSTICK_TCOO8 Packet Loss Extended Test 1.6. Release Data 5 - OPNFV_YARDSTICK_TCOO9 Packet Loss - OPNFV_YARDSTICK_TCO10 Memory Latency - OPNFV_YARDSTICK_TCO11 Packet Delay Variation Between VMs - OPNFV_YARDSTICK_TCO12 Memory Bandwidth - OPNFV YARDSTICK TCO14 Processing Speed - OPNFV YARDSTICK TCO24 CPU Load - OPNFV_YARDSTICK_TCO37 Latency, CPU Load, Throughput, Packet Loss - OPNFV_YARDSTICK_TCO38 Latency, CPU Load, Throughput, Packet Loss Extended Test - Test Cases for OPNFV HA Project: - OPNFV_YARDSTICK_TCO19 HA: Control node Openstack service down - OPNFV_YARDSTICK_TC025 HA: OpenStacK Controller Node abnormally down - Test Case for OPNFV IPv6 Project: - OPNFV_YARDSTICK_TCO27 IPv6 connectivity - Test Case for OPNFV KVM Project: - OPNFV_YARDSTICK_TCO28 KVM Latency measurements - Test Case for OPNFV Parser Project: - OPNFV_YARDSTICK_TCO40 Verify Parser Yang-to-Tosca - · Test Cases for Virtual Traffic Classifier: - OPNFV_YARDSTICK_TC006 Virtual Traffic Classifier Data Plane Throughput #### Benchmarking Test • OPNFV_YARDSTICK_TC007 - Virtual Traffic Classifier Data Plane Throughput Benchmarking in presence of noisy neighbors Test - OPNFV_YARDSTICK_TC020 Virtual Traffic Classifier Instantiation Test - OPNFV_YARDSTICK_TC021 Virtual Traffic Classifier Instantiation in presence of noisy neighbors Test