
Yardstick Overview
Release draft (bafc82e)

OPNFV

June 02, 2016

CONTENTS

1 Introduction 1
1.1 About This Document . 1
1.2 Contact Yardstick . 1

2 Methodology 3
2.1 Abstract . 3
2.2 ETSI-NFV . 3
2.3 Metrics . 3

3 Architecture 7
3.1 Abstract . 7
3.2 Overview . 7
3.3 Use-Case View . 8
3.4 Logical View . 9
3.5 Process View (Test execution flow) . 10
3.6 Deployment View . 11
3.7 Yardstick Directory structure . 12

4 Virtual Traffic Classifier 13
4.1 Abstract . 13
4.2 Overview . 13
4.3 Concepts . 13
4.4 Architecture . 14
4.5 Graphical Overview . 14
4.6 Install . 14
4.7 Run . 14
4.8 Development Environment . 15

5 Apexlake Installation Guide 17
5.1 Abstract . 17

6 Apexlake API Interface Definition 21
6.1 Abstract . 21
6.2 init . 21
6.3 execute_framework . 21

7 Yardstick Installation 23
7.1 Abstract . 23
7.2 Installing Yardstick on Ubuntu 14.04 . 23
7.3 Installing Yardstick using Docker . 24
7.4 OpenStack parameters and credentials . 26

i

7.5 Examples and verifying the install . 26

8 Yardstick Test Cases 27
8.1 Abstract . 27
8.2 Generic NFVI Test Case Descriptions . 28
8.3 OPNFV Feature Test Cases . 41
8.4 Templates . 55

9 Glossary 59

10 References 61
10.1 OPNFV . 61
10.2 References used in Test Cases . 61
10.3 Research . 62
10.4 Standards . 62

Index 63

ii

CHAPTER

ONE

INTRODUCTION

Welcome to Yardstick’s documentation !

Yardstick is an OPNFV Project.

The project’s goal is to verify infrastructure compliance, from the perspective of a Virtual Network Function (VNF).

The Project’s scope is the development of a test framework, Yardstick, test cases and test stimuli to enable Network
Function Virtualization Infrastructure (NFVI) verification. The Project also includes a sample VNF, the Virtual Traffic
Classifier (VTC) and its experimental framework, ApexLake !

Yardstick is used in OPNFV for verifying the OPNFV infrastructure and some of the OPNFV features. The Yardstick
framework is deployed in several OPNFV community labs. It is installer, infrastructure and application independent.

See also:

Pharos for information on OPNFV community labs and this Presentation for an overview of Yardstick

1.1 About This Document

This document consists of the following chapters:

• Chapter Methodology describes the methodology implemented by the Yardstick Project for NFVI verification.

• Chapter Architecture provides information on the software architecture of yardstick.

• Chapter Virtual Traffic Classifier provides information on the VTC.

• Chapter Apexlake Installation Guide provides instructions to install the experimental framework ApexLake and
chapter Apexlake API Interface Definition explains how this framework is integrated in Yardstick.

• Chapter Yardstick Installation provides instructions to install Yardstick.

• Chapter Yardstick Test Cases includes a list of available Yardstick test cases.

1.2 Contact Yardstick

Feedback? Contact us

1

https://wiki.opnfv.org/yardstick
https://wiki.opnfv.org/pharos
https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_yardstick_project.pdf?version=1&modificationDate=1458848320000&api=v2
mailto:opnfv-users@lists.opnfv.org

Yardstick Overview, Release draft (bafc82e)

2 Chapter 1. Introduction

CHAPTER

TWO

METHODOLOGY

2.1 Abstract

This chapter describes the methodology implemented by the Yardstick project for verifying the NFVI from the per-
spective of a VNF.

2.2 ETSI-NFV

The document ETSI GS NFV-TST001, “Pre-deployment Testing; Report on Validation of NFV Environments and
Services”, recommends methods for pre-deployment testing of the functional components of an NFV environment.

The Yardstick project implements the methodology described in chapter 6, “Pre- deployment validation of NFV in-
frastructure”.

The methodology consists in decomposing the typical VNF work-load performance metrics into a number of charac-
teristics/performance vectors, which each can be represented by distinct test-cases.

The methodology includes five steps:

• Step1: Define Infrastruture - the Hardware, Software and corresponding configuration target for valida-
tion; the OPNFV infrastructure, in OPNFV community labs.

• Step2: Identify VNF type - the application for which the infrastructure is to be validated, and its require-
ments on the underlying infrastructure.

• Step3: Select test cases - depending on the workload that represents the application for which the infras-
truture is to be validated, the relevant test cases amongst the list of available Yardstick test cases.

• Step4: Execute tests - define the duration and number of iterations for the selected test cases, tests runs
are automated via OPNFV Jenkins Jobs.

• Step5: Collect results - using the common API for result collection.

See also:

Yardsticktst for material on alignment ETSI TST001 and Yardstick.

2.3 Metrics

The metrics, as defined by ETSI GS NFV-TST001, are shown in Table1, Table2 and Table3.

3

http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_bridging_opnfv_and_etsi.pdf?version=1&modificationDate=1458848320000&api=v2

Yardstick Overview, Release draft (bafc82e)

In OPNFV Brahmaputra release, generic test cases covering aspects of the listed metrics are available; further OPNFV
releases will provide extended testing of these metrics. The view of available Yardstick test cases cross ETSI defini-
tions in Table1, Table2 and Table3 is shown in Table4. It shall be noticed that the Yardstick test cases are examples,
the test duration and number of iterations are configurable, as are the System Under Test (SUT) and the attributes (or,
in Yardstick nomemclature, the scenario options). Table 1 - Performance/Speed Metrics

Category Performance/Speed
Compute

• Latency for random memory access
• Latency for cache read/write operations
• Processing speed (instructions per second)
• Throughput for random memory access (bytes per

second)

Network
• Throughput per NFVI node (frames/byte per sec-

ond)
• Throughput provided to a VM (frames/byte per

second)
• Latency per traffic flow
• Latency between VMs
• Latency between NFVI nodes
• Packet delay variation (jitter) between VMs
• Packet delay variation (jitter) between NFVI

nodes

Storage
• Sequential read/write IOPS
• Random read/write IOPS
• Latency for storage read/write operations
• Throughput for storage read/write operations

Table 2 - Capacity/Scale Metrics

4 Chapter 2. Methodology

Yardstick Overview, Release draft (bafc82e)

Category Capacity/Scale
Compute

• Number of cores and threads- Available memory
size

• Cache size
• Processor utilization (max, average, standard de-

viation)
• Memory utilization (max, average, standard devi-

ation)
• Cache utilization (max, average, standard devia-

tion)

Network
• Number of connections
• Number of frames sent/received
• Maximum throughput between VMs (frames/byte

per second)
• Maximum throughput between NFVI nodes

(frames/byte per second)
• Network utilization (max, average, standard devi-

ation)
• Number of traffic flows

Storage
• Storage/Disk size
• Capacity allocation (block-based, object-based)
• Block size
• Maximum sequential read/write IOPS
• Maximum random read/write IOPS
• Disk utilization (max, average, standard devia-

tion)

Table 3 - Availability/Reliability Metrics

Category Availability/Reliability
Compute

• Processor availability (Error free processing time)
• Memory availability (Error free memory time)
• Processor mean-time-to-failure
• Memory mean-time-to-failure
• Number of processing faults per second

Network
• NIC availability (Error free connection time)
• Link availability (Error free transmission time)
• NIC mean-time-to-failure
• Network timeout duration due to link failure
• Frame loss rate

Storage
• Disk availability (Error free disk access time)
• Disk mean-time-to-failure
• Number of failed storage read/write operations

per second

Table 4 - Yardstick Generic Test Cases

2.3. Metrics 5

Yardstick Overview, Release draft (bafc82e)

Cate-
gory

Performance/Speed Capacity/Scale Availabil-
ity/Reliability

Com-
pute

TC003 1 TC004 1 TC014 TC024 TC003 1 TC004 1 TC010
TC012

TC013 1 TC015 1

Net-
work

TC002 TC011 TC001 TC008 TC009 TC016 1 TC018 1

Stor-
age

TC005 TC005 TC017 1

Note: The description in this OPNFV document is intended as a reference for users to understand the scope of the
Yardstick Project and the deliverables of the Yardstick framework. For complete description of the methodology, refer
to the ETSI document.

1To be included in future deliveries.

6 Chapter 2. Methodology

CHAPTER

THREE

ARCHITECTURE

3.1 Abstract

This chapter describes the yardstick framework software architecture. we will introduce it from Use-Case View,
Logical View, Process View and Deployment View. More technical details will be introduced in this chapter.

3.2 Overview

3.2.1 Architecture overview

Yardstick is mainly written in Python, and test configurations are made in YAML. Documentation is written in re-
StructuredText format, i.e. .rst files. Yardstick is inspired by Rally. Yardstick is intended to run on a computer with
access and credentials to a cloud. The test case is described in a configuration file given as an argument.

How it works: the benchmark task configuration file is parsed and converted into an internal model. The context part
of the model is converted into a Heat template and deployed into a stack. Each scenario is run using a runner, either
serially or in parallel. Each runner runs in its own subprocess executing commands in a VM using SSH. The output
of each scenario is written as json records to a file or influxdb or http server, we use influxdb as the backend, the test
result will be shown with grafana.

3.2.2 Concept

Benchmark - assess the relative performance of something

Benchmark configuration file - describes a single test case in yaml format

Context - The set of Cloud resources used by a scenario, such as user names, image names, affinity rules and network
configurations. A context is converted into a simplified Heat template, which is used to deploy onto the Openstack
environment.

Data - Output produced by running a benchmark, written to a file in json format

Runner - Logic that determines how a test scenario is run and reported, for example the number of test iterations,
input value stepping and test duration. Predefined runner types exist for re-usage, see Runner types.

Scenario - Type/class of measurement for example Ping, Pktgen, (Iperf, LmBench, ...)

SLA - Relates to what result boundary a test case must meet to pass. For example a latency limit, amount or ratio of
lost packets and so on. Action based on SLA can be configured, either just to log (monitor) or to stop further testing
(assert). The SLA criteria is set in the benchmark configuration file and evaluated by the runner.

7

Yardstick Overview, Release draft (bafc82e)

3.2.3 Runner types

There exists several predefined runner types to choose between when designing a test scenario:

Arithmetic: Every test run arithmetically steps the specified input value(s) in the test scenario, adding a value to the
previous input value. It is also possible to combine several input values for the same test case in different combinations.

Snippet of an Arithmetic runner configuration:

runner:
type: Arithmetic
iterators:
-

name: stride
start: 64
stop: 128
step: 64

Duration: The test runs for a specific period of time before completed.

Snippet of a Duration runner configuration:

runner:
type: Duration
duration: 30

Sequence: The test changes a specified input value to the scenario. The input values to the sequence are specified in
a list in the benchmark configuration file.

Snippet of a Sequence runner configuration:

runner:
type: Sequence
scenario_option_name: packetsize
sequence:
- 100
- 200
- 250

Iteration: Tests are run a specified number of times before completed.

Snippet of an Iteration runner configuration:

runner:
type: Iteration
iterations: 2

3.3 Use-Case View

Yardstick Use-Case View shows two kinds of users. One is the Tester who will do testing in cloud, the other is the
User who is more concerned with test result and result analyses.

For testers, they will run a single test case or test case suite to verify infrastructure compliance or bencnmark their own
infrastructure performance. Test result will be stored by dispatcher module, three kinds of store method (file, influxdb
and http) can be configured. The detail information of scenarios and runners can be queried with CLI by testers.

For users, they would check test result with four ways.

If dispatcher module is configured as file(default), there are two ways to check test result. One is to get result from
yardstick.out (default path: /tmp/yardstick.out), the other is to get plot of test result, it will be shown if users execute
command “yardstick-plot”.

8 Chapter 3. Architecture

Yardstick Overview, Release draft (bafc82e)

If dispatcher module is configured as influxdb, users will check test result on Grafana which is most commonly used
for visualizing time series data.

If dispatcher module is configured as http, users will check test result on OPNFV testing dashboard which use Mon-
goDB as backend.

3.4 Logical View

Yardstick Logical View describes the most important classes, their organization, and the most important use-case
realizations.

Main classes:

TaskCommands - “yardstick task” subcommand handler.

HeatContext - Do test yaml file context section model convert to HOT, deploy and undeploy Openstack heat stack.

Runner - Logic that determines how a test scenario is run and reported.

3.4. Logical View 9

Yardstick Overview, Release draft (bafc82e)

TestScenario - Type/class of measurement for example Ping, Pktgen, (Iperf, LmBench, ...)

Dispatcher - Choose user defined way to store test results.

TaskCommands is the “yardstick task” subcommand’s main entry. It takes yaml file (e.g. test.yaml) as input, and uses
HeatContext to convert the yaml file’s context section to HOT. After Openstacik heat stack is deployed by HeatContext
with the converted HOT, TaskCommands use Runner to run specified TestScenario. During first runner initialization, it
will create output process. The output process use Dispatcher to push test results. The Runner will also create a process
to execute TestScenario. And there is a multiprocessing queue between each runner process and output process, so
the runner process can push the real-time test results to the storage media. TestScenario is commonly connected with
VMs by using ssh. It sets up VMs and run test measurement scripts through the ssh tunnel. After all TestScenaio is
finished, TaskCommands will undeploy the heat stack. Then the whole test is finished.

3.5 Process View (Test execution flow)

Yardstick process view shows how yardstick runs a test case. Below is the sequence graph about the test execution
flow using heat context, and each object represents one module in yardstick:

10 Chapter 3. Architecture

Yardstick Overview, Release draft (bafc82e)

A user wants to do a test with yardstick. He can use the CLI to input the command to start a task. “TaskCommands”
will receive the command and ask “HeatContext” to parse the context. “HeatContext” will then ask “Model” to
convert the model. After the model is generated, “HeatContext” will inform “Openstack” to deploy the heat stack by
heat template. After “Openstack” deploys the stack, “HeatContext” will inform “Runner” to run the specific test case.

Firstly, “Runner” would ask “TestScenario” to process the specific scenario. Then “TestScenario” will start to log
on the openstack by ssh protocal and execute the test case on the specified VMs. After the script execution fin-
ishes, “TestScenario” will send a message to inform “Runner”. When the testing job is done, “Runner” will inform
“Dispatcher” to output the test result via file, influxdb or http. After the result is output, “HeatContext” will call
“Openstack” to undeploy the heat stack. Once the stack is undepoyed, the whole test ends.

3.6 Deployment View

Yardstick deployment view shows how the yardstick tool can be deployed into the underlying platform. Generally,
yardstick tool is installed on JumpServer(see 03-installation for detail installation steps), and JumpServer is connected
with other control/compute servers by networking. Based on this deployment, yardstick can run the test cases on these

3.6. Deployment View 11

Yardstick Overview, Release draft (bafc82e)

hosts, and get the test result for better showing.

3.7 Yardstick Directory structure

yardstick/ - Yardstick main directory.

ci/ - Used for continuous integration of Yardstick at different PODs and with support for different installers.

docs/ - All documentation is stored here, such as configuration guides, user guides and Yardstick descriptions.

etc/ - Used for test cases requiring specific POD configurations.

samples/ - test case samples are stored here, most of all scenario and feature’s samples are shown in this direc-
tory.

tests/ - Here both Yardstick internal tests (functional/ and unit/) as well as the test cases run to verify the NFVI
(opnfv/) are stored. Also configurations of what to run daily and weekly at the different PODs is located here.

tools/ - Currently contains tools to build image for VMs which are deployed by Heat. Currently contains how to
build the yardstick-trusty-server image with the different tools that are needed from within the image.

vTC/ - Contains the files for running the virtual Traffic Classifier tests.

yardstick/ - Contains the internals of Yardstick: Runners, Scenario, Contexts, CLI parsing, keys, plotting tools,
dispatcher and so on.

12 Chapter 3. Architecture

CHAPTER

FOUR

VIRTUAL TRAFFIC CLASSIFIER

4.1 Abstract

This chapter provides an overview of the virtual Traffic Classifier, a contribution to OPNFV Yardstick from the EU
Project TNOVA. Additional documentation is available in TNOVAresults.

4.2 Overview

The virtual Traffic Classifier (VTC) VNF, comprises of a Virtual Network Function Component (VNFC). The VNFC
contains both the Traffic Inspection module, and the Traffic forwarding module, needed to run the VNF. The exploita-
tion of Deep Packet Inspection (DPI) methods for traffic classification is built around two basic assumptions:

• third parties unaffiliated with either source or recipient are able to

inspect each IP packet’s payload

• the classifier knows the relevant syntax of each application’s packet

payloads (protocol signatures, data patterns, etc.).

The proposed DPI based approach will only use an indicative, small number of the initial packets from each flow in
order to identify the content and not inspect each packet.

In this respect it follows the Packet Based per Flow State (term:PBFS). This method uses a table to track each session
based on the 5-tuples (src address, dest address, src port,dest port, transport protocol) that is maintained for each flow.

4.3 Concepts

• Traffic Inspection: The process of packet analysis and application

identification of network traffic that passes through the VTC.

• Traffic Forwarding: The process of packet forwarding from an incoming

network interface to a pre-defined outgoing network interface.

• Traffic Rule Application: The process of packet tagging, based on a

predefined set of rules. Packet tagging may include e.g. Type of Service (ToS) field modification.

13

https://wiki.opnfv.org/yardstick
http://www.t-nova.eu/
http://www.t-nova.eu/results/

Yardstick Overview, Release draft (bafc82e)

4.4 Architecture

The Traffic Inspection module is the most computationally intensive component of the VNF. It implements filtering and
packet matching algorithms in order to support the enhanced traffic forwarding capability of the VNF. The component
supports a flow table (exploiting hashing algorithms for fast indexing of flows) and an inspection engine for traffic
classification.

The implementation used for these experiments exploits the nDPI library. The packet capturing mechanism is imple-
mented using libpcap. When the DPI engine identifies a new flow, the flow register is updated with the appropriate
information and transmitted across the Traffic Forwarding module, which then applies any required policy updates.

The Traffic Forwarding moudle is responsible for routing and packet forwarding. It accepts incoming network traf-
fic, consults the flow table for classification information for each incoming flow and then applies pre-defined policies
marking e.g. ToS/Differentiated Services Code Point (DSCP) multimedia traffic for Quality of Service (QoS) enable-
ment on the forwarded traffic. It is assumed that the traffic is forwarded using the default policy until it is identified
and new policies are enforced.

The expected response delay is considered to be negligible, as only a small number of packets are required to identify
each flow.

4.5 Graphical Overview

+----------------------------+
| |
| Virtual Traffic Classifier |
| |
| Analysing/Forwarding |
| ------------> |
| ethA ethB |
| |
+----------------------------+

| ^
| |
v |

+----------------------------+
| |
| Virtual Switch |
| |
+----------------------------+

4.6 Install

run the build.sh with root privileges

4.7 Run

sudo ./pfbridge -a eth1 -b eth2

14 Chapter 4. Virtual Traffic Classifier

Yardstick Overview, Release draft (bafc82e)

4.8 Development Environment

Ubuntu 14.04

4.8. Development Environment 15

Yardstick Overview, Release draft (bafc82e)

16 Chapter 4. Virtual Traffic Classifier

CHAPTER

FIVE

APEXLAKE INSTALLATION GUIDE

5.1 Abstract

ApexLake is a framework that provides automatic execution of experiments and related data collection to enable a
user validate infrastructure from the perspective of a Virtual Network Function (VNF).

In the context of Yardstick, a virtual Traffic Classifier (VTC) network function is utilized.

5.1.1 Framework Hardware Dependencies

In order to run the framework there are some hardware related dependencies for ApexLake.

The framework needs to be installed on the same physical node where DPDK-pktgen is installed.

The installation requires the physical node hosting the packet generator must have 2 NICs which are DPDK compati-
ble.

The 2 NICs will be connected to the switch where the OpenStack VM network is managed.

The switch used must support multicast traffic and IGMP snooping. Further details about the configuration are pro-
vided at the following here.

The corresponding ports to which the cables are connected need to be configured as VLAN trunks using two of the
VLAN IDs available for Neutron. Note the VLAN IDs used as they will be required in later configuration steps.

5.1.2 Framework Software Dependencies

Before starting the framework, a number of dependencies must first be installed. The following describes the set of
instructions to be executed via the Linux shell in order to install and configure the required dependencies.

1. Install Dependencies.

To support the framework dependencies the following packages must be installed. The example provided is based on
Ubuntu and needs to be executed in root mode.

apt-get install python-dev
apt-get install python-pip
apt-get install python-mock
apt-get install tcpreplay
apt-get install libpcap-dev

2. Source OpenStack openrc file.

17

https://github.com/Pktgen/Pktgen-DPDK/
http://dpdk.org/doc/nics
https://wiki.opnfv.org/vtc

Yardstick Overview, Release draft (bafc82e)

source openrc

3. Configure Openstack Neutron

In order to support traffic generation and management by the virtual Traffic Classifier, the configuration of the port
security driver extension is required for Neutron.

For further details please follow the following link: PORTSEC This step can be skipped in case the target OpenStack
is Juno or Kilo release, but it is required to support Liberty. It is therefore required to indicate the release version in
the configuration file located in ./yardstick/vTC/apexlake/apexlake.conf

4. Create Two Networks based on VLANs in Neutron.

To enable network communications between the packet generator and the compute node, two networks must be created
via Neutron and mapped to the VLAN IDs that were previously used in the configuration of the physical switch. The
following shows the typical set of commands required to configure Neutron correctly. The physical switches need to
be configured accordingly.

VLAN_1=2032
VLAN_2=2033
PHYSNET=physnet2
neutron net-create apexlake_inbound_network \

--provider:network_type vlan \
--provider:segmentation_id $VLAN_1 \
--provider:physical_network $PHYSNET

neutron subnet-create apexlake_inbound_network \
192.168.0.0/24 --name apexlake_inbound_subnet

neutron net-create apexlake_outbound_network \
--provider:network_type vlan \
--provider:segmentation_id $VLAN_2 \
--provider:physical_network $PHYSNET

neutron subnet-create apexlake_outbound_network 192.168.1.0/24 \
--name apexlake_outbound_subnet

5. Download Ubuntu Cloud Image and load it on Glance

The virtual Traffic Classifier is supported on top of Ubuntu 14.04 cloud image. The image can be downloaded on the
local machine and loaded on Glance using the following commands:

wget cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img
glance image-create \

--name ubuntu1404 \
--is-public true \
--disk-format qcow \
--container-format bare \
--file trusty-server-cloudimg-amd64-disk1.img

6. Configure the Test Cases

The VLAN tags must also be included in the test case Yardstick yaml file as parameters for the following test cases:

• Yardstick Test Case Description TC006

• Yardstick Test Case Description TC007

• Yardstick Test Case Description TC020

• Yardstick Test Case Description TC021

18 Chapter 5. Apexlake Installation Guide

https://wiki.openstack.org/wiki/Neutron/ML2PortSecurityExtensionDriver

Yardstick Overview, Release draft (bafc82e)

Install and Configure DPDK Pktgen

Execution of the framework is based on DPDK Pktgen. If DPDK Pktgen has not installed, it is necessary to download,
install, compile and configure it. The user can create a directory and download the dpdk packet generator source code:

cd experimental_framework/libraries
mkdir dpdk_pktgen
git clone https://github.com/pktgen/Pktgen-DPDK.git

For instructions on the installation and configuration of DPDK and DPDK Pktgen please follow the official DPDK
Pktgen README file. Once the installation is completed, it is necessary to load the DPDK kernel driver, as follow:

insmod uio
insmod DPDK_DIR/x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

It is necessary to set the configuration file to support the desired Pktgen configuration. A description of the required
configuration parameters and supporting examples is provided in the following:

[PacketGen]
packet_generator = dpdk_pktgen

This is the directory where the packet generator is installed
(if the user previously installed dpdk-pktgen,
it is required to provide the director where it is installed).
pktgen_directory = /home/user/software/dpdk_pktgen/dpdk/examples/pktgen/

This is the directory where DPDK is installed
dpdk_directory = /home/user/apexlake/experimental_framework/libraries/Pktgen-DPDK/dpdk/

Name of the dpdk-pktgen program that starts the packet generator
program_name = app/app/x86_64-native-linuxapp-gcc/pktgen

DPDK coremask (see DPDK-Pktgen readme)
coremask = 1f

DPDK memory channels (see DPDK-Pktgen readme)
memory_channels = 3

Name of the interface of the pktgen to be used to send traffic (vlan_sender)
name_if_1 = p1p1

Name of the interface of the pktgen to be used to receive traffic (vlan_receiver)
name_if_2 = p1p2

PCI bus address correspondent to if_1
bus_slot_nic_1 = 01:00.0

PCI bus address correspondent to if_2
bus_slot_nic_2 = 01:00.1

To find the parameters related to names of the NICs and the addresses of the PCI buses the user may find it useful to
run the DPDK tool nic_bind as follows:

DPDK_DIR/tools/dpdk_nic_bind.py --status

Lists the NICs available on the system, and shows the available drivers and bus addresses for each interface. Please
make sure to select NICs which are DPDK compatible.

5.1. Abstract 19

Yardstick Overview, Release draft (bafc82e)

Installation and Configuration of smcroute

The user is required to install smcroute which is used by the framework to support multicast communications.

The following is the list of commands required to download and install smroute.

cd ~
git clone https://github.com/troglobit/smcroute.git
cd smcroute
git reset --hard c3f5c56
sed -i 's/aclocal-1.11/aclocal/g' ./autogen.sh
sed -i 's/automake-1.11/automake/g' ./autogen.sh
./autogen.sh
./configure
make
sudo make install
cd ..

It is required to do the reset to the specified commit ID. It is also requires the creation a configuration file using the
following command:

SMCROUTE_NIC=(name of the nic)

where name of the nic is the name used previously for the variable “name_if_2”. For example:

SMCROUTE_NIC=p1p2

Then create the smcroute configuration file /etc/smcroute.conf

echo mgroup from $SMCROUTE_NIC group 224.192.16.1 > /etc/smcroute.conf

At the end of this procedure it will be necessary to perform the following actions to add the user to the sudoers:

adduser USERNAME sudo
echo "user ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

Experiment using SR-IOV Configuration on the Compute Node

To enable SR-IOV interfaces on the physical NIC of the compute node, a compatible NIC is required. NIC configura-
tion depends on model and vendor. After proper configuration to support SR-IOV , a proper configuration of OpenStack
is required. For further information, please refer to the SRIOV configuration guide

5.1.3 Finalize installation the framework on the system

The installation of the framework on the system requires the setup of the project. After entering into the apexlake
directory, it is sufficient to run the following command.

python setup.py install

Since some elements are copied into the /tmp directory (see configuration file) it could be necessary to repeat this step
after a reboot of the host.

20 Chapter 5. Apexlake Installation Guide

https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking

CHAPTER

SIX

APEXLAKE API INTERFACE DEFINITION

6.1 Abstract

The API interface provided by the framework to enable the execution of test cases is defined as follows.

6.2 init

static init()

Initializes the Framework

Returns None

6.3 execute_framework

static execute_framework (test_cases,

iterations,

heat_template,

heat_template_parameters,

deployment_configuration,

openstack_credentials)

Executes the framework according the specified inputs

Parameters

• test_cases

Test cases to be run with the workload (dict() of dict())

Example: test_case = dict()

test_case[’name’] = ‘module.Class’

test_case[’params’] = dict()

test_case[’params’][’throughput’] = ‘1’

test_case[’params’][’vlan_sender’] = ‘1000’

test_case[’params’][’vlan_receiver’] = ‘1001’

21

Yardstick Overview, Release draft (bafc82e)

test_cases = [test_case]

• iterations Number of test cycles to be executed (int)

• heat_template (string) File name of the heat template corresponding to the workload
to be deployed. It contains the parameters to be evaluated in the form of #parame-
ter_name. (See heat_templates/vTC.yaml as example).

• heat_template_parameters (dict) Parameters to be provided as input to the heat tem-
plate. See http://docs.openstack.org/developer/heat/ template_guide/hot_guide.html
section “Template input parameters” for further info.

• deployment_configuration (dict[string] = list(strings))) Dictionary of parameters rep-
resenting the deployment configuration of the workload.

The key is a string corresponding to the name of the parameter, the value is a list
of strings representing the value to be assumed by a specific param. The parameters
are user defined: they have to correspond to the place holders (#parameter_name)
specified in the heat template.

Returns dict() containing results

22 Chapter 6. Apexlake API Interface Definition

http://docs.openstack.org/developer/heat/

CHAPTER

SEVEN

YARDSTICK INSTALLATION

7.1 Abstract

Yardstick currently supports installation on Ubuntu 14.04 or by using a Docker image. Detailed steps about installing
Yardstick using both of these options can be found below.

To use Yardstick you should have access to an OpenStack environment, with at least Nova, Neutron, Glance, Keystone
and Heat installed.

The steps needed to run Yardstick are:

1. Install Yardstick and create the test configuration .yaml file.

2. Build a guest image and load the image into the OpenStack environment.

3. Create a Neutron external network and load OpenStack environment variables.

4. Run the test case.

7.2 Installing Yardstick on Ubuntu 14.04

7.2.1 Installing Yardstick framework

Install dependencies:

sudo apt-get update && sudo apt-get install -y \
wget \
git \
sshpass \
qemu-utils \
kpartx \
libffi-dev \
libssl-dev \
python \
python-dev \
python-virtualenv \
libxml2-dev \
libxslt1-dev \
python-setuptools

Create a python virtual environment, source it and update setuptools:

23

Yardstick Overview, Release draft (bafc82e)

virtualenv ~/yardstick_venv
source ~/yardstick_venv/bin/activate
easy_install -U setuptools

Download source code and install python dependencies:

git clone https://gerrit.opnfv.org/gerrit/yardstick
cd yardstick
python setup.py install

There is also a YouTube video, showing the above steps:

7.2.2 Installing extra tools

yardstick-plot

Yardstick has an internal plotting tool yardstick-plot, which can be installed using the following command:

sudo apt-get install -y g++ libfreetype6-dev libpng-dev pkg-config
python setup.py develop easy_install yardstick[plot]

7.2.3 Building a guest image

Yardstick has a tool for building an Ubuntu Cloud Server image containing all the required tools to run test cases
supported by Yardstick. It is necessary to have sudo rights to use this tool.

Also you may need install several additional packages to use this tool, by follwing the commands below:

apt-get update && apt-get install -y \
qemu-utils \
kpartx

This image can be built using the following command while in the directory where Yardstick is installed
(~/yardstick if the framework is installed by following the commands above):

sudo ./tools/yardstick-img-modify tools/ubuntu-server-cloudimg-modify.sh

Warning: the script will create files by default in: /tmp/workspace/yardstick and the files will be owned by
root!

The created image can be added to OpenStack using the glance image-create or via the OpenStack Dashboard.

Example command:

glance --os-image-api-version 1 image-create \
--name yardstick-trusty-server --is-public true \
--disk-format qcow2 --container-format bare \
--file /tmp/workspace/yardstick/yardstick-trusty-server.img

7.3 Installing Yardstick using Docker

Yardstick has two Docker images, first one (Yardstick-framework) serves as a replacement for installing the Yardstick
framework in a virtual environment (for example as done in Installing Yardstick framework), while the other image is
mostly for CI purposes (Yardstick-CI).

24 Chapter 7. Yardstick Installation

Yardstick Overview, Release draft (bafc82e)

7.3.1 Yardstick-framework image

Download the source code:

git clone https://gerrit.opnfv.org/gerrit/yardstick

Build the Docker image and tag it as yardstick-framework:

cd yardstick
docker build -t yardstick-framework .

Run the Docker instance:

docker run --name yardstick_instance -i -t yardstick-framework

To build a guest image for Yardstick, see Building a guest image.

7.3.2 Yardstick-CI image

Pull the Yardstick-CI Docker image from Docker hub:

docker pull opnfv/yardstick:$DOCKER_TAG

Where $DOCKER_TAG is latest for master branch, as for the release branches, this coincides with its release name,
such as brahmaputra.1.0.

Run the Docker image:

docker run \
--privileged=true \
--rm \
-t \
-e "INSTALLER_TYPE=${INSTALLER_TYPE}" \
-e "INSTALLER_IP=${INSTALLER_IP}" \
opnfv/yardstick \
run_tests.sh ${YARDSTICK_DB_BACKEND} ${YARDSTICK_SUITE_NAME}

Where ${INSTALLER_TYPE} can be apex, compass, fuel or joid, ${INSTALLER_IP} is the installer mas-
ter node IP address (i.e. 10.20.0.2 is default for fuel). ${YARDSTICK_DB_BACKEND} is the IP and port
number of DB, ${YARDSTICK_SUITE_NAME} is the test suite you want to run. For more details, please re-
fer to the Jenkins job defined in Releng project, labconfig information and sshkey are required. See the link
https://git.opnfv.org/cgit/releng/tree/jjb/yardstick/yardstick-ci-jobs.yml.

Basic steps performed by the Yardstick-CI container:

1. clone yardstick and releng repos

2. setup OS credentials (releng scripts)

3. install yardstick and dependencies

4. build yardstick cloud image and upload it to glance

5. upload cirros-0.3.3 cloud image to glance

6. run yardstick test scenarios

7. cleanup

7.3. Installing Yardstick using Docker 25

https://git.opnfv.org/cgit/releng/tree/jjb/yardstick/yardstick-ci-jobs.yml

Yardstick Overview, Release draft (bafc82e)

7.4 OpenStack parameters and credentials

7.4.1 Yardstick-flavor

Most of the sample test cases in Yardstick are using an OpenStack flavor called yardstick-flavor which deviates from
the OpenStack standard m1.tiny flavor by the disk size - instead of 1GB it has 3GB. Other parameters are the same as
in m1.tiny.

7.4.2 Environment variables

Before running Yardstick it is necessary to export OpenStack environment variables from the Open-
Stack openrc file (using the source command) and export the external network name export
EXTERNAL_NETWORK="external-network-name", the default name for the external network is
net04_ext.

Credential environment variables in the openrc file have to include at least:

• OS_AUTH_URL

• OS_USERNAME

• OS_PASSWORD

• OS_TENANT_NAME

7.4.3 Yardstick default key pair

Yardstick uses a SSH key pair to connect to the guest image. This key pair can be found in the resources/files
directory. To run the ping-hot.yaml test sample, this key pair needs to be imported to the OpenStack environment.

7.5 Examples and verifying the install

It is recommended to verify that Yardstick was installed successfully by executing some simple commands and test
samples. Below is an example invocation of yardstick help command and ping.py test sample:

yardstick -h
yardstick task start samples/ping.yaml

Each testing tool supported by Yardstick has a sample configuration file. These configuration files can be found in the
samples directory.

Example invocation of yardstick-plot tool:

yardstick-plot -i /tmp/yardstick.out -o /tmp/plots/

Default location for the output is /tmp/yardstick.out.

More info about the tool can be found by executing:

yardstick-plot -h

26 Chapter 7. Yardstick Installation

CHAPTER

EIGHT

YARDSTICK TEST CASES

8.1 Abstract

This chapter lists available Yardstick test cases. Yardstick test cases are divided in two main categories:

• Generic NFVI Test Cases - Test Cases developed to realize the methodology

described in Methodology

• OPNFV Feature Test Cases - Test Cases developed to verify one or more

aspect of a feature delivered by an OPNFV Project, including the test cases developed for the VTC.

27

Yardstick Overview, Release draft (bafc82e)

8.2 Generic NFVI Test Case Descriptions

8.2.1 Yardstick Test Case Description TC001

Network Performance
test case id OPNFV_YARDSTICK_TC001_NW PERF
metric Number of flows and throughput
test purpose To evaluate the IaaS network performance with regards

to flows and throughput, such as if and how different
amounts of flows matter for the throughput between
hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of
flows running through it. Also performance of other
equipment or entities can depend on the number of flows
or the packet sizes used. The purpose is also to be able
to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution un-
derstanding between different OPNFV versions and/or
configurations.

configuration file: opnfv_yardstick_tc001.yaml
Packet size: 60 bytes Number of ports: 10, 50, 100,
500 and 1000, where each runs for 20 seconds. The
whole sequence is run twice. The client and server are
distributed on different HW. For SLA max_ppm is set to
1000. The amount of configured ports map to between
110 up to 1001000 flows, respectively.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

references pktgen
ETSI-NFV-TST001

applicability Test can be configured with different packet sizes,
amount of flows and test duration. Default values ex-
ist.
SLA (optional): max_ppm: The number of packets per million

packets sent that are acceptable to loose, not re-
ceived.

pre-test conditions The test case image needs to be installed into Glance
with pktgen included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The hosts are installed, as server and client. pktgen is

invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

28 Chapter 8. Yardstick Test Cases

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (bafc82e)

8.2.2 Yardstick Test Case Description TC002

Network Latency
test case id OPNFV_YARDSTICK_TC002_NW LATENCY
metric RTT, Round Trip Time
test
purpose

To do a basic verification that network latency is within acceptable boundaries when packets travel
between hosts located on same or different compute blades. The purpose is also to be able to spot
trends. Test results, graphs and similar shall be stored for comparison reasons and product evolution
understanding between different OPNFV versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc002.yaml
Packet size 100 bytes. Total test duration 600 seconds. One ping each 10 seconds. SLA RTT is set
to maximum 10 ms.

test tool ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part
of the Yardstick Docker image. (For example also a Cirros image can be downloaded from
cirros-image, it includes ping)

references Ping man page
ETSI-NFV-TST001

applicabil-
ity

Test case can be configured with different packet sizes, burst sizes, ping intervals and test duration.
SLA is optional. The SLA in this test case serves as an example. Considerably lower RTT is
expected, and also normal to achieve in balanced L2 environments. However, to cover most
configurations, both bare metal and fully virtualized ones, this value should be possible to achieve
and acceptable for black box testing. Many real time applications start to suffer badly if the RTT
time is higher than this. Some may suffer bad also close to this RTT, while others may not suffer at
all. It is a compromise that may have to be tuned for different configuration purposes.

pre-test
conditions

The test case image needs to be installed into Glance with ping included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. Ping is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

8.2. Generic NFVI Test Case Descriptions 29

https://download.cirros-cloud.net

Yardstick Overview, Release draft (bafc82e)

8.2.3 Yardstick Test Case Description TC005

Storage Performance
test case id OPNFV_YARDSTICK_TC005_Storage Performance
metric IOPS, throughput and latency
test
purpose

To evaluate the IaaS storage performance with regards to IOPS, throughput and latency. The
purpose is also to be able to spot trends. Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura-
tion

file: opnfv_yardstick_tc005.yaml
IO types: read, write, randwrite, randread, rw IO block size: 4KB, 64KB, 1024KB, where each runs
for 30 seconds(10 for ramp time, 20 for runtime).
For SLA minimum read/write iops is set to 100, minimum read/write throughput is set to 400 KB/s,
and maximum read/write latency is set to 20000 usec.

test tool fio
(fio is not always part of a Linux distribution, hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux image with fio included.)

references fio
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different read/write types, IO block size, IO depth, ramp time (runtime
required for stable results) and test duration. Default values exist.

pre-test
conditions

The test case image needs to be installed into Glance with fio included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The host is installed and fio is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

30 Chapter 8. Yardstick Test Cases

http://www.bluestop.org/fio/HOWTO.txt

Yardstick Overview, Release draft (bafc82e)

8.2.4 Yardstick Test Case Description TC008

Packet Loss Extended Test
test case id OPNFV_YARDSTICK_TC008_NW PERF, Packet loss Extended Test
metric Number of flows, packet size and throughput
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of packet sizes and flows matter for the throughput between VMs on different
compute blades. Typically e.g. the performance of a vSwitch depends on the number of flows
running through it. Also performance of other equipment or entities can depend on the number of
flows or the packet sizes used. The purpose is also to be able to spot trends. Test results, graphs ans
similar shall be stored for comparison reasons and product evolution understanding between
different OPNFV versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc008.yaml
Packet size: 64, 128, 256, 512, 1024, 1280 and 1518 bytes.
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each packet_size/port_amount combination is run ten times, for 20
seconds each. Then the next packet_size/port_amount combination is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

8.2. Generic NFVI Test Case Descriptions 31

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (bafc82e)

8.2.5 Yardstick Test Case Description TC009

Packet Loss
test case id OPNFV_YARDSTICK_TC009_NW PERF, Packet loss
metric Number of flows, packets lost and throughput
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between VMs on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc009.yaml
Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each port amount is run ten times, for 20 seconds each. Then the next
port_amount is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

32 Chapter 8. Yardstick Test Cases

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (bafc82e)

8.2.6 Yardstick Test Case Description TC010

Memory Latency
test case id OPNFV_YARDSTICK_TC010_Memory Latency
metric Latency in nanoseconds
test purpose Measure the memory read latency for varying memory

sizes and strides. Whole memory hierarchy is measured
including all levels of cache.

configuration File: opnfv_yardstick_tc010.yaml
• SLA (max_latency): 30 nanoseconds
• Stride - 128 bytes
• Stop size - 64 megabytes
• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.

test tool Lmbench
Lmbench is a suite of operating system microbench-
marks. This test uses lat_mem_rd tool from that suite.
Lmbench is not always part of a Linux distribution,
hence it needs to be installed in the test image

references man-pages
McVoy, Larry W.,and Carl Staelin. “lmbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference 1996.

applicability Test can be configured with different:
• strides;
• stop_size;
• iterations and intervals.

There are default values for each above-mentioned op-
tion.
SLA (optional) : max_latency: The maximum memory
latency that is accepted.

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. Lmbench’s lat_mem_rd

tool is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Test fails if the measured memory latency is above the
SLA value or if there is a test case execution problem.

8.2. Generic NFVI Test Case Descriptions 33

http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

Yardstick Overview, Release draft (bafc82e)

8.2.7 Yardstick Test Case Description TC011

Packet delay variation between VMs
test case id OPNFV_YARDSTICK_TC011_Packet delay variation

between VMs
metric jitter: packet delay variation (ms)
test purpose Measure the packet delay variation sending the packets

from one VM to the other.
configuration File: opnfv_yardstick_tc011.yaml

• options: protocol: udp # The protocol used by
iperf3 tools bandwidth: 20m # It will send the
given number of packets

without pausing
• runner: duration: 30 # Total test duration 30 sec-

onds.
• SLA (optional): jitter: 10 (ms) # The maximum

amount of jitter that is
accepted.

test tool iperf3
iPerf3 is a tool for active measurements of the maximum
achievable bandwidth on IP networks. It supports tun-
ing of various parameters related to timing, buffers and
protocols. The UDP protocols can be used to measure
jitter delay.
(iperf3 is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

references iperf3
ETSI-NFV-TST001

applicability Test can be configured with different
• bandwidth: Test case can be configured with different

bandwidth
• duration: The test duration can be configured
• jitter: SLA is optional. The SLA in this test case

serves as an example.

pre-test conditions The test case image needs to be installed into Glance
with iperf3 included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The hosts are installed, as server and client. iperf3 is

invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Test should not PASS if any jitter is above the optional
SLA value, or if there is a test case execution problem.

34 Chapter 8. Yardstick Test Cases

https://iperf.fr/

Yardstick Overview, Release draft (bafc82e)

8.2.8 Yardstick Test Case Description TC012

Memory Bandwidth
test case id OPNFV_YARDSTICK_TC012_Memory Bandwidth
metric Megabyte per second (MBps)
test purpose Measure the rate at which data can be read from and

written to the memory (this includes all levels of mem-
ory).

configuration File: opnfv_yardstick_tc012.yaml
• SLA (optional): 15000 (MBps) min_bw: The

minimum amount of memory bandwidth that is
accepted.

• Size: 10 240 kB - test allocates twice that size
(20 480kB) zeros it and then measures the time it
takes to copy from one side to another.

• Benchmark: rdwr - measures the time to read data
into memory and then write data to the same lo-
cation.

• Warmup: 0 - the number of iterations to perform
before taking actual measurements.

• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.

test tool Lmbench
Lmbench is a suite of operating system microbench-
marks. This test uses bw_mem tool from that suite. Lm-
bench is not always part of a Linux distribution, hence it
needs to be installed in the test image.

references man-pages
McVoy, Larry W., and Carl Staelin. “lmbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference. 1996.

applicability Test can be configured with different:
• memory sizes;
• memory operations (such as rd, wr, rdwr, cp, frd,

fwr, fcp, bzero, bcopy);
• number of warmup iterations;
• iterations and intervals.

There are default values for each above-mentioned op-
tion.

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. Lmbench’s bw_mem tool

is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Test fails if the measured memory bandwidth is below
the SLA value or if there is a test case execution prob-
lem.

8.2. Generic NFVI Test Case Descriptions 35

http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

Yardstick Overview, Release draft (bafc82e)

8.2.9 Yardstick Test Case Description TC014

Processing speed
test case id OPNFV_YARDSTICK_TC014_Processing speed
metric score of single cpu running, score of parallel running
test
purpose

To evaluate the IaaS processing speed with regards to score of single cpu running and parallel
running The purpose is also to be able to spot trends. Test results, graphs and similar shall be stored
for comparison reasons and product evolution understanding between different OPNFV versions
and/or configurations.

configura-
tion

file: opnfv_yardstick_tc014.yaml
run_mode: Run unixbench in quiet mode or verbose mode test_type: dhry2reg, whetstone and so on
For SLA with single_score and parallel_score, both can be set by user, default is NA

test tool unixbench
(unixbench is not always part of a Linux distribution, hence it needs to be installed. As an example
see the /yardstick/tools/ directory for how to generate a Linux image with unixbench included.)

references unixbench
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different test types, dhry2reg, whetstone and so on.

pre-test
conditions

The test case image needs to be installed into Glance with unixbench included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as a client. unixbench is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

36 Chapter 8. Yardstick Test Cases

https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench

Yardstick Overview, Release draft (bafc82e)

8.2.10 Yardstick Test Case Description TC024

CPU Load
test case id OPNFV_YARDSTICK_TC024_CPU Load
metric CPU load
test
purpose

To evaluate the CPU load performance of the IaaS. This test case should be run in parallel to other
Yardstick test cases and not run as a stand-alone test case.
The purpose is also to be able to spot trends. Test results, graphs ans similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura-
tion

file: cpuload.yaml (in the ‘samples’ directory)
There is are no additional configurations to be set for this TC.

test tool mpstat
(mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. However, if mpstat is not present the TC instead uses /proc/stats as source
to produce “mpstat” output.

references man-pages
applicabil-
ity

Run in background with other test cases.

pre-test
conditions

The test case image needs to be installed into Glance with mpstat included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The host is installed. The related TC, or TCs, is invoked and mpstat logs are produced and stored.
Result: Stored logs

test verdict None. CPU load results are fetched and stored.

8.2. Generic NFVI Test Case Descriptions 37

http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

Yardstick Overview, Release draft (bafc82e)

8.2.11 Yardstick Test Case Description TC037

Latency, CPU Load, Throughput, Packet Loss
test case id OPNFV_YARDSTICK_TC037_Latency,CPU Load,Throughput,Packet Loss
metric Number of flows, latency, throughput, CPU load, packet loss
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc037.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

38 Chapter 8. Yardstick Test Cases

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (bafc82e)

8.2.12 Yardstick Test Case Description TC038

Latency, CPU Load, Throughput, Packet Loss (Extended measurements)
test case id OPNFV_YARDSTICK_TC038_Latency,CPU Load,Throughput,Packet Loss
metric Number of flows, latency, throughput, CPU load, packet loss
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc038.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run ten times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

8.2. Generic NFVI Test Case Descriptions 39

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (bafc82e)

40 Chapter 8. Yardstick Test Cases

Yardstick Overview, Release draft (bafc82e)

8.3 OPNFV Feature Test Cases

8.3.1 H A

Yardstick Test Case Description TC019

Control Node Openstack Service High Availability
test case id OPNFV_YARDSTICK_TC019_HA: Control node

Openstack service down
test purpose This test case will verify the high availability of the

service provided by OpenStack (like nova-api, neutro-
server) on control node.

test method This test case kills the processes of a specific Openstack
service on a selected control node, then checks whether
the request of the related Openstack command is OK
and the killed processes are recovered.

attackers In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name
of the specified OpenStack service. If there are multiple
processes use the same name on the host, all of them are
killed by this attacker. 3) host: which is the name of a
control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “nova-
api” -host: node1

monitors In this test case, two kinds of monitor are needed: 1. the
“openstack-cmd” monitor constantly request a specific

Openstack command, which needs two pa-
rameters:

1) monitor_type: which is used for finding the moni-
tor class and related scritps. It should be always set to
“openstack-cmd” for this monitor. 2) command_name:
which is the command name used for request

2. the “process” monitor check whether a process is
running on a specific node, which needs three pa-
rameters:

1) monitor_type: which used for finding the monitor
class and related scritps. It should be always set to “pro-
cess” for this monitor. 2) process_name: which is the
process name for monitor 3) host: which is the name of
the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd”
-command_name: “nova image-list” monitor2: -
monitor_type: “process” -process_name: “nova-api” -
host: node1

metrics In this test case, there are two metrics: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request. 2)process_recover_time: which indicates the
maximun time (seconds) from the process being killed
to recovered

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc019.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with independently

process
Result: The monitor info will be collected.

step 2 do attacker: connect the host through SSH, and then ex-
ecute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step 3 stop monitors after a period of time specified by “wait-
ing_time”
Result: The monitor info will be aggregated.

step 4 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It will check the
status of the specified process on the host, and restart the
process if it is not running for next test cases

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

8.3. OPNFV Feature Test Cases 41

Yardstick Overview, Release draft (bafc82e)

42 Chapter 8. Yardstick Test Cases

Yardstick Overview, Release draft (bafc82e)

Yardstick Test Case Description TC025

OpenStack Controller Node abnormally shutdown High Availability
test case id OPNFV_YARDSTICK_TC025_HA: OpenStack Con-

troller Node abnormally shutdown
test purpose This test case will verify the high availability of con-

troller node. When one of the controller node abnor-
mally shutdown, the service provided by it should be
OK.

test method This test case shutdowns a specified controller node with
some fault injection tools, then checks whether all ser-
vices provided by the controller node are OK with some
monitor tools.

attackers In this test case, an attacker called “host-shutdown”
is needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “host-shutdown” in
this test case. 2) host: the name of a controller node
being attacked.
e.g. -fault_type: “host-shutdown” -host: node1

monitors In this test case, one kind of monitor are needed: 1. the
“openstack-cmd” monitor constantly request a specific

Openstack command, which needs two pa-
rameters

1) monitor_type: which is used for finding the moni-
tor class and related scritps. It should be always set to
“openstack-cmd” for this monitor. 2) command_name:
which is the command name used for request
There are four instance of the “openstack-cmd” mon-
itor: monitor1: -monitor_type: “openstack-cmd” -
api_name: “nova image-list” monitor2: -monitor_type:
“openstack-cmd” -api_name: “neutron router-list” mon-
itor3: -monitor_type: “openstack-cmd” -api_name:
“heat stack-list” monitor4: -monitor_type: “openstack-
cmd” -api_name: “cinder list”

metrics In this test case, there is one metric: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc019.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with independently

process
Result: The monitor info will be collected.

step 2 do attacker: connect the host through SSH, and then ex-
ecute shutdown script on the host
Result: The host will be shutdown.

step 3 stop monitors after a period of time specified by “wait-
ing_time”
Result: All monitor result will be aggregated.

step 4 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It restarts the
specified controller node if it is not restarted.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

8.3. OPNFV Feature Test Cases 43

Yardstick Overview, Release draft (bafc82e)

8.3.2 IPv6

Yardstick Test Case Description TC027

IPv6 connectivity between nodes on the tenant network
test case id OPNFV_YARDSTICK_TC027_IPv6 connectivity
metric RTT, Round Trip Time
test
purpose

To do a basic verification that IPv6 connectivity is within acceptable boundaries when ipv6 packets
travel between hosts located on same or different compute blades. The purpose is also to be able to
spot trends. Test results, graphs and similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc027.yaml
Packet size 56 bytes. SLA RTT is set to maximum 30 ms. ipv6 test case can be configured as three
independent modules (setup, run, teardown). if you only want to setup ipv6 testing environment, do
some tests as you want, “run_step” of task yaml file should be configured as “setup”. if you want to
setup and run ping6 testing automatically, “run_step” should be configured as “setup, run”. and if
you have had a environment which has been setup, you only wan to verify the connectivity of ipv6
network, “run_step” should be “run”. Of course, default is that three modules run sequentially.

test tool ping6
Ping6 is normally part of Linux distribution, hence it doesn’t need to be installed.

references ipv6
ETSI-NFV-TST001

applicabil-
ity

Test case can be configured with different run step you can run setup, run benchmark, teardown
independently SLA is optional. The SLA in this test case serves as an example. Considerably lower
RTT is expected.

pre-test
conditions

The test case image needs to be installed into Glance with ping6 included in it.
For Brahmaputra, a compass_os_nosdn_ha deploy scenario is need. more installer and more sdn
deploy scenario will be supported soon

test
sequence

description and expected result

step 1 To setup IPV6 testing environment: 1. disable security group 2. create (ipv6, ipv4) router, network
and subnet 3. create VRouter, VM1, VM2

step 2 To run ping6 to verify IPV6 connectivity : 1. ssh to VM1 2. Ping6 to ipv6 router from VM1 3. Get
the result(RTT) and logs are stored

step 3 To teardown IPV6 testing environment 1. delete VRouter, VM1, VM2 2. delete (ipv6, ipv4) router,
network and subnet 3. enable security group

test verdict Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

44 Chapter 8. Yardstick Test Cases

https://wiki.opnfv.org/ipv6_opnfv_project

Yardstick Overview, Release draft (bafc82e)

8.3.3 KVM

Yardstick Test Case Description TC028

KVM Latency measurements
test case id OPNFV_YARDSTICK_TC028_KVM Latency measurements
metric min, avg and max latency
test
purpose

To evaluate the IaaS KVM virtualization capability with regards to min, avg and max latency. The
purpose is also to be able to spot trends. Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding between different OPNFV versions and/or
configurations.

configura-
tion

file: samples/cyclictest-node-context.yaml

test tool Cyclictest
(Cyclictest is not always part of a Linux distribution, hence it needs to be installed. As an example
see the /yardstick/tools/ directory for how to generate a Linux image with cyclictest included.)

references Cyclictest
applicabil-
ity

This test case is mainly for kvm4nfv project CI verify. Upgrade host linux kernel, boot a gust vm
update it’s linux kernel, and then run the cyclictest to test the new kernel is work well.

pre-test
conditions

The test kernel rpm, test sequence scripts and test guest image need put the right folders as specified
in the test case yaml file. The test guest image needs with cyclictest included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The host and guest os kernel is upgraded. Cyclictest is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

8.3. OPNFV Feature Test Cases 45

https://rt.wiki.kernel.org/index.php/Cyclictest

Yardstick Overview, Release draft (bafc82e)

8.3.4 Parser

Yardstick Test Case Description TC040

Verify Parser Yang-to-Tosca
test case id OPNFV_YARDSTICK_TC040 Verify Parser Yang-to-

Tosca
metric

1. tosca file which is converted from yang file by
Parser

2. result whether the output is same with expected
outcome

test purpose To verify the function of Yang-to-Tosca in Parser.
configuration file: opnfv_yardstick_tc040.yaml

yangfile: the path of the yangfile which you want to con-
vert toscafile: the path of the toscafile which is your ex-
pected outcome.

test tool Parser
(Parser is not part of a Linux distribution, hence it
needs to be installed. As an example see the /yard-
stick/benchmark/scenarios/parser/parser_setup.sh for
how to install it manual. Of course, it will be installed
and uninstalled automatically when you run this test
case by yardstick)

references Parser
applicability Test can be configured with different path of yangfile

and toscafile to fit your real environment to verify Parser
pre-test conditions No POD specific requirements have been identified. it

can be run without VM
test sequence description and expected result
step 1 parser is installed without VM, running Yang-to-Tosca

module to convert yang file to tosca file, validating out-
put against expected outcome.
Result: Logs are stored.

test verdict Fails only if output is different with expected outcome
or if there is a test case execution problem.

46 Chapter 8. Yardstick Test Cases

https://wiki.opnfv.org/parser

Yardstick Overview, Release draft (bafc82e)

8.3. OPNFV Feature Test Cases 47

Yardstick Overview, Release draft (bafc82e)

8.3.5 virtual Traffic Classifier

Yardstick Test Case Description TC006

Network Performance
test case id OPNFV_YARDSTICK_TC006_Virtual Traffic Classi-

fier Data Plane Throughput Benchmarking Test.
metric Throughput
test purpose To measure the throughput supported by the virtual Traf-

fic Classifier according to the RFC2544 methodology
for a user-defined set of vTC deployment configurations.

configuration file: file: opnfv_yardstick_tc006.yaml
packet_size: size of the packets to be used during the

throughput calculation. Allowe values: [64, 128,
256, 512, 1024, 1280, 1518]

vnic_type: type of VNIC to be used.
Allowed values are:

• normal: for default OvS port configura-
tion

• direct: for SR-IOV port configuration
Default value: None

vtc_flavor: OpenStack flavor to be used for the vTC
Default available values are: m1.small,
m1.medium, and m1.large, but the user can
create his/her own flavor and give it as input
Default value: None

vlan_sender: vlan tag of the network on which the vTC will
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

vlan_receiver: vlan tag of the network on which the vTC
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that
is used for access to the internet from the vTC
(vNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1
(information available through Neutron).

vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1
(information available through Neutron).

vlan_net_2_name: Neutron Name for VLAN Network 2
(information available through Neutron).

vlan_subnet_2_name: Subnet Neutron name for VLAN Network 2
(information available through Neutron).

test tool DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references DPDK Pktgen: DPDKpktgen
ETSI-NFV-TST001
RFC 2544: rfc2544

applicability Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.
The vNIC type and flavor MUST be specified by the
user.

pre-test The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the
deployment

configuration parameters.
• Multicast traffic MUST be enabled on the network.

The Data network switches need to be con-
figured in order to manage multicast
traffic.

• In the case of SR-IOV vNICs use, SR-IOV compatible NICs
must be used on the compute node.

• Yarsdtick needs to be installed on a host connected to the
data network and the host must have 2
DPDK-compatible NICs. Proper configura-
tion of DPDK and DPDK pktgen is required
before to run the test case. (For further
instructions please refer to the ApexLake
documentation).

test sequence Description and expected results
step 1 The vTC is deployed, according to the user-defined con-

figuration
step 2 The vTC is correctly deployed and configured as neces-

sary The initialization script has been correctly executed
and vTC is ready to receive and process the traffic.

step 3 Test case is executed with the selected parameters: -
vTC flavor - vNIC type - packet size The traffic is sent
to the vTC using the maximum available traffic rate for
60 seconds.

step 4 The vTC instance forwards all the packets back to the
packet generator for 60 seconds, as specified by RFC
2544.
Steps 3 and 4 are executed different times, with different
rates in order to find the maximum supported traffic rate
according to the current definition of throughput in RFC
2544.

test verdict The result of the test is a number between 0 and 100
which represents the throughput in terms of percentage
of the available pktgen NIC bandwidth.

48 Chapter 8. Yardstick Test Cases

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (bafc82e)

8.3. OPNFV Feature Test Cases 49

Yardstick Overview, Release draft (bafc82e)

Yardstick Test Case Description TC007

Network Performance
test case id

OPNFV_YARDSTICK_TC007_Virtual Traffic Classifier Data Plane
Throughput Benchmarking Test in Presence of
Noisy neighbours

metric Throughput
test purpose To measure the throughput supported by the virtual Traf-

fic Classifier according to the RFC2544 methodology
for a user-defined set of vTC deployment configurations
in the presence of noisy neighbours.

configuration file: opnfv_yardstick_tc007.yaml
packet_size: size of the packets to be used during the

throughput calculation. Allowe values: [64, 128,
256, 512, 1024, 1280, 1518]

vnic_type: type of VNIC to be used.
Allowed values are:

• normal: for default OvS port configura-
tion

• direct: for SR-IOV port configuration
vtc_flavor: OpenStack flavor to be used for the vTC

Default available values are: m1.small,
m1.medium, and m1.large, but the user can
create his/her own flavor and give it as input

num_of_neighbours: Number of noisy neighbours (VMs) to be
instantiated during the experiment. Allowed val-
ues: range (1, 10)

amount_of_ram: RAM to be used by each neighbor.

Allowed values: [‘250M’, ‘1G’, ‘2G’, ‘3G’, ‘4G’, ‘5G’,
‘6G’, ‘7G’, ‘8G’, ‘9G’, ‘10G’]

Deault value: 256M
number_of_cores: Number of noisy neighbours (VMs) to be

instantiated during the experiment. Allowed val-
ues: range (1, 10) Default value: 1

vlan_sender: vlan tag of the network on which the vTC will
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

vlan_receiver: vlan tag of the network on which the vTC
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that
is used for access to the internet from the vTC
(vNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1
(information available through Neutron).

vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1
(information available through Neutron).

vlan_net_2_name: Neutron Name for VLAN Network 2
(information available through Neutron).

vlan_subnet_2_name: Subnet Neutron name for VLAN Network 2
(information available through Neutron).

test tool DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references DPDKpktgen
ETSI-NFV-TST001
rfc2544

applicability Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.
The vNIC type and flavor MUST be specified by the
user.

pre-test The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the
deployment

configuration parameters.
• Multicast traffic MUST be enabled on the network.

The Data network switches need to be con-
figured in order to manage multicast
traffic.

• In the case of SR-IOV vNICs use, SR-IOV compatible NICs
must be used on the compute node.

• Yarsdtick needs to be installed on a host connected to the
data network and the host must have 2
DPDK-compatible NICs. Proper configura-
tion of DPDK and DPDK pktgen is required
before to run the test case. (For further
instructions please refer to the ApexLake
documentation).

test sequence Description and expected results
step 1 The noisy neighbours are deployed as required by the

user.
step 2 The vTC is deployed, according to the configuration re-

quired by the user
step 3 The vTC is correctly deployed and configured as nec-

essary. The initialization script has been correctly exe-
cuted and the vTC is ready to receive and process the
traffic.

step 4 Test case is executed with the parameters specified by
the user:

• vTC flavor
• vNIC type
• packet size

The traffic is sent to the vTC using the maximum available
traffic rate

step 5 The vTC instance forwards all the packets back to the
packet generator for 60 seconds, as specified by RFC
2544.
Steps 4 and 5 are executed different times with different
with different traffic rates, in order to find the maximum
supported traffic rate, accoring to the current definition
of throughput in RFC 2544.

test verdict The result of the test is a number between 0 and 100
which represents the throughput in terms of percentage
of the available pktgen NIC bandwidth.

50 Chapter 8. Yardstick Test Cases

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (bafc82e)

8.3. OPNFV Feature Test Cases 51

Yardstick Overview, Release draft (bafc82e)

Yardstick Test Case Description TC020

Network Performance
test case id OPNFV_YARDSTICK_TC0020_Virtual Traffic Classi-

fier Instantiation Test
metric Failure
test purpose To verify that a newly instantiated vTC is ‘alive’ and

functional and its instantiation is correctly supported by
the infrastructure.

configuration file: opnfv_yardstick_tc020.yaml
vnic_type: type of VNIC to be used.

Allowed values are:
• normal: for default OvS port configura-

tion
• direct: for SR-IOV port configuration

Default value: None
vtc_flavor: OpenStack flavor to be used for the vTC

Default available values are: m1.small,
m1.medium, and m1.large, but the user can
create his/her own flavor and give it as input
Default value: None

vlan_sender: vlan tag of the network on which the vTC will
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

vlan_receiver: vlan tag of the network on which the vTC
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that
is used for access to the internet from the vTC
(vNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1
(information available through Neutron).

vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1
(information available through Neutron).

vlan_net_2_name: Neutron Name for VLAN Network 2
(information available through Neutron).

vlan_subnet_2_name: Subnet Neutron name for VLAN Network 2
(information available through Neutron).

test tool DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references DPDKpktgen
ETSI-NFV-TST001
rfc2544

applicability Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.
The vNIC type and flavor MUST be specified by the
user.

pre-test The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the
deployment

configuration parameters.
• Multicast traffic MUST be enabled on the network.

The Data network switches need to be con-
figured in order to manage multicast traffic.
Installation and configuration of smcroute
is required before to run the test case.
(For further instructions please refer to the
ApexLake documentation).

• In the case of SR-IOV vNICs use, SR-IOV compatible NICs
must be used on the compute node.

• Yarsdtick needs to be installed on a host connected to the
data network and the host must have 2
DPDK-compatible NICs. Proper configura-
tion of DPDK and DPDK pktgen is required
before to run the test case. (For further
instructions please refer to the ApexLake
documentation).

test sequence Description and expected results
step 1 The vTC is deployed, according to the configuration

provided by the user.
step 2 The vTC is correctly deployed and configured as nec-

essary. The initialization script has been correctly exe-
cuted and the vTC is ready to receive and process the
traffic.

step 3 Test case is executed with the parameters specified by
the the user: - vTC flavor - vNIC type A constant rate
traffic is sent to the vTC for 10 seconds.

step 4 The vTC instance tags all the packets and sends them
back to the packet generator for 10 seconds.
The framework checks that the packet generator receives
back all the packets with the correct tag from the vTC.

test verdict The vTC is deemed to be successfully instantiated if all
packets are sent back with the right tag as requested, else
it is deemed DoA (Dead on arrival)

52 Chapter 8. Yardstick Test Cases

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (bafc82e)

8.3. OPNFV Feature Test Cases 53

Yardstick Overview, Release draft (bafc82e)

Yardstick Test Case Description TC021

Network Performance
test case id OPNFV_YARDSTICK_TC0021_Virtual Traffic Classi-

fier Instantiation Test in Presence of Noisy Neighbours
metric Failure
test purpose To verify that a newly instantiated vTC is ‘alive’ and

functional and its instantiation is correctly supported by
the infrastructure in the presence of noisy neighbours.

configuration file: opnfv_yardstick_tc021.yaml
vnic_type: type of VNIC to be used.

Allowed values are:
• normal: for default OvS port configura-

tion
• direct: for SR-IOV port configuration

Default value: None
vtc_flavor: OpenStack flavor to be used for the vTC

Default available values are: m1.small,
m1.medium, and m1.large, but the user can
create his/her own flavor and give it as input
Default value: None

num_of_neighbours: Number of noisy neighbours (VMs) to be
instantiated during the experiment. Allowed val-
ues: range (1, 10)

amount_of_ram: RAM to be used by each neighbor.

Allowed values: [‘250M’, ‘1G’, ‘2G’, ‘3G’, ‘4G’, ‘5G’,
‘6G’, ‘7G’, ‘8G’, ‘9G’, ‘10G’]

Deault value: 256M
number_of_cores: Number of noisy neighbours (VMs) to be

instantiated during the experiment. Allowed val-
ues: range (1, 10) Default value: 1

vlan_sender: vlan tag of the network on which the vTC will
receive traffic (VLAN Network 1). Allowed val-
ues: range (1, 4096)

vlan_receiver: vlan tag of the network on which the vTC
will send traffic back to the packet generator
(VLAN Network 2). Allowed values: range (1,
4096)

default_net_name: neutron name of the defaul network that
is used for access to the internet from the vTC
(vNIC 1).

default_subnet_name: subnet name for vNIC1
(information available through Neutron).

vlan_net_1_name: Neutron Name for VLAN Network 1
(information available through Neutron).

vlan_subnet_1_name: Subnet Neutron name for VLAN Network 1
(information available through Neutron).

vlan_net_2_name: Neutron Name for VLAN Network 2
(information available through Neutron).

vlan_subnet_2_name: Subnet Neutron name for VLAN Network 2
(information available through Neutron).

test tool DPDK pktgen
DPDK Pktgen is not part of a Linux distribution, hence
it needs to be installed by the user.

references DPDK Pktgen: DPDK Pktgen: DPDKpktgen
ETSI-NFV-TST001
RFC 2544: rfc2544

applicability Test can be configured with different flavors, vNIC type
and packet sizes. Default values exist as specified above.
The vNIC type and flavor MUST be specified by the
user.

pre-test The vTC has been successfully instantiated and config-
ured. The user has correctly assigned the values to the
deployment

configuration parameters.
• Multicast traffic MUST be enabled on the network.

The Data network switches need to be con-
figured in order to manage multicast traffic.
Installation and configuration of smcroute
is required before to run the test case.
(For further instructions please refer to the
ApexLake documentation).

• In the case of SR-IOV vNICs use, SR-IOV compatible NICs
must be used on the compute node.

• Yarsdtick needs to be installed on a host connected to the
data network and the host must have 2
DPDK-compatible NICs. Proper configura-
tion of DPDK and DPDK pktgen is required
before to run the test case. (For further
instructions please refer to the ApexLake
documentation).

test sequence Description and expected results
step 1 The noisy neighbours are deployed as required by the

user.
step 2 The vTC is deployed, according to the configuration

provided by the user.
step 3 The vTC is correctly deployed and configured as nec-

essary. The initialization script has been correctly exe-
cuted and the vTC is ready to receive and process the
traffic.

step 4 Test case is executed with the selected parameters: -
vTC flavor - vNIC type A constant rate traffic is sent
to the vTC for 10 seconds.

step 5 The vTC instance tags all the packets and sends them
back to the packet generator for 10 seconds.
The framework checks if the packet generator receives
back all the packets with the correct tag from the vTC.

test verdict The vTC is deemed to be successfully instantiated if all
packets are sent back with the right tag as requested, else
it is deemed DoA (Dead on arrival)

54 Chapter 8. Yardstick Test Cases

https://github.com/Pktgen/Pktgen-DPDK/
https://www.ietf.org/rfc/rfc2544.txt

Yardstick Overview, Release draft (bafc82e)

8.4 Templates

8.4.1 Yardstick Test Case Description TCXXX

test case slogan e.g. Network Latency
test case id e.g. OPNFV_YARDSTICK_TC001_NW Latency
metric what will be measured, e.g. latency
test
purpose

describe what is the purpose of the test case

configura-
tion

what .yaml file to use, state SLA if applicable, state test duration, list and describe the scenario
options used in this TC and also list the options using default values.

test tool e.g. ping
references e.g. RFCxxx, ETSI-NFVyyy
applicabil-
ity

describe variations of the test case which can be performend, e.g. run the test for different packet
sizes

pre-test
conditions

describe configuration in the tool(s) used to perform the measurements (e.g. fio, pktgen),
POD-specific configuration required to enable running the test

test
sequence

description and expected result

step 1 use this to describe tests that require sveveral steps e.g collect logs.
Result: what happens in this step e.g. logs collected

step 2 remove interface
Result: interface down.

step N what is done in step N
Result: what happens

test verdict expected behavior, or SLA, pass/fail criteria

8.4.2 Task Template Syntax

Basic template syntax

A nice feature of the input task format used in Yardstick is that it supports the template syntax based on Jinja2. This
turns out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this
task in some way. For example, imagine your input task file (task.yaml) runs a set of Ping scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
-

type: Ping
options:
packetsize: 200

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:

8.4. Templates 55

Yardstick Overview, Release draft (bafc82e)

max_rtt: 10
action: monitor

context:
...

Let’s say you want to run the same set of scenarios with the same runner/ context/sla, but you want to try another
packetsize to compare the performance. The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
-

type: Ping
options:
packetsize: {{packetsize}}

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10
action: monitor

context:
...

and then pass the argument value for {{packetsize}} when starting a task with this configuration file. Yardstick
provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
--task-args'{"packetsize":"200"}'

2.Refer to a file that specifies the argument values (JSON/YAML):

yardstick task start samples/ping-template.yaml --task-args-file args.yaml

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be
set using the {% set ... %} clause (task.yaml). For example:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"
{% set packetsize = packetsize or "100" %}
scenarios:
-

56 Chapter 8. Yardstick Test Cases

Yardstick Overview, Release draft (bafc82e)

type: Ping
options:
packetsize: {{packetsize}}
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

...

If you don’t pass the value for {{packetsize}} while starting a task, the default one will be used.

Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in func-
tions. As an example, let us make up a task file that will do a block storage performance test. The input task file
(fio-template.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

scenarios:
{% for bs in ['4k', '8k', '64k', '1024k'] %}

{% for rw in ['read', 'write', 'randwrite', 'randread', 'rw'] %}
-

type: Fio
options:
filename: /home/ubuntu/data.raw
bs: {{bs}}
rw: {{rw}}
ramp_time: 10

host: fio.demo
runner:
type: Duration
duration: 60
interval: 60

{% endfor %}
{% endfor %}
context

...

8.4. Templates 57

Yardstick Overview, Release draft (bafc82e)

58 Chapter 8. Yardstick Test Cases

CHAPTER

NINE

GLOSSARY

API Application Programming Interface

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

IGMP Internet Group Management Protocol

IOPS Input/Output Operations Per Second

NFVI Network Function Virtualization Infrastructure

NIC Network Interface Controller

PBFS Packet Based per Flow State

QoS Quality of Service

SR-IOV Single Root IO Virtualization

SUT System Under Test

ToS Type of Service

VLAN Virtual LAN

VM Virtual Machine

VNF Virtual Network Function

VNFC Virtual Network Function Component

VTC Virtual Traffic Classifier

59

Yardstick Overview, Release draft (bafc82e)

60 Chapter 9. Glossary

CHAPTER

TEN

REFERENCES

10.1 OPNFV

• Parser wiki: https://wiki.opnfv.org/parser

• Pharos wiki: https://wiki.opnfv.org/pharos

• VTC: https://wiki.opnfv.org/vtc

• Yardstick CI: https://build.opnfv.org/ci/view/yardstick/

• Yardstick and ETSI TST001 presentation: https://wiki.opnfv.org/_media/opnfv_summit_-
_bridging_opnfv_and_etsi.pdf

• Yardstick Project presentation: https://wiki.opnfv.org/_media/opnfv_summit_-_yardstick_project.pdf

• Yardstick wiki: https://wiki.opnfv.org/yardstick

10.2 References used in Test Cases

• cirros-image: https://download.cirros-cloud.net

• cyclictest: https://rt.wiki.kernel.org/index.php/Cyclictest

• DPDKpktgen: https://github.com/Pktgen/Pktgen-DPDK/

• DPDK supported NICs: http://dpdk.org/doc/nics

• fio: http://www.bluestop.org/fio/HOWTO.txt

• iperf3: https://iperf.fr/

• Lmbench man-pages: http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

• Memory bandwidth man-pages: http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

• unixbench: https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench

• mpstat man-pages: http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

• pktgen: https://www.kernel.org/doc/Documentation/networking/pktgen.txt

• SR-IOV: https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking

61

https://wiki.opnfv.org/parser
https://wiki.opnfv.org/pharos
https://wiki.opnfv.org/vtc
https://build.opnfv.org/ci/view/yardstick/
https://wiki.opnfv.org/_media/
https://wiki.opnfv.org/_media/
https://wiki.opnfv.org/yardstick
https://download.cirros-cloud.net
https://rt.wiki.kernel.org/index.php/Cyclictest
https://github.com/Pktgen/Pktgen-DPDK/
http://dpdk.org/doc/nics
http://www.bluestop.org/fio/HOWTO.txt
https://iperf.fr/
http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html
http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html
https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench
http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html
https://www.kernel.org/doc/Documentation/networking/pktgen.txt
https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking

Yardstick Overview, Release draft (bafc82e)

10.3 Research

• NCSRD: http://www.demokritos.gr/?lang=en

• T-NOVA: http://www.t-nova.eu/

• T-NOVA Results: http://www.t-nova.eu/results/

10.4 Standards

• ETSI NFV: http://www.etsi.org/technologies-clusters/technologies/nfv

• ETSI GS-NFV TST 001: https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-
deployment_Validation/

• RFC2544: https://www.ietf.org/rfc/rfc2544.txt

62 Chapter 10. References

http://www.demokritos.gr/?lang=en
http://www.t-nova.eu/
http://www.t-nova.eu/results/
http://www.etsi.org/technologies-clusters/technologies/nfv
https://docbox.etsi.org/ISG/NFV/Open/Drafts/
https://www.ietf.org/rfc/rfc2544.txt

INDEX

A
API, 59

D
DPDK, 59
DPI, 59
DSCP, 59

I
IGMP, 59
IOPS, 59

N
NFVI, 59
NIC, 59

P
PBFS, 59

Q
QoS, 59

S
SR-IOV, 59
SUT, 59

T
ToS, 59

V
VLAN, 59
VM, 59
VNF, 59
VNFC, 59
VTC, 59

63

	Introduction
	About This Document
	Contact Yardstick

	Methodology
	Abstract
	ETSI-NFV
	Metrics

	Architecture
	Abstract
	Overview
	Use-Case View
	Logical View
	Process View (Test execution flow)
	Deployment View
	Yardstick Directory structure

	Virtual Traffic Classifier
	Abstract
	Overview
	Concepts
	Architecture
	Graphical Overview
	Install
	Run
	Development Environment

	Apexlake Installation Guide
	Abstract

	Apexlake API Interface Definition
	Abstract
	init
	execute_framework

	Yardstick Installation
	Abstract
	Installing Yardstick on Ubuntu 14.04
	Installing Yardstick using Docker
	OpenStack parameters and credentials
	Examples and verifying the install

	Yardstick Test Cases
	Abstract
	Generic NFVI Test Case Descriptions
	OPNFV Feature Test Cases
	Templates

	Glossary
	References
	OPNFV
	References used in Test Cases
	Research
	Standards

	Index

