> 0PNFV

VSPERF Design
Release draft (4e48999)

OPNFV

January 21, 2016

CONTENTS

1 VSPERF Design Document 1
1.1 Intended Audience e e 1
1.2 Usage o e 1
1.3 Typical Test SEqUENCe ittt e e e e e e e 1
1.4 Configuration o v it e e e e e e e e 3
1.5 VM, vSwitch, Traffic Generator Independence 3
1.6 Routing Tables e e e e e 6

CHAPTER
ONE

VSPERF DESIGN DOCUMENT

1.1 Intended Audience

This document is intended to aid those who want to modify the vsperf code. Or to extend it - for example to add
support for new traffic generators, deployment scenarios and so on.

1.2 Usage

1.2.1 Example Command Lines

List all the cli options:

‘$./vsperf -h

Run all tests that have tput in their name - p2p_tput, pvp_tput etc.:

‘$./vsperf —-tests 'tput' ‘

As above but override default configuration with settings in ‘10_custom.conf’. This is useful as modifying configura-
tion directly in the configuration files in conf /NN_* . py shows up as changes under git source control:

’$./vsperf —--conf-file=<path_to_custom_conf>/10_custom.conf —--tests 'tput' ‘

Override specific test parameters. Useful for shortening the duration of tests for development purposes:

’$./vsperf —--test-params 'duration=10;rfc2544 trials=1;pkt_sizes=64"' —-tests 'pvp_tput"

1.3 Typical Test Sequence

This is a typical flow of control for a test.

VSPERF Design, Release draft (4€48999)

testcase wnf_etl vnf vswitch_ctl vswitch traffic_ctl traffic_gen load_gen

skipping details of ﬂndinq and creating correct subclasses of [VSwitch, |TrafficGenerator ete.
create(vswitch class

createfvnf class N

Vit_cil 1S

instance of

VnfControlle-
1Pvp

creatg()

fraffic_cil 15
instance of
TrafficControl-
lerBFC2544

Pyfthon context
management
protocol
enter
“exit__1s
used fo
start/stop
controllers
enter ()
create()
VSWICH 1S
instance of
OvsDpdkVh-
ost
add ort
add vport()
add flow()
kipping full details of switch configuratio
enter »
create()

create/start()

Toadgen
simulates
system load
usm%u'stress'
ol

send traffic(iraffic)

Traific
%pecwfles the
raffic Type'
from
01_testcases-
.conf as well
as other traffic
details

send rfc2544 throughput()

e
implementati-
onis

dependent on
the vendor

specific Traffic
Gen used

returns
SR AR B NERlE

get results()

Cj’writeiresu\titnji le()

2 Chapter 1. VSPERF Design Document

VSPERF Design, Release draft (4e48999)

1.4 Configuration

The conf package contains the configuration files (« . conf) for all system components, it also provides a settings
object that exposes all of these settings.

Settings are not passed from component to component. Rather they are available globally to all components once they
import the conf package.

from conf import settings

log_file = settings.getValue ('LOG_FILE_DEFAULT'")

Settings files (x . conf) are valid python code so can be set to complex types such as lists and dictionaries as well as
scalar types:

‘first_packet_size = settings.getValue ('PACKET_SIZE_LIST') [0]

1.4.1 Configuration Procedure and Precedence

Configuration files follow a strict naming convention that allows them to be processed in a specific order. All the .conf
files are named NN_name . conf, where NN is a decimal number. The files are processed in order from 00_name.conf
to 99_name.conf so that if the name setting is given in both a lower and higher numbered conf file then the higher
numbered file is the effective setting as it is processed after the setting in the lower numbered file.

The values in the file specified by ——conf—-file takes precedence over all the other configuration files and does not
have to follow the naming convention.

1.4.2 Other Configuration

conf.settings alsoloads configuration from the command line and from the environment.

1.5 VM, vSwitch, Traffic Generator Independence

VSPEREF supports different vSwithes, Traffic Generators and VNFs by using standard object-oriented polymorphism:
* Support for vSwitches is implemented by a class inheriting from IVSwitch.
* Support for Traffic Generators is implemented by a class inheriting from ITrafficGenerator.
* Support for VNF is implemented by a class inheriting from IVNE.

By dealing only with the abstract interfaces the core framework can support many implementations of different
vSwitches, Traffic Generators and VNFs.

1.5.1 IVSwitch

class IVSwitch:
start (self)
stop(self)
add_switch (switch_name)
del_switch (switch_name)
add_phy_port (switch_name)
add_vport (switch_name)

1.4. Configuration 3

VSPERF Design, Release draft (4e48999)

get_ports (switch_name)

del_port (switch_name, port_name)
add_flow (switch_name, flow)
del_flow(switch_name, flow=None)

1.5.2 ITrafficGenerator

class ITrafficGenerator:
connect ()
disconnect ()

send_burst_traffic(traffic, numpkts, time, framerate)

send_cont_traffic(traffic, time, framerate)
start_cont_traffic(traffic, time, framerate)
stop_cont_traffic(self):

send_rfc2544_throughput (traffic, trials, duration, lossrate)
start_rfc2544_throughput (traffic, trials, duration, lossrate)
wait_rfc2544_throughput (self)

send_rfc2544_back2back (traffic, trials, duration, lossrate)
start_rfc2544_back2back (traffic, , trials, duration, lossrate)
wailt_rfc2544 back2back ()

Note send_xxx () blocks whereas start_xxx () does not and must be followed by a subsequent call to
wait_xxx ().

1.5.3 IVnf

class IVnf:

start (memory, cpus,
monitor_path, shared_path_host,
shared_path_guest, guest_prompt)

stop ()

execute (command)

wait (guest_prompt)

execute_and_wait (command)

1.5.4 Controllers

Controllers are used in conjunction with abstract interfaces as way of decoupling the control of vSwtiches, VNFs and
TrafficGenerators from other components.

The controlled classes provide basic primitive operations. The Controllers sequence and co-ordinate these primitive
operation in to useful actions. For instance the vswitch_controller_PVP can be used to bring any vSwitch (that imple-
ments the primitives defined in IVSwitch) into the configuration required by the Phy-to-Phy Deployment Scenario.

In order to support a new vSwitch only a new implementation of IVSwitch needs be created for the new vSwitch to be
capable of fulfilling all the Deployment Scenarios provided for by existing or future vSwitch Controllers.

Similarly if a new Deployment Scenario is required it only needs to be written once as a new vSwitch Controller and
it will immediately be capable of controlling all existing and future vSwitches in to that Deployment Scenario.

4 Chapter 1. VSPERF Design Document

VSPERF Design, Release draft (4e48999)

Similarly the Traffic Controllers can be used to co-ordinate basic operations provided by implementers of ITraffic-
Generator to provide useful tests. Though traffic generators generally already implement full test cases i.e. they both
generate suitable traffic and analyse returned traffic in order to implement a test which has typically been predefined
in an RFC document. However the Traffic Controller class allows for the possibility of further enhancement - such as
iterating over tests for various packet sizes or creating new tests.

1.5.5 Traffic Controller’s Role

testcase traffic_ctlr traffic_gen traffic_defaults HwSwTrafficGen

TXia, Spirent, Xena, %
Moongen, etc.

create(traffic gen cIass;l

create()

connect()

send traffic(traffic)

--- foreach packet_size in configuration -------ssefrmrmmsm e

imvokes
send_rfc2544 back-
2bhack/tpufor
?er]gg_[cton]'gf | a?yed o]n
raffic['traffic_type'];
Also fetches
duration/trials from
config

send rfe2544 tput(traffic, ..

start_rfc2544 tput{traffic)

I —_
default traffic params = read()

mer%;e traffic with
default_traffic_para-
mls}
Actual fest starts
here. Details of
interactions between
traffic_gen class
actual traffic
enerator
(HwSw TrafficGen) are
hidden to vsperf

wait_rfc2544 throughput() ::::)

esults (strinalvalue pairs).

-- L=l I = = o R

get results() >

write_results_to_file

1.5.6 Loader & Component Factory

The working of the Loader package (which is responsible for finding arbitrary classes based on configuration data) and
the Component Factory which is responsible for choosing the correct class for a particular situation - e.g. Deployment
Scenario can be seen in this diagram.

1.5. VM, vSwitch, Traffic Generator Independence 5

VSPERF Design, Release draft (4e48999)

app loader component_factory traffic_ctlr
get trafficgen class()

searches
TRAFFICGEN_DIR for
classes implementing [Traffic
and matching name
configured as TRAFFICGEN

g TrafficGenClass

create traffic(traffic type, TrafficGenClass

Component Facfory maps
from_a traffic_type (string) to
a TrafficController class

create()

OO R i[2 {S

1.6 Routing Tables

Vsperf uses a standard set of routing tables in order to allow tests to easily mix and match Deployment Scenarios
(PVP, P2P topology), Tuple Matching and Frame Modification requirements.

o +
| \
| Table 0 | table#0 - Match table. Flows designed to force 5 & 10
| | tuple matches go here.
| \
Fom +
|
|
v
= + table#l - Routing table. Flows to route packets between
| | ports goes here.
| Table 1 | The chosen port is communicated to subsequent tables by
| | setting the metadata value to the egress port number.
| | Generally this table is set-up by by the
e + vSwitchController.
|
|
v
Fmm— + table#2 - Frame modification table. Frame modification
flow rules are isolated in this table so that they can
Table 2 be turned on or off without affecting the routing or

modification and tuple matching required by the tests
in the VSWITCH PERFORMANCE FOR TELCO NFV test

Fmm— + specification to be independent of the Deployment

| Scenario set up by the vSwitchController.

\
\
| tuple-matching flow rules. This allows the frame
\
\

| Table 3 | table#3 - Egress table. Egress packets on the ports
| | setup in Table 1.

6 Chapter 1. VSPERF Design Document

	VSPERF Design Document
	Intended Audience
	Usage
	Typical Test Sequence
	Configuration
	VM, vSwitch, Traffic Generator Independence
	Routing Tables

