Anuket Reference Architecture for

OpenStack based cloud infrastructure

(RA1)

Anuket Project of Linux Foundation Networking

Oct 26, 2022

Contents
1 Introduction 4
LI Overview o 4
LI Visiono o0 4
L2 UseCases o v v ittt 4
1.3 OpenStack Reference Release L o 5
1.4 Principles o e e e e 5
1.4.1 Architectural principles L e e e e e e 5
1.4.2 OpenStack specific principles e e e 5
1.5 Document Organisation e e e e e 6
1.6 Terminology e e 6
1.7 Abbreviations e e e e e e e e e e e 9
1.8 Conventions o i i e e e e e e e e e e e e e e 11
2 Architecture Requirements 11
2.1 Reference Model Requirements L. 11
2.1.1 Cloud Infrastructure Software Profile Requirements for Compute 12
2.1.2 Cloud Infrastructure Software Profile Extensions Requirements for Compute 13
2.1.3 Cloud Infrastructure Software Profile Requirements for Networking 13
2.1.4 Cloud Infrastructure Software Profile Extensions Requirements for Networking 14
2.1.5 Cloud Infrastructure Software Profile Requirements for Storage 15
2.1.6 Cloud Infrastructure Software Profile Extensions Requirements for Storage 15
2.1.7 Cloud Infrastructure Hardware Profile Requirements 16
2.1.8 Cloud Infrastructure Hardware Profile Extensions Requirements 17
2.1.9 Cloud Infrastructure Management Requirements 17
2.1.10 Cloud Infrastructure Security Requirements 18
2.2 Architecture and OpenStack Requirements 0oL 0oL 29
2.2.1 General Requirements i e e e e e e e e e e e 29
2.2.2 Infrastructure Requirements e e e e 29
223 VIMRequirements e e e e 31
2.24 Interfaces & APIs Requirements Lo o 32
2.2.5 Tenant Requirements L e e e 32
2.2.6 Operationsand LCM e e e e e e e e e e 33
2.2.7 Assurance Requirements e e e e e e e e e 33
2.3 Architecture and OpenStack Recommendations 34

2.3.1 General Recommendations e e e e e e 34

2.3.2 Infrastructure Recommendations e e 34

2.3.3 VIM Recommendationsot it e e e e e e e e e e 35

2.3.4 Interfaces and APIs Recommendations 36

2.3.5 Tenant Recommendations e e 36

2.3.6 Operations and LCM Recommendations 36

2.3.7 Assurance Recommendations e e e e 37

2.3.8 Security Recommendations e e e 37

3 Cloud Infrastructure Architecture - OpenStack 42
3.1 Resources and Services exposedto VNFs e 43
3.1.1 Multi-Tenancy (execution environment) v v v vt vt b b 43

3.1.2 Virtual Compute (vVCPU and VRAM) 43

3.1.3 Virtual Storage L e e e e e e 44

3.1.4 Virtual Networking Neutron standalone 44

3.1.5 Virtual Networking - 3rd party SDN solution 45

3.1.6 Acceleration L e e e e e e e e e e e e 46

3.2 Virtualised Infrastructure Manager (VIM) e 46
32,1 VIMCOre ServiCes v v v v i e i e 46

322 TenantIsolation L e e e e e e e e e e e 50

3.2.3 Cloud partitioning: Host Aggregates, Availability Zones 50

324 Flavor management v v v v v e 51

3.3 Underlying Resources 0 0 e e e e e e e e 51
3.3.1 Virtualisation and hypervisors L e 51

3.3.2 Physical Infrastructure L e e 51

34 Cloud Topology . . . o v v v i e e e e e 53
34.1 Topology OVErview v v v it e e e e e e e e e e e e e e e e e e e 53

4 Cloud Infrastructure & VIM Component Level Architecture 55
4.1 Underlying Resources Configuration and Dimensioning 56
4.1.1 Virtwalisation layero e e e e e e e e 56

412 Computeo e e e e e e e e e e 56

413 Network Fabric e 65

4.1.4 Storage Backend 69

4.2 VIM OpenStack Services o o e e 71
421 VIMSErVICES . . v v v v o i e e e e e e e e e e e e e e e e e e e 71

4.2.2 Containerised OpenStack Services i e 76

4.3 Consumable Infrastructure Resources and Services 78
4.3.1 Support for Cloud Infrastructure Profiles and flavors 78

4.3.2 Logical segregation and high availability 80

4.3.3 Transaction Volume Considerations i i vt it 80

4.4 Cloud Topology and Control Plane Scenarios vt i .. 80
4.4.1 EdgeCloud Topology e 83

5 Interfaces and APIs 84
5.1 Core OpenStack Services APIs e 84
5.1.1 Keystone APL o L L e e 84

5.1.2 Glance APIL e 85

5.1.3 Cinder APL e e e e e e e e 85

5.1.4 Swift APL L o e 86

5.1.5 Neutron APL L L e e e e e 86

5.1.6 - Nova APL . . . o o . e e e e e e 88

5.1.7 Placement APL e 89

5.1.8° Heat APL o e e 90

5.2 Consolidated Set of APIS e e e e

5.2.1 OpenStack Interfaces e e e e e e
5.2.2 Kubernetes Interfaces L
523 KVMlnterfaces e
5.24 LibvirtInterfaces e e
5.2.5 Barbican API L
6 Security
6.1 Security Requirements e e e e e
6.2 Cloud Infrastructure and VIM Security o oo e
6.2.1 System Hardening e e e e e
6.2.2 Platform AcCCess e e e e e
6.2.3 Confidentiality and Integrity o
6.2.4 Workload Security L e e e e e
6.2.5 SR-IOV and DPDK Considerations ot
6.2.6 Tmage Security e e e e e e e e e e
6.2.7 Security LCM e e e e e
6.2.8 Monitoring and Security Audit
7 Operations and Life Cycle Management
7.1 Procedural versus Declarativecode L e
7.2 Mutable versus Immutable infrastructureo oo
7.3 Cloud Infrastructure provisioning and configuration management
7.3.1 Underlying resources provisioningol e e e
7.3.2 VIMdeployment v i i i e e e e e e e e e e e e e e e e
7.3.3 Configuration Management i e e e e e
7.4 Cloud Infrastructure and VIM Maintenance
7.5 Logging, Monitoring and Analytics e
7.5.1 Logging e e e
7.5.2 MONItOring o v e e e e e e e e e e e e e e e
7.5.3 Alerting e e e e e e e e e e e
7.54 Logging, Monitoring, and Analytics (LMA) Framework
8 Conformance
8.1 Requirements and Testing Principles e
8.2 Test Case Integration and Tooling L
8.2.1 Anuket Toolchains e e
8.2.2 TestCase Integration L e e e e
8.2.3 Testing CookbookS e e e e e e e e e
8.3 Conformance Test Suite L e
8.3.1 Functestinanutshell
83.2 TestCasetraceability e
8.4 Test Cases Traceability to Requirements
8.4.1 RM/RA-1Requirements e e e
8.4.2 TC Mapping to Requirements i i i i e e e e
8.5 OpenStack Testing Cookbook e e e e
8.5.1 OpenStack API testing configuration oL oL
8.5.2 Run OpenStack based cloud infrastructure Conformance

9 Gaps, Innovation, and Development

0.1 TheGap e e
9.1.1 Autoscaling e e e
References

91
91
91
91
94
96
98
98
98
99
99

102
102
102
102
103
103
104
104
104
105
105
105
106

106
107
107
108
108
108
109
109
111
127
127
128
128
129
129

129
129
129

130

1 Introduction

1.1 Overview

This Reference Architecture is focussed on OpenStack as the Virtualised Infrastructure Manager (VIM) chosen based
on the criteria laid out in the Cloud Infrastructure Reference Model [1] (referred to as “Reference Model” or “RM” in the
document). OpenStack [2] has the advantage of being a mature and widely accepted open-source technology; a strong
ecosystem of vendors that support it, the OpenInfra Foundation for managing the community, and, most importantly, it
is widely deployed by the global operator community for both internal infrastructure and external facing products and
services. This means that resources with the right skill sets to support a Cloud Infrastructure (or Network Function
Virtualisation Infrastructure, NFVI [3]) are available. Another reason to choose OpenStack is that it has a large active
community of vendors and operators, which means that any code or component changes needed to support the Common
Telco Cloud Infrastructure requirements can be managed through the existing project communities’ processes to add
and validate the required features through well-established mechanisms.

1.1.1 Vision

This Reference Architecture specifies OpenStack based Cloud Infrastructure for hosting NFV workloads, primarily
VNFs (Virtual Network Functions). The Reference Architecture document can be used by operators to deploy Anuket
conformant infrastructure; hereafter, “conformant” denotes that the resource can satisfy tests conducted to verify con-
formance with this reference architecture.

1.2 Use Cases

Several NFV use cases are documented in OpenStack. For more examples and details refer to the OpenStack Use cases

[4].
Examples include:

* Overlay networks: The overlay functionality design includes OpenStack Networking in Open vSwitch [5] GRE
tunnel mode. In this case, the layer-3 external routers pair with VRRP, and switches pair with an implementation
of MLAG to ensure that you do not lose connectivity with the upstream routing infrastructure.

* Performance tuning: Network level tuning for this workload is minimal. Quality of Service (QoS) applies to
these workloads for a middle ground Class Selector depending on existing policies. It is higher than a best effort
queue, but lower than an Expedited Forwarding or Assured Forwarding queue. Since this type of application
generates larger packets with longer-lived connections, you can optimise bandwidth utilisation for long duration
TCP. Normal bandwidth planning applies here with regards to benchmarking a session’s usage multiplied by the
expected number of concurrent sessions with overhead.

* Network functions: are software components that support the exchange of information (data, voice, multi-
media) over a system’s network. Some of these workloads tend to consist of a large number of small-sized
packets that are short lived, such as DNS queries or SNMP traps. These messages need to arrive quickly and,
thus, do not handle packet loss. Network function workloads have requirements that may affect configurations
including at the hypervisor level. For an application that generates 10 TCP sessions per user with an average
bandwidth of 512 kilobytes per second per flow and expected user count of ten thousand (10,000) concurrent
users, the expected bandwidth plan is approximately 4.88 gigabits per second. The supporting network for this
type of configuration needs to have a low latency and evenly distributed load across the topology. These types
of workload benefit from having services local to the consumers of the service. Thus, use a multi-site approach,

as well as, deploying many copies of the application to handle load as close as possible to consumers. Since
these applications function independently, they do not warrant running overlays to interconnect tenant networks.
Overlays also have the drawback of performing poorly with rapid flow setup and may incur too much overhead
with large quantities of small packets and therefore we do not recommend them. QoS is desirable for some
workloads to ensure delivery. DNS has a major impact on the load times of other services and needs to be
reliable and provide rapid responses. Configure rules in upstream devices to apply a higher-Class Selector to
DNS to ensure faster delivery or a better spot in queuing algorithms.

1.3 OpenStack Reference Release

This Reference Architecture document conforms to the OpenStack Wallaby [6] release. While many features and
capabilities are conformant with many OpenStack releases, this document will refer to features, capabilities and APIs
that are part of the OpenStack Wallaby release. For ease, this Reference Architecture document version can be referred
to as “RA-1 OSTK Wallaby.”

1.4 Principles

1.4.1 Architectural principles

This Reference Architecture for OpenStack based Cloud Infrastructure must obey the following set of architectural
principles:

1.

® N oW

Open-source preference: for building Cloud Infrastructure solutions, components and tools, using open-source
technology.

Open APIs: to enable interoperability, component substitution, and minimise integration efforts.

Separation of concerns: to promote lifecycle independence of different architectural layers and modules (e.g.,
disaggregation of software from hardware).

Automated lifecycle management: to minimise the end-to-end lifecycle costs, maintenance downtime (target
zero downtime), and errors resulting from manual processes.

Automated scalability: of workloads to minimise costs and operational impacts.
Automated closed loop assurance: for fault resolution, simplification, and cost reduction of cloud operations.
Cloud nativeness: to optimise the utilisation of resources and enable operational efficiencies.

Security compliance: to ensure the architecture follows the industry best security practices and is at all levels
compliant to relevant security regulations.

Resilience and Availability: to withstand Single Point of Failure.

1.4.2 OpenStack specific principles

OpenStack considers the following Four Opens essential for success:

* Open Source

* Open Design

* Open Development

* Open Community

This OpenStack Reference Architecture is organised around the three major Cloud Infrastructure resource types as core
services of compute, storage and networking, and a set of shared services of identity management, image management,
graphical user interface, orchestration engine, etc.

1.5 Document Organisation

Chapter 2 defines the Reference Architecture requirements and, when appropriate, provides references to where these
requirements are addressed in this document. The intent of this document is to address all of the mandatory (“must’)
requirements and the most useful of the other optional (“should”) requirements. Chapter 3 and 4 cover the Cloud In-
frastructure resources and the core OpenStack services, while the APIs are covered in Chapter 5. Chapter 6 covers the
implementation and enforcement of security capabilities and controls. Life Cycle Management of the Cloud Infras-
tructure and VIM are covered in Chapter 7 with stress on Logging, Monitoring and Analytics (LMA), configuration
management and some other operational items. Please note that Chapter 7 is not a replacement for the implementation,
configuration and operational documentation that accompanies the different OpenStack distributions. Chapter 8 ad-
dresses the conformance. It provides an automated validation mechanism to test the conformance of a deployed cloud
infrastructure to this reference architecture. Finally, Chapter 9 identifies certain Gaps that currently exist and plans on
howto address them (for example, resources autoscaling).

1.6 Terminology

Abstraction: Process of removing concrete, fine-grained or lower-level details or attributes or common properties in
the study of systems to focus attention on topics of greater importance or general concepts. It can be the result of
decoupling.

Anuket: A LFN open-source project developing open reference infrastructure models, architectures, tools, and pro-
grams.

Cloud Infrastructure: A generic term covering NFVI, IaaS and CaaS capabilities - essentially the infrastructure on
which a Workload can be executed. NFVI, IaaS and CaaS layers can be built on top of each other. In case of CaaS
some cloud infrastructure features (e.g.: HW management or multitenancy) are implemented by using an underlying
IaaS layer.

Cloud Infrastructure Hardware Profile: defines the behaviour, capabilities, configuration, and metrics provided by
a cloud infrastructure hardware layer resources available for the workloads.

Host Profile: is another term for a Cloud Infrastructure Hardware Profile.

Cloud Infrastructure Profile: The combination of the Cloud Infrastructure Software Profile and the Cloud Infras-
tructure Hardware Profile that defines the capabilities and configuration of the Cloud Infrastructure resources available
for the workloads.

Cloud Infrastructure Software Profile: defines the behaviour, capabilities and metrics provided by a Cloud Infras-
tructure Software Layer on resources available for the workloads.

Cloud Native Network Function (CNF): A cloud native network function (CNF) is a cloud native application that
implements network functionality. A CNF consists of one or more microservices. All layers of a CNF are developed
using Cloud Native Principles including immutable infrastructure, declarative APIs, and a “repeatable deployment
process”. This definition is derived from the Cloud Native Thinking for Telecommunications Whitepaper, which also
includes further detail and examples.

Compute Node: An abstract definition of a server. A compute node can refer to a set of hardware and software that
support the VMs or Containers running on it.

Container: A lightweight and portable executable image that contains software and all of its dependencies. OCI
defines Container as “An environment for executing processes with configurable isolation and resource limitations.
For example, namespaces, resource limits, and mounts are all part of the container environment.” A Container provides
operating-system-level virtualisation by abstracting the “user space”. One big difference between Containers and VMs

is that unlike VMs, where each VM is self-contained with all the operating systems components are within the VM
package, containers “share” the host system’s kernel with other containers.

Container Image: Stored instance of a container that holds a set of software needed to run an application.

Core (physical): An independent computer processing unit that can independently execute CPU instructions and is
integrated with other cores on a multiprocessor (chip, integrated circuit die). Please note that the multiprocessor chip
is also referred to as a CPU that is placed in a socket of a computer motherboard.

CPU Type: A classification of CPUs by features needed for the execution of computer programs; for example, instruc-
tion sets, cache size, number of cores.

Decoupling, Loose Coupling: Loosely coupled system is one in which each of its components has, or makes use of,
little or no knowledge of the implementation details of other separate components. Loose coupling is the opposite of
tight coupling

Encapsulation: Restricting of direct access to some of an object’s components.

External Network: External networks provide network connectivity for a cloud infrastructure tenant to resources
outside of the tenant space.

Fluentd: An open-source data collector for unified logging layer, which allows data collection and consumption for
better use and understanding of data. Fluentd is a CNCF graduated project.

Functest: An open-source project part of Anuket LFN project. It addresses functional testing with a collection of
state-of-the-art virtual infrastructure test suites, including automatic VNF testing.

Hardware resources: Compute/Storage/Network hardware resources on which the cloud infrastructure platform soft-
ware, virtual machines and containers run on.

Huge pages: Physical memory is partitioned and accessed using the basic page unit (in Linux default size of 4 KB).
Hugepages, typically 2 MB and 1GB size, allows large amounts of memory to be utilised with reduced overhead. In
an NFV environment, huge pages are critical to support large memory pool allocation for data packet buffers. This
results in fewer Translation Lookaside Buffers (TLB) lookups, which reduces the virtual to physical pages’ address
translations. Without huge pages enabled high TLB miss rates would occur thereby degrading performance.

Hypervisor: a software that abstracts and isolates workloads with their own operating systems from the underlying
physical resources. Also known as a virtual machine monitor (VMM).

Instance: is a virtual compute resource, in a known state such as running or suspended, that can be used like a physical
server. It can be used to specify VM Instance or Container Instance.

Kibana: An open-source data visualisation system.

Kubernetes: An open-source system for automating deployment, scaling, and management of containerised applica-
tions.

Monitoring (Capability): Monitoring capabilities are used for the passive observation of workload-specific traffic
traversing the Cloud Infrastructure. Note, as with all capabilities, Monitoring may be unavailable or intentionally
disabled for security reasons in a given cloud infrastructure instance.

Multi-tenancy: feature where physical, virtual or service resources are allocated in such a way that multiple tenants
and their computations and data are isolated from and inaccessible by each other.

Network Function (NF): functional block or application that has well-defined external interfaces and well-defined
functional behaviour. Within NFV, a Network Function is implemented in a form of Virtualised NF (VNF) or a
Cloud Native NF (CNF).

NFYV Orchestrator (NFVO): Manages the VNF lifecycle and Cloud Infrastructure resources (supported by the VIM)
to ensure an optimised allocation of the necessary resources and connectivity.

Network Function Virtualisation (NFV): The concept of separating network functions from the hardware they run
on by using a virtual hardware abstraction layer.

Network Function Virtualisation Infrastructure (NFVI): The totality of all hardware and software components
used to build the environment in which a set of virtual applications (VAs) are deployed; also referred to as cloud
infrastructure. The NFVI can span across many locations, e.g., places where data centres or edge nodes are operated.
The network providing connectivity between these locations is regarded to be part of the cloud infrastructure. NFVI
and VNF are the top-level conceptual entities in the scope of Network Function Virtualisation. All other components
are sub-entities of these two main entities.

Network Service (NS): composition of Network Function(s) and/or Network Service(s), defined by its functional
and behavioural specification, including the service lifecycle.

Open Network Automation Platform (ONAP): A LFN project developing a comprehensive platform for orchestra-
tion, management, and automation of network and edge computing services for network operators, cloud providers,
and enterprises.

ONAP OpenLab: ONAP community lab.

Open Platform for NFV (OPNFV): A collaborative project under the Linux Foundation. OPNFV is now part of
the LFN Anuket project. It aims to implement, test, and deploy tools for conformance and performance of NFV
infrastructure.

OPNFYV Verification Program (OVP): An open-source, community-led compliance and verification program aiming
to demonstrate the readiness and availability of commercial NFV products and services using OPNFV and ONAP
components.

Platform: A cloud capabilities type in which the cloud service user can deploy, manage and run customer-created or
customer-acquired applications using one or more programming languages and one or more execution environments
supported by the cloud service provider. Adapted from ITU-T Y.3500. This includes the physical infrastructure,
Operating Systems, virtualisation/containerisation software and other orchestration, security, monitoring/logging and
life-cycle management software.

Prometheus: An open-source monitoring and alerting system.

Quota: Animposed upper limit on specific types of resources, usually used to prevent excessive resource consumption
by a given consumer (tenant, VM, container).

Resource pool: A logical grouping of cloud infrastructure hardware and software resources. A resource pool can be
based on a certain resource type (for example, compute, storage and network) or a combination of resource types. A
Cloud Infrastructure resource can be part of none, one or more resource pools.

Simultaneous Multithreading (SMT): Simultaneous multithreading (SMT) is a technique for improving the overall
efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution
on a single core to better utilise the resources provided by modern processor architectures.

Shaker: A distributed data-plane testing tool built for OpenStack.

Software Defined Storage (SDS): An architecture which consists of the storage software that is independent from
the underlying storage hardware. The storage access software provides data request interfaces (APIs) and the SDS
controller software provides storage access services and networking.

Tenant: cloud service users sharing access to a set of physical and virtual resources, ITU-T Y.3500. Tenants repre-
sent an independently manageable logical pool of compute, storage and network resources abstracted from physical
hardware.

Tenant Instance: refers to an Instance owned by or dedicated for use by a single Tenant.
Tenant (Internal) Networks: Virtual networks that are internal to Tenant Instances.

User: Natural person, or entity acting on their behalf, associated with a cloud service customer that uses cloud services.
Examples of such entities include devices and applications.

Virtual CPU (vCPU): Represents a portion of the host’s computing resources allocated to a virtualised resource, for
example, to a virtual machine or a container. One or more vCPUs can be assigned to a virtualised resource.

Virtualised Infrastructure Manager (VIM): Responsible for controlling and managing the Network Function Virtu-
alisation Infrastructure (NFVI) compute, storage and network resources.

Virtual Machine (VM): virtualised computation environment that behaves like a physical computer/server. A VM con-
sists of all of the components (processor (CPU), memory, storage, interfaces/ports, etc.) of a physical computer/server.
It is created using sizing information or Compute Flavour.

Virtualised Network Function (VNF): A software implementation of a Network Function, capable of running on the
Cloud Infrastructure. VNFs are built from one or more VNF Components (VNFC) and, in most cases, the VNFC is
hosted on a single VM or Container.

Virtual Compute resource (a.k.a. virtualisation container): partition of a compute node that provides an isolated
virtualised computation environment.

Virtual Storage resource: virtualised non-volatile storage allocated to a virtualised computation environment hosting
a VNFC.

Virtual Networking resource: routes information among the network interfaces of a virtual compute resource and
physical network interfaces, providing the necessary connectivity.

VMTP: A data path performance measurement tool built specifically for OpenStack clouds.

Workload: an application (for example VNF, or CNF) that performs certain task(s) for the users. In the Cloud Infras-
tructure, these applications run on top of compute resources such as VMs or Containers.

1.7 Abbreviations

Abbreviation/Acronym Definition

API Application Programming Interface

BGP VPN Border gateway Protocol Virtual Private network
CI/CD Continuous Integration/Continuous Deployment
CNTT Cloud iNfrastructure Task Force

CPU Central Processing Unit

DNS Domain Name System

DPDK Data Plane Development Kit

DHCP Dynamic Host Configuration Protocol

ECMP Equal Cost Multi-Path routing

ETSI European Telecommunications Standards Institute
FPGA Field Programmable Gate Array

MB/GB/TB MegaByte/GigaByte/TeraByte

GPU Graphics Processing Unit

GRE Generic Routing Encapsulation

GSM Global System for Mobile Communications (originally Groupe Spécial Mobile)
GSMA GSM Association

GSLB Global Service Load Balancer

GUI Graphical User Interface

HA High Availability

HDD Hard Disk Drive

HTTP HyperText Transfer Protocol

HW Hardware

TaaC (also IaC) Infrastructure as a Code

TaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IMS IP Multimedia Sub System

continues on next page

Table 1.1 — continued from previous page

Abbreviation/Acronym

Definition

10 Input/Output

10OPS Input/Output per Second

IPMI Intelligent Platform Management Interface

KVM Kernel-based Virtual Machine

LCM LifeCycle Management

LDAP Lightweight Directory Access Protocol

LFN Linux Foundation Networking

LMA Logging, Monitoring and Analytics

LVM Logical Volume Management

MANO Management ANd Orchestration

MLAG Multi-chassis Link Aggregation Group

NAT Network Address Translation

NFS Network File System

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NIC Network Interface Card

NPU Numeric Processing Unit

NTP Network Time Protocol

NUMA Non-Uniform Memory Access

OAI Open Air Interface

(ON] Operating System

OSTK OpenStack

OPNFV Open Platform for NFV

OoVvS Open vSwitch

OWASP Open Web Application Security Project

PCle Peripheral Component Interconnect Express

PCI-PT PCle PassThrough

PXE Preboot Execution Environment

QoS Quality of Service

RA Reference Architecture

RA-1 Reference Architecture 1 (i.e., Reference Architecture for OpenStack-based Cloud In-
frastructure)

RBAC Role-based Access Control

RBD RADOS Block Device

REST Representational state transfer

RI Reference Implementation

RM Reference Model

SAST Static Application Security Testing

SDN Software Defined Networking

SFC Service Function Chaining

SG Security Group

SLA Service Level Agreement

SMP Symmetric MultiProcessing

SMT Simultaneous MultiThreading

SNAT Source Network Address Translation

SNMP Simple Network Management Protocol

SR-IOV Single Root Input Output Virtualisation

SSD Solid State Drive

SSL Secure Sockets Layer

10

continues on next page

Table 1.1 — continued from previous page

Abbreviation/Acronym

Definition

SUT

System Under Test

TCP Transmission Control Protocol
TLS Transport Layer Security

ToR Top of Rack

TPM Trusted Platform Module

UDP User Data Protocol

VIM Virtualised Infrastructure Manager
VLAN Virtual LAN

VM Virtual Machine

VNF Virtual Network Function

VRRP Virtual Router Redundancy Protocol
VTEP VXLAN Tunnel End Point
VXLAN Virtual Extensible LAN

WAN Wide Area Network

ZTA Zero Trust Architecture

1.8 Conventions

The key words “MUST”, “MUST NOT”, “required”, “SHALL”, SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“recommended”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [7].

2 Architecture Requirements

This chapter includes both “Requirements” that must be satisfied in an RA-1 conformant implementation and “Recom-

mendations” that are optional for implementation.

2.1 Reference Model Requirements

The tables below contain the requirements from the Reference Model [1] to cover the Basic and High-Performance

profiles.

To ensure alignment with the infrastructure profile catalogue, the following requirements are referenced through:

* Those relating to Cloud Infrastructure Software Profiles

* Those relating to Cloud Infrastructure Hardware Profiles

* Those relating to Cloud Infrastructure Management

* Those relating to Cloud Infrastructure Security

11

2.1.1 Cloud Infrastructure Software Profile Requirements for Compute

Table 2.1: Reference Model Requirements: Cloud Infrastructure Soft-
ware Profile Capabilities

Reference Description Requirement | Requirement | Specification Ref-
for Basic | for High- | erence
Profile Performance
Profile
e.cap.001 Max number of vCPU that | At least 16 At least 16 Compute Nodes
can be assigned to a single
instance by the Cloud In-
frastructure
e.cap.002 Max memory that can be | atleast 32 GB | atleast 32 GB | Virtual Storage
assigned to a single in-
stance by the Cloud Infras-
tructure
e.cap.003 Max storage that can be | at least 320 | at least 320 | Virtual Storage and
assigned to a single in- | GB GB Storage Backend
stance by the Cloud Infras-
tructure
e.cap.004 Max number of connec- | 6 6 Not Detailed
tion points that can be as-
signed to a single instance
by the Cloud Infrastruc-
ture
e.cap.005 Max storage thatcanbeat- | Up to 16TB | Up to 16TB | Storage Backend
tached / mounted to an in- | [¥] [*]
stance by the Cloud Infras-
tructure
e.cap.006 / CPU pinning support Not required Must support Consumable Infras-
infra.com.cfg.003 tructure Resources
and Services
e.cap.007 / NUMA support Not required Must support Consumable Infras-
infra.com.cfg.002 tructure Resources
and Services
e.cap.018/ Simultaneous Multi- | Must Optional sup- | Consumable Infras-
infra.com.cfg.005 threading (SMT) enabled port tructure Resources
and Services
i.cap.018 / Huge pages configured Not required Must support | Consumable Infras-
infra.com.cfg.004 tructure Resources
and Services

[*] Defined in the .bronze configuration in “Storage extensions” in [1].

2.1.2 Cloud Infrastructure Software Profile Extensions Requirements for Compute

Table 2.2: Cloud Infrastructure Software Profile Extensions Require-

ments for Compute

Reference Description Profile Ex- | Profile Extra- | Specification Ref-
tensions Specs erence
e.cap.008 / IPSec Acceleration using | Compute Acceleration
infra.com.acc.cfg.001 the virtio-ipsec interface Intensive
GPU
e.cap.010/ Transcoding Acceleration | Compute Video Acceleration
infra.com.acc.cfg.002 Intensive Transcod-
GPU ing
e.cap.011/ Programmable Accelera- | Firmware- Accelerator Acceleration
infra.com.acc.cfg.003 tion programmable
adapter
e.cap.012 Enhanced Cache Manage- | E E Not detailed
ment: L=Lean; E=Equal;
X=eXpanded
e.cap.014/ Hardware coprocessor | Compute Acceleration
infra.com.acc.cfg.004 support (GPU/NPU) Intensive
GPU
e.cap.016/ FPGA/other Acceleration | Firmware- Acceleration
infra.com.acc.cfg.005 H/W programmable
adapter

2.1.3 Cloud Infrastructure Software Profile Requirements for Networking

The features and configuration requirements related to virtual networking for the two (2) types of Cloud Infrastructure
Profiles are specified below followed by networking bandwidth requirements.

Table 2.3: Reference Model Requirements - Virtual Networking

Reference Description Requirement | Requirement | Specification Ref-
for Basic | for High- | erence
Profile Performance
Profile
infra.net.cfg.001 10 virtualisation using vir- | Must support | Must support Virtualisation layer
tiol.1
infra.net.cfg.002 The overlay network | Must support | No require- | Network Fabric
encapsulation protocol | VXLAN, ment specified
needs to enable ECMP | MPLSoUDP,
in the underlay to take | GENEVE,
advantage of the scale-out | other
features of the network
fabric
infra.net.cfg.003 Network Address Transla- | Must support | Must support | Network Fabric
tion
infra.net.cfg.004 Security Groups Must support | Must support Workload Security
infra.net.cfg.005 SFC support Not required Must support Virtual Networking -
3rd party SDN solu-
tion
infra.net.cfg.006 Traffic patterns symmetry | Must support | Must support | Not detailed

13

The required number of connection points to an instance is described in e.cap.®04 above. The table below specifies
the required bandwidth of those connection points.

Table 2.4: Reference Model Requirements - Network Interface Specifi-

cations

Reference

Description

Requirement

Requirement

Specification Ref-

n500, n600

600 Gbps

for Basic | for High | erence
Profile Performance
Profile

nl, n2, n3, n4, n5, n6 1,2,3,4,5, 6 Gbps Must support Must support Not detailed
nl0, n20, n30, n40, n50, | 10, 20, 30, 40, 50, 60 Gbps | Must support Must support Not detailed
n60
n25,n50,n75,n100,n125, | 25, 50, 75, 100, 125, 150 | Optional Must support Not detailed
nl50 Gbps
n50, nl100, nl150, n200, | 50, 100, 150, 200, 250, | Optional Must support Not detailed
n250, n300 300 Gbps
n100, n200, n300, n400, | 100, 200, 300, 400, 500, | Optional Must support Not detailed

2.1.4 Cloud Infrastructure Software Profile Extensions Requirements for Networking

Table 2.5: Cloud Infrastructure Software Profile Extensions Require-

ments for Networking

Reference Description Requirement | Requirement | Specification Ref-

for Basic | for High- | erence

Profile Performance

Profile
e.cap.013/ SR-IOV over PCI-PT N Y Compute Nodes
infra.hw.nac.cfg.004
e.cap.019/ vSwitch optimisation | N Y Compute Nodes and
infra.net.acc.cfg.001 (DPDK) Network quality of
service
e.cap.015/ SmartNIC (for HW Of- | N Optional Acceleration
infra.net.acc.cfg.002 fload)
e.cap.009 / Crypto acceleration N Optional Not detailed
infra.net.acc.cfg.003
infra.net.acc.cfg.004 Crypto Acceleration Inter- | N Optional Not detailed
face

14

2.1.5 Cloud Infrastructure Software Profile Requirements for Storage

Table 2.6: Reference Model Requirements - Cloud Infrastructure Soft-
ware Profile Requirements for Storage

Reference Description Requirement | Requirement | Specification Ref-
for Basic | for High- | erence
Profile Performance
Profile
infra.stg.cfg.002 Storage Block Must support | Must support | Storage and Cinder
infra.stg.cfg.003 Storage with replication Not required Must support | Storage and Trans-
action Volume Con-
siderations
infra.stg.cfg.004 Storage with encryption Must support | Must support | Storage
infra.stg.acc.cfg.001 Storage IOPS oriented Not required Must support | Storage
infra.stg.acc.cfg.002 Storage capacity oriented | Not required Not required Storage

2.1.6 Cloud Infrastructure Software Profile Extensions Requirements for Storage

Table 2.7: Reference Model Requirements - Cloud Infrastructure Soft-
ware Profile Extensions Requirements for Storage

Reference Description Profile Ex- | Profile Extra- | Specification Ref-
tensions Specs erence
infra.stg.acc.cfg.001 Storage IOPS oriented Storage In- Not detailed
tensive High-
performance
storage
infra.stg.acc.cfg.002 Storage capacity oriented | High Capacity Not detailed

15

2.1.7 Cloud Infrastructure Hardware Profile Requirements

Table 2.8: Reference Model Requirements - Cloud Infrastructure Hard-

ware Profile Requirements

Reference Description Requirement | Requirement | Specification Ref-
for Basic | for High- | erence
Profile Performance
Profile
infra.hw.001 CPU Architecture (Values
such as x64, ARM, etc.)
infra.hw.cpu.cfg.001 Minimum number of CPU | 2 2 Compute
(Sockets)
infra.hw.cpu.cfg.002 Minimum number 20 20 Compute
Cores per CPU
infra.hw.cpu.cfg.003 NUMA Not required Must support Compute
infra.hw.cpu.cfg.004 Simultaneous Must support | Optional Compute
threading/Symmetric
Multiprocessing
(SMT/SMP)
infra.hw.stg.hdd.cfg.001 Local Storage HDD No require- | No require- | Consumable Infras-
ment specified | ment specified | tructure Resources
and Services
infra.hw.stg.ssd.cfg.002 Local Storage SSD Should sup- | Should sup- | Consumable Infras-
port port tructure Resources
and Services
infra.hw.nic.cfg.001 Total Number of NIC | 4 4 Compute
Ports available in the host
infra.hw.nic.cfg.002 Port speed specified in | 10 25 Consumable Infras-
Gbps (minimum values) tructure Resources
and Services
infra.hw.pci.cfg.001 Number of PCle slots | 8 8 Not detailed
available in the host
infra.hw.pci.cfg.002 PCle speed Gen 3 Gen 3 Not detailed
infra.hw.pci.cfg.003 PCle Lanes 8 8 Not detailed
infra.hw.nac.cfg.003 Compression No require- | No require- | Not detailed

ment specified

ment specified

16

2.1.8 Cloud Infrastructure Hardware Profile Extensions Requirements

Table 2.9: Reference Model Requirements - Cloud Infrastructure Hard-
ware Profile Extensions Requirements

Reference Description Requirement | Requirement | Specification Ref-
for Basic | for High- | erence
Profile Performance
Profile
e.cap.014 / GPU N Optional Acceleration
infra.hw.cac.cfg.001
e.cap.016/ FPGA/other Acceleration | N Optional Acceleration
infra.hw.cac.cfg.002 H/W
e.cap.009 / Crypto Acceleration N Optional Acceleration
infra.hw.nac.cfg.001
e.cap.015/ SmartNIC N Optional Acceleration
infra.hw.nac.cfg.002
infra.hw.nac.cfg.003 Compression Optional Optional Acceleration
e.cap.013/ SR-IOV over PCI-PT N Yes Compute node con-
infra.hw.nac.cfg.004 figurations for Pro-
files and OpenStack
Flavors

2.1.9 Cloud Infrastructure Management Requirements

Table 2.10: Reference Model Requirements - Cloud Infrastructure Man-

agement Requirements

Reference Description Requirement Specification Ref-
(common to all | erence
Profiles)
e.man.001 Capability to allocate virtual compute resources to | Must support Resources and
a workload Services exposed to
VNFs
e.man.002 Capability to allocate virtual storage resources to | Must support Resources and
a workload Services exposed to
VNFs
e.man.003 Capability to allocate virtual networking resources | Must support Resources and
to a workload Services exposed to
VNF's
e.man.004 Capability to isolate resources between tenants Must support Tenant Isolation
e.man.005 Capability to manage workload software images Must support Glance
e.man.006 Capability to provide information related to allo- | Must support Logging, Monitor-
cated virtualised resources per tenant ing and Analytics
e.man.007 Capability to notify state changes of allocated re- | Must support Logging, Monitor-
sources ing and Analytics
e.man.008 Capability to collect and expose performance in- | Must support Logging, Monitor-
formation on virtualised resources allocated ing and Analytics
e.man.009 Capability to collect and notify fault information | Must support Logging, Monitor-
on virtualised resources ing and Analytics

17

2.1.10 Cloud Infrastructure Security Requirements

System Hardening Requirements

Table 2.11: Reference Model Requirements - System Hardening
Requirements
Reference sub-category Description Specification Ref-
erence
sec.gen.001 Hardening The Platform MUST maintain the specified con- | Security LCM and
figuration Cloud Infrastruc-
ture provisioning
and configuration
management
sec.gen.002 Hardening All systems part of Cloud Infrastructure MUST | Password policy
support hardening as defined in CIS Password Pol-
icy Guide [8]
sec.gen.003 Hardening All servers part of Cloud Infrastructure MUST | Server boot harden-
support a root of trust and secure boot ing
sec.gen.004 Hardening The Operating Systems of all the servers part of | Function and Soft-
Cloud Infrastructure MUST be hardened by re- | ware
moving or disabling unnecessary services, appli-
cations and network protocols, configuring oper-
ating system user authentication, configuring re-
source controls, installing and configuring addi-
tional security controls where needed, and test-
ing the security of the Operating System (NIST SP
800-123)
sec.gen.005 Hardening The Platform MUST support Operating System | System Access
level access control
sec.gen.006 Hardening The Platform MUST support Secure logging. | System Access
Logging with root account MUST be prohibited
when root privileges are not required
sec.gen.007 Hardening All servers part of Cloud Infrastructure MUST be | Security Logs Time
Time synchronised with authenticated Time ser- | Synchronisation
vice
sec.gen.008 Hardening All servers part of Cloud Infrastructure MUST be | Security LCM
regularly updated to address security vulnerabili-
ties
sec.gen.009 Hardening The Platform MUST support software integrity | Integrity of Open-
protection and verification Stack components
configuration
sec.gen.010 Hardening The Cloud Infrastructure MUST support en- | Confidentiality and
crypted storage, for example, block, object and file | Integrity
storage, with access to encryption keys restricted
based on a need to know (Controlled Access Based
on the Need to Know [9])
sec.gen.012 Hardening The Operator MUST ensure that only authorised | This requirement’s
actors have physical access to the underlying in- | verification MUST
frastructure be part of the or-
ganisation’s security
process

continues on next page

18

Table 2.11 — continued from previous page

Reference sub-category Description Specification Ref-
erence
sec.gen.013 Hardening The Platform MUST ensure that only authorised | System Access
actors have logical access to the underlying infras-
tructure
sec.gen.015 Hardening Any change to the Platform MUST be logged as | Security LCM

a security event, and the logged event MUST in-
clude the identity of the entity making the change,
the change, the date and the time of the change

Platform and Access Requirements

Table 2.12: Reference Model Requirements - Platform and Access

Requirements
Reference sub-category Description Specification Ref-
erence
sec.sys.001 Access The Platform MUST support authenticated and | RBAC
secure access to API, GUI and command line in-
terfaces
sec.sys.002 Access The Platform MUST support Traffic Filtering for | Workload Security
workloads (for example, Firewall)
sec.sys.003 Access The Platform MUST support Secure and en- | Confidentiality and
crypted communications, and confidentiality and | Integrity
integrity of network
sec.sys.004 Access The Cloud Infrastructure MUST support authenti- | Confidentiality and
cation, integrity and confidentiality on all network | Infegrity
channels
sec.sys.005 Access The Cloud Infrastructure MUST segregate the un- | Confidentiality and
derlay and overlay networks Integrity
sec.sys.006 Access The Cloud Infrastructure MUST be able to utilise | Identity Security
the Cloud Infrastructure Manager identity lifecy-
cle management capabilities
sec.sys.007 Access The Platform MUST implement controls enforc- | RBAC
ing separation of duties and privileges, least priv-
ilege use and least common mechanism (Role-
Based Access Control)
sec.sys.008 Access The Platform MUST be able to assign the Entities | Workload Security
that comprise the tenant networks to different trust
domains. Communication between different trust
domains is not allowed, by default
sec.sys.009 Access The Platform MUST support creation of Trust Re- | Logical segregation

lationships between trust domains. These maybe
uni-directional relationships where the trusting
domain trusts another domain (the “trusted do-
main”) to authenticate users for them them or to
allow access to its resources from the trusted do-
main. In a bidirectional relationship both domain
are “trusting” and “trusted”

and high availabil-
ity

continues on next page

19

Table 2.12 — continued from previous page

Reference sub-category Description Specification Ref-
erence
sec.sys.010 Access For two or more domains without existing trustre- | Logical segregation
lationships, the Platform MUST NOT allow the | and high availabil-
effect of an attack on one domain to impact the | ity
other domains either directly or indirectly
sec.sys.011 Access The Platform MUST NOT reuse the same authen- | System Access
tication credentials (e.g., key pairs) on different
Platform components (e.g., different hosts, or dif-
ferent services)
sec.sys.012 Access The Platform MUST protect all secrets by using | Barbican
strong encryption techniques and storing the pro-
tected secrets externally from the component (e.g.,
in OpenStack Barbican)
sec.sys.013 Access The Platform MUST generate secrets dynamically | Barbican
as and when needed
sec.sys.015 Access The Platform MUST NOT contain back door en- | Not detailed
tries (unpublished access points, APIs, etc.)
sec.sys.016 Access Login access to the Platform’s components MUST | Security LCM
be through encrypted protocols such as SSH v2 or
TLS v1.2 or higher. Note: Hardened jump servers
isolated from external networks are recommended
sec.sys.017 Access The Platform MUST provide the capability of | Confidentiality and
using digital certificates that comply with X.509 | Integrity
standards issued by a trusted Certification Author-
ity
sec.sys.018 Access The Platform MUST provide the capability of al- | Confidentiality and
lowing certificate renewal and revocation Integrity
sec.sys.019 Access The Platform MUST provide the capability of test- | Confidentiality and

ing the validity of a digital certificate (CA signa-
ture, validity period, non revocation identity)

Integrity

20

Confidentiality and Integrity Requirements

Table 2.13: Reference Model Requirements - Confidentiality and In-

tegrity Requirements

Reference sub-category Description Specification Ref-
erence
sec.ci.001 Confidentiality / The Platform MUST support Confidentiality and | Confidentiality and
Integrity Integrity of data at rest and in transit Integrity
sec.ci.003 Confidentiality / The Platform MUST support Confidentiality and | Confidentiality and
Integrity Integrity of data related metadata Integrity
sec.ci.004 Confidentiality The Platform MUST support Confidentiality of | Confidentiality and
processes and restrict information sharing with | Infegrity
only the process owner (e.g., tenant)
sec.ci.005 Confidentiality / The Platform MUST support Confidentiality and | Confidentiality and
Integrity Integrity of process- related metadata and restrict | Integrity
information sharing with only the process owner
(e.g., tenant)
sec.ci.006 Confidentiality / The Platform MUST support Confidentiality and | Platform Access
Integrity Integrity of workload resource utilisation (RAM,
CPU, Storage, Network 1/O, cache, hardware of-
fload) and restrict information sharing with only
the workload owner (e.g., tenant)
sec.ci.007 Confidentiality / The Platform MUST NOT allow Memory Inspec- | Platform Access
Integrity tion by any actor other than the authorised actors
for the Entity to which Memory is assigned (e.g.,
tenants owning the workload), for Lawful Inspec-
tion, and for secure monitoring services. Adminis-
trative access MUST be managed using Platform
Identity Lifecycle Management
sec.ci.008 Confidentiality The Cloud Infrastructure MUST support tenant | Workload Security

networks segregation

21

Workload Security Requirements

Table 2.14: Reference Model Requirements - Workload Security Require-

ments
Reference sub-category Description Specification Ref-
erence

sec.wl.001 Workload The Platform MUST support Workload placement | Workload Security
policy

sec.wl.002 Workload The Cloud Infrastructure MUST provide methods | Cloud Infrastruc-
to ensure the platform’s trust status and integrity | ture and VIM
(e.g., remote attestation, Trusted Platform Mod- | Security
ule)

sec.wl.003 Workload The Platform MUST support secure provisioning | Workload Security
of Workloads

sec.wl.004 Workload The Platform MUST support Location assertion | Workload Security
(for mandated in- country or location require-
ments)

sec.wl.005 Workload The Platform MUST support the separation of | Workload Security
production and non- production Workloads

sec.wl.006 Workload The Platform MUST support the separation of | Workload Security
Workloads based on their categorisation (for ex-
ample, payment card information, healthcare, etc.)

sec.wl.007 Workload The Operator MUST implement processes and | Image Security

tools to verify NF authenticity and integrity

22

Image Security Requirements

Table 2.15: Reference Model Requirements - Image Security Require-

ments
Reference sub-category Description Specification Ref-
erence
sec.img.001 Image Images from untrusted sources MUST NOT be | Image Security
used
sec.img.002 Image Images MUST be scanned to be maintained free | /mage Security
from known vulnerabilities
sec.img.003 Image Images MUST NOT be configured to run with | Image Security
privileges higher than the privileges of the actor
authorised to run them
sec.img.004 Image Images MUST only be accessible to authorised ac- | Integrity of Open-
tors Stack components
configuration
sec.img.005 Image Image Registries MUST only be accessible to au- | Integrity of Open-
thorised actors Stack components
configuration
sec.img.006 Image Image Registries MUST only be accessible over | Integrity of Open-
networks that enforce authentication, integrity and | Stack components
confidentiality configuration
sec.img.007 Image Image registries MUST be clear of vulnerable and | Image Security
out of date versions
sec.img.008 Image Images MUST NOT include any secrets. Se- | lmage Security

crets include passwords, cloud provider creden-
tials, SSH keys, TLS certificate keys, etc.

23

Security LCM Requirements

Table 2.16: Reference Model Requirements - Security LCM Require-

ments
Reference sub-category Description Specification Ref-
erence
sec.lem.001 LCM The Platform MUST support Secure Provisioning, | Monitoring and Se-
Availability, and Deprovisioning (Secure Clean- | curity Audit
Up) of workload resources where Secure Clean-
Up includes tear-down, defense against virus or
other attacks
sec.lem.002 LCM The Cloud Operator MUST use management pro- | Security LCM
tocols limiting security risk such as SNMPv3,
SSH v2, ICMP, NTP, syslog and TLS v1.2 or
higher
sec.lem.003 LCM The Cloud Operator MUST implement and | Monitoring and Se-
strictly follow change management processes for | curity Audit
Cloud Infrastructure, Infrastructure Manager and
other components of the cloud, and Platform
change control on hardware
sec.lem.005 LCM Platform MUST provide logs and these logs | Monitoring and Se-
MUST be monitored for anomalous behaviour curity Audit
sec.lem.006 LCM The Platform MUST verify the integrity of all Re- | Confidentiality and
source management requests Integrity of tenant
data (sec.ci.001)
sec.lem.007 LCM The Platform MUST be able to update newly in- | Not detailed
stantiated, suspended, hibernated, migrated and
restarted images with current time information
sec.lem.008 LCM The Platform MUST be able to update newly in- | Not detailed
stantiated, suspended, hibernated, migrated and
restarted images with relevant DNS information
sec.lem.009 LCM The Platform MUST be able to update the tag | Not detailed
of newly instantiated, suspended, hibernated, mi-
grated and restarted images with relevant geoloca-
tion (geographical) information
sec.lem.010 LCM The Platform MUST log all changes to geoloca- | Not detailed
tion along with the mechanisms and sources of lo-
cation information (i.e. GPS, IP block, and timing)
sec.lcm.011 LCM The Platform MUST implement Security life cy- | Patches
cle management processes including the proactive
update and patching of all deployed Cloud Infras-
tructure software
sec.lem.012 LCM The Platform MUST log any access privilege es- | What to Log / What

calation

NOT to Log

24

Monitoring and Security Audit Requirements

The Platform is assumed to provide configurable alerting and notification capability and the operator is assumed to
have automated systems, policies and procedures to act on alerts and notifications in a timely fashion. In the following
the monitoring and logging capabilities can trigger alerts and notifications for appropriate action.

Table 2.17: Reference Model Requirements - Monitoring and Security
Audit Requirements

Reference sub-category Description Specification Ref-
erence
sec.mon.001 Monitoring / Audit | Platform MUST provide logs and these logs | Required Fields
MUST be regularly monitored for events of inter-
est. The logs MUST contain the following fields:
event type, date/time, protocol, service or program
used for access, success/failure, login ID or pro-
cess ID, IP address and ports (source and destina-
tion) involved
sec.mon.002 Monitoring Security logs MUST be time synchronised Security Logs Time
Synchronisation
sec.mon.003 Monitoring The Platform MUST log all changes to time server | Security Logs Time
source, time, date and time zones Synchronisation
sec.mon.004 Audit The Platform MUST secure and protect Auditlogs | Security LCM
(containing sensitive information) both in-transit
and at rest
sec.mon.005 Monitoring / Audit | The Platform MUST Monitor and Audit various | What to Log / What
behaviours of connection and login attempts to de- | NOT to Log
tect access attacks and potential access attempts
and take corrective accordingly actions
sec.mon.006 Monitoring / Audit The Platform MUST Monitor and Audit opera- | Monitoring and Se-
tions by authorised account access after login to | curity Audit
detect malicious operational activity and take cor-
rective actions
sec.mon.007 Monitoring / Audit | The Platform MUST Monitor and Audit security | Integrity of Open-
parameter configurations for compliance with de- | Stack components
fined security policies configuration
sec.mon.008 Monitoring / Audit The Platform MUST Monitor and Audit externally | Confidentiality
exposed interfaces for illegal access (attacks) and | and Integrity — of
take corrective security hardening measures communications
(sec.ci.001)
sec.mon.009 Monitoring / Audit The Platform MUST Monitor and Audit service | Monitoring and Se-
for various attacks (malformed messages, sig- | curity Audit
nalling flooding and replaying, etc.) and take cor-
rective actions accordingly
sec.mon.010 Monitoring / Audit | The Platform MUST Monitor and Audit running | Monitoring and Se-
processes to detect unexpected or unauthorised | curity Audit
processes and take corrective actions accordingly
sec.mon.011 Monitoring / Audit | The Platform MUST Monitor and Audit logs from | Creating Logs

infrastructure elements and workloads to detected
anomalies in the system components and take cor-
rective actions accordingly

continues on next page

25

Table 2.17 — continued from previous page

Reference sub-category Description Specification Ref-
erence
sec.mon.012 Monitoring / Audit The Platform MUST Monitor and Audit Traffic | Confidentiality and
patterns and volumes to prevent malware down- | Infegrity
load attempts
sec.mon.013 Monitoring The monitoring system MUST NOT affect the se- | Not detailed
curity (integrity and confidentiality) of the infras-
tructure, workloads, or the user data (through back
door entries)
sec.mon.015 Monitoring The Platform MUST ensure that the Monitoring | Monitoring and Se-
systems are never starved of resources and MUST | curity Audit
activate alarms when resource utilisation exceeds
a configurable threshold
sec.mon.017 Audit The Platform MUST audit systems for any miss- | Patches
ing security patches and take appropriate actions
sec.mon.018 Monitoring The Platform, starting from initialisation, MUST | Where to Log
collect and analyse logs to identify security events,
and store these events in an external system
sec.mon.019 Monitoring The Platform’s components MUST NOT include | What to Log / What
an authentication credential, e.g., password, in any | NOT to Log
logs, even if encrypted
sec.mon.020 Monitoring / Audit The Platform’s logging system MUST support the | Data Retention
storage of security audit logs for a configurable pe-
riod of time
sec.mon.021 Monitoring The Platform MUST store security events locally | Where to Log

if the external logging system is unavailable and
SHALL periodically attempt to send these to the
external logging system until successful

Open-Source Software Security Requirements

Table 2.18: Reference Model Requirements - Open-Source Software Se-

curity Requirements

Reference

sub-category

Description

Specification Ref-
erence

sec.0ss.001

Software

Open-source code MUST be inspected by tools
with various capabilities for static and dynamic
code analysis

Image Security

sec.0ss.002

Software

The CVE (Common Vulnerabilities and Expo-
sures) MUST be used to identify vulnerabilities
and their severity rating for open-source code part
of Cloud Infrastructure and workloads software

Patches

sec.0ss.003

Software

Critical and high severity rated vulnerabilities
MUST be fixed in a timely manner. Refer to the
CVSS (Common Vulnerability Scoring System) to
know a vulnerability score and its associated rate
(low, medium, high, or critical)

Patches

sec.0ss.004

Software

A dedicated internal isolated repository separated
from the production environment MUST be used
to store vetted open-source content

Workload Security

26

laaC security Requirements

Secure Code Stage Requirements

Table 2.19: Reference Model Requirements: IaaC Security Require-

ments, Secure Code Stage

Reference

sub-category

Description

Specification Ref-
erence

sec.code.001

TaaC

SAST -Static Application Security Testing MUST
be applied during Secure Coding stage triggered
by Pull, Clone or Comment trigger. Security
testing that analyses application source code for
software vulnerabilities and gaps against bestprac-
tices. Example: open source OWASP range of
tools

Workload Security

Continuous Build, Integration and Testing Stage Requirements

Table 2.20: Reference Model Requirements - IaaC Security Require-

ments, Continuous Build, Integration and Testing Stage

uous Build, Integration and Testing stage triggered
by Package trigger, example: A push of a container
image to a containerregistry MAY trigger a vul-
nerability scan before the image becomes available
in the registry

Reference sub-category Description Specification Ref-
erence
sec.bld.003 TaaC Image Scan MUST be applied during the Contin- | /mage Security

Continuous Delivery and Deployment Stage Requirements

27

Table 2.21: Reference Model Requirements - IaaC Security Require-

ments, Continuous Delivery and Deployment Stage

Reference

sub-category

Description

Specification Ref-
erence

sec.del.001

TaaC

Image Scan MUST be applied during the Contin-
uous Delivery and Deployment stage triggered by
Publish to Artifact and Image Repository trigger.
Example: GitLab uses the open source Clair en-
gine for container image scanning

Image Security

sec.del.002

TaaC

Code Signing MUST be applied during the Con-
tinuous Deliveryand Deployment stage and Image
Repository trigger. Code Signing provides authen-
tication to assure that downloaded files are form
the publisher named on the certificate

Image Security

sec.del.004

TaaC

Component Vulnerability Scan MUST be applied
during the Continuous Delivery and Deployment
stage triggered by Instantiate Infrastructure trig-
ger. The vulnerability scanning system is deployed
on the cloud platform to detect security vulnera-
bilities of specified components through scanning
and to provide timely security protection. Exam-
ple: OWASP Zed Attack Proxy (ZAP)

Image Security

Runtime Defence and Monitoring Requirements

Table 2.22: Reference Model Requirements - IaaC Security Require-

ments, Runtime Defence and Monitoring Stage

Reference sub-category Description Specification Ref-
erence
sec.run.001 TaaC Component Vulnerability Monitoring MUST be | Not detailed

continuously applied during the Runtime Defence
and monitoring stage. Security technology that
monitors components like virtual servers and as-
sesses data, applications, and infrastructure forse-
curity risks

Compliance with Standards Requirements

Table 2.23: Reference Model Requirements: Compliance with Standards

Reference sub-category Description Specification Ref-
erence
sec.std.012 Standards The Public Cloud Operator MUST, and the Pri- | Not detailed

vate Cloud Operator MAY be certified to be com-
pliant with the International Standard on Aware-
ness Engagements (ISAE) 3402 (in the US:SSAE
16); International Standard on Awareness Engage-
ments (ISAE) 3402. US Equivalent: SSAE16

28

2.2 Architecture and OpenStack Requirements

“Architecture” in this chapter refers to Cloud Infrastructure (referred to as NFVI by ETSI) and VIM, as specified in
Reference Model Chapter 3.

2.2.1 General Requirements

Table 2.24: General Requirements

Reference sub-category Description Specification Ref-
erence
gen.ost.01 Open source The Architecture MUST use OpenStack APIs Consolidated Set of
APIs
gen.ost.02 Open source The Architecture MUST support dynamic request | Consolidated Set of
and configuration of virtual resources (compute, | APIs
network, storage) through OpenStack APIs
gen.rsl.O1 Resiliency The Architecture MUST support resilient Open- | Containerised
Stack components that are required for the contin- | OpenStack Services
ued availability of running workloads
gen.avl.0l Availability The Architecture MUST provide High Availabil- | Underlying Re-

ity for OpenStack components

sources Con-
figuration and
Dimensioning

2.2.2 Infrastructure Requirements

Table 2.25: Infrastructure Requirements

Reference sub-category Description Specification Ref-
erence
inf.com.01 Compute The Architecture MUST provide compute re- | Cloud Workload
sources for instances Services
inf.com.04 Compute The Architecture MUST be able to support mul- | Support for Cloud
tiple CPU type options to support various infras- | Infrastructure Pro-
tructure profiles (Basic and High Performance) files and flavors
inf.com.05 Compute The Architecture MUST support Hardware Plat- | Support for Cloud
forms with NUMA capabilities Infrastructure Pro-
files and flavors
inf.com.06 Compute The Architecture MUST support CPU Pinning of | Support for Cloud
the vCPUs of an instance Infrastructure Pro-
files and flavors
inf.com.07 Compute The Architecture MUST support different hard- | Cloud partitioning:
ware configurations to support various infrastruc- | Host Aggregates,
ture profiles (Basic and High Performance) Availability Zones

continues on next page

29

Table 2.25 — continued from previous page

Reference sub-category Description Specification Ref-
erence

inf.com.08 Compute The Architecture MUST support allocating cer- | Cloud partitioning:
tain number of host cores for all non-tenant work- | Host Aggregates,
loads such as for OpenStack services. SMT | Availability Zones
threads can be allocated to individual OpenStack
services or their components. Dedicating host
cores to certain workloads (e.g., OpenStack ser-
vices) [10]. Please see example, Configuring lib-
virt compute nodes for CPU pinning [11]

inf.com.09 Compute The Architecture MUST ensure that the host cores | Pinned and Un-
assigned to non-tenant and tenant workloads are | pinned CPUs
SMT aware: that is, a host core and its associated
SMT threads are either all assigned to non-tenant
workloads or all assigned to tenant workloads

inf.stg.01 Storage The Architecture MUST provide remote (not di- | Storage
rectly attached to the host) Block storage for In-
stances

inf.stg.02 Storage The Architecture MUST provide Object storage | Swift
for Instances. Operators MAY choose not to im-
plement Object Storage but MUST be cognizant
of the the risk of “Compliant VNFs” failing in their
environment

inf.nw.01 Network The Architecture MUST provide virtual network | Neutron API
interfaces to instances

inf.nw.02 Network The Architecture MUST include capabilities for | Virtual Networking -
integrating SDN controllers to support provision- | 3rd party SDN solu-
ing of network services, from the SDN OpenStack | tion
Neutron service, such as networking of VTEPs to
the Border Edge based VRFs

inf.nw.03 Network The Architecture MUST support low latency and | Network Fabric
high throughput traffic needs

inf.nw.05 Network The Architecture MUST allow for East/West ten- | Network Fabric
ant traffic within the cloud (via tunnelled encapsu-
lation overlay such as VXLAN or Geneve)

inf.nw.07 Network The Architecture MUST support network re- | Network
siliency

inf.nw.10 Network The Cloud Infrastructure Network Fabric MUST | Network
be capable of enabling highly available (Five 9’s
or better) Cloud Infrastructure

inf.nw.15 Network The Architecture MUST support multiple net- | Neutron Extensions
working options for Cloud Infrastructure to sup- | and OpenStack Neu-
port various infrastructure profiles (Basic and | tron Plugins [12]
High Performance)

inf.nw.16 Network The Architecture MUST support dual stack IPv4 | Not detailed

and IPv6 for tenant networks and workloads

30

2.2.3 VIM Requirements

Table 2.26: VIM Requirements

Reference sub-category Description Specification Ref-
erence
vim.01 General The Architecture MUST allow infrastructure re- | Resources and
source sharing Services exposed to
VNFs
vim.03 General The Architecture MUST allow VIM to discover | Placement API
and manage Cloud Infrastructure resources
vim.05 General The Architecture MUST include image repository | Glance API
management
vim.07 General The Architecture MUST support multi-tenancy Multi-Tenancy (exe-
cution environment)
vim.08 General The Architecture MUST support resource tagging | OpenStack Re-
source Tags [13]

31

2.2.4 Interfaces & APIs Requirements

Table 2.27: Interfaces and APIs Requirements

Reference

sub-category

Description

Specification Ref-
erence

int.api.0l

API

The Architecture MUST provide APIs to ac-
cess the authentication service and the associated
mandatory features detailed in chapter 5

Keystone API

int.api.02

API

The Architecture MUST provide APIs to access
the image management service and the associated
mandatory features detailed in chapter 5

Glance API

int.api.03

API

The Architecture MUST provide APIs to access
the block storage management service and the as-
sociated mandatory features detailed in chapter 5

Cinder API

int.api.04

API

The Architecture MUST provide APIs to access
the object storage management service and the as-
sociated mandatory features detailed in chapter 5

Swift API

int.api.05

API

The Architecture MUST provide APIs to access
the network management service and the associ-
ated mandatory features detailed in chapter 5

Neutron API

int.api.06

API

The Architecture MUST provide APIs to ac-
cess the compute resources management service
and the associated mandatory features detailed in
chapter 5

Nova API

int.api.07

API

The Architecture MUST provide GUI access to
tenant facing cloud platform core services except
at Edge/Far Edge clouds

Horizon

int.api.08

API

The Architecture MUST provide APIs needed
to discover and manage Cloud Infrastructure re-
sources

Placement API

int.api.09

API

The Architecture MUST provide APIs to access
the orchestration service

Heat API

int.api.10

API

The Architecture MUST expose the latest version
and microversion of the APIs for the given Anuket
OpenStack release for each of the OpenStack core
services

Core OpenStack
Services APIs

2.2.5 Tenant Requirements

Table 2.28: Tenant Requirements

Reference sub-category Description Specification Ref-
erence
tnt.gen.01 General The Architecture MUST support self-service | Horizon and Cloud

dashboard (GUI) and APIs for users to deploy,
configure and manage their workloads

Workload Services

32

2.2.6 Operations and LCM

Table 2.29: LCM Requirements

ment

ware, provided by the cloud provider, so that the
running workloads are not impacted (viz., hitless
upgrades). Please note that this means that the ex-
isting data plane services SHOULD not fail (go
down)

Reference sub-category Description Specification Ref-
erence
lem.gen.01 General The Architecture MUST support zero downtime | Not detailed
of running workloads when the number of com-
pute hosts and/or the storage capacity is being ex-
panded or unused capacity is being removed
Icm.adp.02 Automated deploy- | The Architecture MUST support upgrades of soft- | Containerised

OpenStack Services

2.2.7 Assurance Requirements

Table 2.30: Assurance Requirements

Reference sub-category Description Specification Ref-
erence

asr.mon.01 Integration The Architecture MUST include integration with | Logging, Monitor-
various infrastructure components to support col- | ing and Analytics
lection of telemetry for assurance monitoring and
network intelligence

asr.mon.03 Monitoring The Architecture MUST allow for the collection | Logging, Monitor-
and dissemination of performance and fault infor- | ing and Analytics
mation

asr.mon.04 Network The Cloud Infrastructure Network Fabric and | Logging, Monitor-
Network Operating System MUST provide net- | ing and Analytics
work operational visibility through alarming and
streaming telemetry services for operational man-
agement, engineering planning, troubleshooting,
and network performance optimisation

33

2.3 Architecture and OpenStack Recommendations

The requirements listed in this section are optional, and are not required in order to be deemed a conformant imple-
mentation.

2.3.1 General Recommendations

Table 2.31: General Recommendations

Reference sub-category Description Notes
gen.cnt.01 Cloud nativeness The Architecture SHOULD consist of stateless | OpenStack consists
service components. However, where state is re- | of both stateless
quired it MUST be kept external to the component | and stateful services
where the stateful
services utilise a
database. For latter
see Configuring the
stateful services
[14]
gen.cnt.02 Cloud nativeness The Architecture SHOULD consist of service
components implemented as microservices that
are individually dynamically scalable
gen.scl.01 Scalability The Architecture SHOULD support policy driven | This requirement
auto-scaling. is currently not
addressed but will
likely be supported
through Senlin [15],
cluste management
service
gen.rsl.02 Resiliency The Architecture SHOULD support resilient
OpenStack service components that are not sub-
ject to gen.rsl.0l1

2.3.2 Infrastructure Recommendations

Table 2.32: Infrastructure Recommendations

Reference

sub-category

Description

Notes

inf.com.02

Compute

The Architecture SHOULD include industry stan-
dard hardware management systems at both HW
device level (embedded) and HW platform level
(external to device)

inf.com.03

Compute

The Architecture SHOULD support Symmetric
Multiprocessing with shared memory access as
well as Simultaneous Multithreading

inf.stg.08

Storage

The Architecture SHOULD allow use of exter-
nally provided large archival storage for its Backup
/ Restore / Archival needs

continues on next page

34

Table 2.32 — continued from previous page

Reference

sub-category

Description

Notes

inf.stg.09

Storage

The Architecture SHOULD make available all
non-host OS / Hypervisor / Host systems storage
as network-based Block, File or Object Storage for
tenant/management consumption

inf.stg.10

Storage

The Architecture SHOULD provide local Block
storage for Instances

Virtual Storage

inf.nw.04

Network

The Architecture SHOULD support service func-
tion chaining

inf.nw.06

Network

The Architecture SHOULD support Distributed
Virtual Routing (DVR) to allow compute nodes to
route traffic efficiently

inf.nw.08

Network

The Cloud Infrastructure Network Fabric
SHOULD embrace the concepts of open net-
working and disaggregation using commodity
networking hardware and disaggregated Network
Operating Systems

inf.nw.09

Network

The Cloud Infrastructure Network Fabric
SHOULD embrace open-based standards and
technologies

inf.nw.11

Network

The Cloud Infrastructure Network Fabric
SHOULD be architected to provide a standard-
ised, scalable, and repeatable deployment model
across all applicable Cloud Infrastructure sites

inf.nw.17

Network

The Architecture SHOULD use dual stack IPv4
and IPv6 for Cloud Infrastructure internal net-
works

inf.acc.01

Acceleration

The Architecture SHOULD support Application
Specific Acceleration (exposed to VNFs)

Acceleration

inf.acc.02

Acceleration

The Architecture SHOULD support Cloud Infras-
tructure Acceleration (such as SmartNICs)

OpenStack Future -
Specs defined [16]

inf.acc.03

Acceleration

The Architecture MAY rely on on SR-IOV PCI-
Pass through to provide acceleration to VNFs

inf.img.01

Image

The Architecture SHOULD make the immutable
images available via location independent means

Glance

2.3.3 VIM Recommendations

Table 2.33: VIM Recommendations

Reference

sub-category

Description

Notes

vim.02

General

The Architecture SHOULD support deployment
of OpenStack components in containers

Containerised
OpenStack Services

vim.04

General

The Architecture SHOULD support Enhanced
Platform Awareness (EPA) only for discovery of
infrastructure resource capabilities

vim.06

General

The Architecture SHOULD allow orchestration
solutions to be integrated with VIM

vim.09

General

The Architecture SHOULD support horizontal
scaling of OpenStack core services

35

2.3.4 Interfaces and APls Recommendations

Table 2.34: Interfaces and APIs Recommendations

Reference sub-category Description Notes
int.acc.01 Acceleration The Architecture SHOULD provide an open and
standard acceleration interface to VNFs
int.acc.02 Acceleration The Architecture SHOULD NOT rely on SR-IOV | duplicate of
PCI-Pass through for acceleration interface ex- | inf.acc.03 under
posed to VNFs “Infrastructure
Recommendation”
2.3.5 Tenant Recommendations
This section is left blank for future use.
2.3.6 Operations and LCM Recommendations
Table 2.35: LCM Recommendations
Reference sub-category Description Notes
lem.adp.01 Automated deploy- | The Architecture SHOULD allow for cookie cut-
ment ter automated deployment, configuration, provi-
sioning and management of multiple Cloud Infras-
tructure sites
lem.adp.03 Automated deploy- | The Architecture SHOULD support hitless up-
ment grade of all software provided by the cloud
provider that are not covered by lcm.adp.02.
Whenever hitless upgrades are not feasible, at-
tempt SHOULD be made to minimise the duration
and nature of impact
Icm.adp.04 Automated deploy- | The Architecture SHOULD support declarative
ment specifications of hardware and software assets
for automated deployment, configuration, mainte-
nance and management
Iem.adp.05 Automated deploy- | The Architecture SHOULD support automated
ment process for Deployment and life-cycle manage-
ment of VIM Instances
Iem.cid.02 CI/CD The Architecture SHOULD support integrating

with CI/CD Toolchain for Cloud Infrastructure and
VIM components Automation

36

2.3.7 Assurance Recommendations

Table 2.36: Assurance Recommendations

Reference sub-category Description Notes
asr.mon.02 Monitoring The Architecture SHOULD support Network In-
telligence capabilities that allow richer diagnostic
capabilities which take as input broader set of data
across the network and from VNF workloads
2.3.8 Security Recommendations
System Hardening Recommendations
Table 2.37: System Hardening Recommendations
Reference sub-category Description Notes
sec.gen.011 Hardening The Cloud Infrastructure SHOULD support Read
and Write only storage partitions (write only per-
mission to one or more authorised actors)
sec.gen.014 Hardening All servers part of Cloud Infrastructure SHOULD
support measured boot and an attestation server
that monitors the measurements of the servers
Platform and Access Recommendations
Table 2.38: Platform and Access Recommendations
Reference sub-category Description Notes
sec.sys.014 Access The Platform SHOULD use Linux Security Mod-
ules such as SELinux to control access to resources
sec.sys.020 Access The Cloud Infrastructure architecture SHOULD | Zero Trust Ar-
rely on Zero Trust principles to build a secure by | chitecture (ZTA)
design environment described in NIST
SP 800-207
Confidentiality and Integrity Recommendations
Table 2.39: Confidentiality and Integrity Recommendations
Reference sub-category Description Notes
sec.ci.002 Confidentiality / The Platform SHOULD support self-encrypting
Integrity storage devices
sec.ci.009 Confidentiality / For sensitive data encryption, the key management
Integrity service SHOULD leverage a Hardware Security
Module to manage and protect cryptographic keys

37

Workload Security Recommendations

Table 2.40: Workload Security Recommendations

Reference sub-category Description Notes
sec.wl.007 Workload The Operator SHOULD implement processes and
tools to verify VNF authenticity and integrity
Image Security Recommendations
Table 2.41: Image Security Recommendations
Reference sub-category Description Notes
sec.img.009 Image CIS Hardened Images SHOULD be used when-
ever possible
sec.img.010 Image Minimalist base images SHOULD be used when-
ever possible
Security LCM Recommendations
Table 2.42: LCM Security Recommendations
Reference sub-category Description Notes
sec.lem.004 LCM The Cloud Operator SHOULD support automated

templated approved changes; Templated approved
changes for automation where available

Monitoring and Security Audit Recommendations

The Platform is assumed to provide configurable alerting and notification capability and the operator is assumed to
have automated systems, policies and procedures to act on alerts and notifications in a timely fashion. In the following
the monitoring and logging capabilities can trigger alerts and notifications for appropriate action.

Table 2.43: Monitoring and Security Audit Recommendations

Reference

sub-category

Description

Notes

sec.mon.014 Monitoring The Monitoring systems SHOULD not impact
IaaS, PaaS, and SaaS SLAs including availability
SLAs

sec.mon.016 Monitoring The Platform Monitoring components SHOULD

follow security best practices for auditing, includ-
ing secure logging and tracing

38

Open-Source Software Security Recommendations

Table 2.44: Open-Source Software Security Recommendations

Reference

sub-category

Description

Notes

sec.0ss.005

Software

A Software Bill of Materials (SBOM) SHOULD
be provided or build, and maintained to identify
the software components and their origins. Inven-
tory of software components

NTIA SBOM [17]

laaC security Recommendations

Secure Design and Architecture Stage

Table 2.45: Reference Model Requirements: TaaC Security, Design and

Architecture Stage

Reference sub-category Description Notes

sec.arch.001 laaC Threat Modelling methodologies and tools | It MAY be done
SHOULD be used during the Secure Design and | manually or using
Architecture stage triggered by Software Feature | tools like open
Design trigger. Methodology to identify and | source OWASP
understand threats impacting a resource or set of | Threat Dragon
resources

sec.arch.002 TaaC Security Control Baseline Assessment SHOULD | Typically done

be performed during the Secure Design and Archi-
tecture stage triggered by Software Feature Design
trigger

manually by inter-
nal or independent
assessors

Secure Code Stage Recommendations

Table 2.46: Reference Model Requirements: IaaC Security, Secure Code

Stage

Reference

sub-category

Description

Notes

sec.code.002

JTaaC

SCA - Software Composition Analysis SHOULD
be applied during Secure Coding stage triggered
by Pull, Clone or Comment trigger. Security test-
ing that analyses application source code or com-
piled code for software components with known
vulnerabilities

Example: open
source OWASP
range of tools

sec.code.003

TaaC

Source Code Review SHOULD be performed
continuously during Secure Coding stage.

Typically done man-
ually.

sec.code.004

TaaC

Integrated SAST via IDE Plugins SHOULD be
used during Secure Coding stage triggered by
Developer Code trigger. On the local machine:
through the IDE or integrated test suites; triggered
on completion of coding by developer

sec.code.005

TaaC

SAST of Source Code Repo SHOULD be per-
formed during Secure Coding stage triggered by
Developer Code trigger. Continuous delivery pre
-deployment: scanning prior to deployment

39

Continuous Build, Integration and Testing Stage Recommendations

Table 2.47: Reference Model Requirements: [aaC Security, Continuous

Build, Integration and Testing Stage

ing SHOULD be applied during the Continuous
Build, Integration and Testing stage triggered by
Stage & Test trigger. Software component de-
ployed with an application that assesses applica-
tion behaviour and detects presence of vulnerabil-
ities on an application being exercised in realistic
testing scenarios

Reference sub-category Description Notes

sec.bld.001 TaaC SAST -Static Application Security Testing | Example: open
SHOULD be applied during the Continuous | source OWASP
Build, Integration and Testing stage triggered by | range of tools.
Build and Integrate trigger

sec.bld.002 TaaC SCA - Software Composition Analysis SHOULD | Example: open
be applied during the Continuous Build, Integra- | source OWASP
tion and Testing stage triggered by Build and Inte- | range of tools
grate trigger

sec.bld.004 TaaC SDAST - Dynamic Application Security Test- | Example: OWASP
ing SHOULD be applied during the Continuous | ZAP
Build, Integration and Testing stage triggered by
Stage & Test trigger. Security testing that analy-
ses a running application by exercising application
functionality and detecting vulnerabilities based
on application behaviour and response

sec.bld.005 T[aaC Fuzzing SHOULD be applied during the Contin- | Example: GitLab
uous Build, Integration and testing stage triggered | Open Sources
by Stage & Test trigger. Fuzzing or fuzz testing | Protocol Fuzzer
is an automated software testing technique that in- | Community Edition
volves providing invalid, unexpected, or random
data as inputs to a computer program

sec.bld.006 [aaC IAST - Interactive Application Security Test- | Example: Contrast

Community Edition

Continuous Delivery and Deployment Stage Recommendations

Table 2.48: Reference Model Requirements: TaaC Security, Continuous

Delivery and Deployment Stage

Reference

sub-category

Description

Notes

sec.del.003

JTaaC

Artifact and Image Repository Scan SHOULD be
continuously applied during the Continuous De-
livery and Deployment stage

Example: GitLab
uses the open source
Clair engine for
container scanning

Runtime Defence and Monitoring Recommendations

40

Table 2.49: Reference Model Requirements: Iaac Security, Runtime De-
fence and Monitoring Stage

Reference sub-category Description Notes

sec.run.002 laaC RASP - Runtime Application Self-Protection
SHOULD be continuously applied during the
Runtime Defence and Monitoring stage. Security
technology deployed within the target application
in production for detecting, alerting, and blocking

attacks

sec.run.003 TaaC Application testing and Fuzzing SHOULD be | Example: GitLab
continuously applied during the Runtime Defence | Open Sources
and Monitoring stage. Fuzzing or fuzz testing is an | Protocol Fuzzer

automated software testing technique that involves | Community Edition
providing invalid, unexpected, or random data as
inputs to a computer program

sec.run.004 laaC Penetration Testing SHOULD be continuously ap- | Typically done man-
plied during the Runtime Defence and Monitoring | ually
stage

Compliance with Standards Recommendations

Table 2.50: Compliance with Security Recommendations

Reference sub-category Description Notes
sec.std.001 Standards The Cloud Operator SHOULD comply with Cen-

ter for Internet Security CIS Controls [18]
sec.std.002 Standards The Cloud Operator, Platform and Workloads

SHOULD follow the guidance in the CSA Secu-
rity Guidance for Critical Areas of Focus in Cloud
Computing (latest version)- CSA, Cloud Security
Alliance [19]

sec.std.003 Standards The Platform and Workloads SHOULD follow
the guidance in the OWASP Cheat Sheet Series
(OCSS) [20] - OWASP, Open Web Application Se-
curity Project [21]

sec.std.004 Standards The Cloud Operator, Platform and Workloads
SHOULD ensure that their code is not vulnerable
to the OWASP Top Ten Security Risks [22]

sec.std.005 Standards The Cloud Operator, Platform and Workloads
SHOULD strive to improve their maturity on the
OWASP Software Maturity Model (SAMM) [23]

sec.std.006 Standards The Cloud Operator, Platform and Workloads
SHOULD utilise the OWASP Web Security Test-
ing Guide [24]

sec.std.007 Standards The Cloud Operator, and Platform SHOULD sat-
isfy the requirements for Information Manage-
ment Systems specified in ISO/IEC 27001 [25];
ISO/IEC 27001 is the international Standard for
best-practice information security management
systems (ISMSs)

continues on next page

41

Table 2.50 — continued from previous page
Reference sub-category Description Notes
sec.std.008 Standards The Cloud Operator, and Platform SHOULD im-
plement the Code of practice for Security Controls
specified ISO/IEC 27002:2013 (or latest) [26]
sec.std.009 Standards The Cloud Operator, and Platform SHOULD
implement the ISO/IEC 27032:2012 (or latest)
Guidelines for Cybersecurity techniques [27];
ISO/IEC 27032 is the international Standard fo-
cusing explicitly on cybersecurity
sec.std.010 Standards The Cloud Operator SHOULD conform to the
ISO/IEC 27035 standard for incidence manage-
ment; ISO/IEC 27035 is the international Standard
for incident management
sec.std.011 Standards The Cloud Operator SHOULD conform to the
ISO/IEC 27031 standard for business continuity;
ISO/IEC 27031 - ISO/IEC 27031 is the interna-
tional Standard for ICT readiness for business con-
tinuity

3 Cloud Infrastructure Architecture - OpenStack

This Reference Architecture aims to provide an OpenStack distribution agnostic reference architecture that includes
the Network Function Virtualisation Infrastructure (NFVI) and Virtual Infrastructure Manager (VIM). The different
OpenStack distributions, without the not up-streamed vendor specific enhancements, are assumed to be Anuket confor-
mant. This Reference Architecture allows operators to provide a common OpenStack-based architecture for any Anuket
compliant VNF to be deployed and operated as expected. The purpose of this chapter is to outline all the components
required to provide the Cloud Infrastructure (NFVI and the VIM) in a consistent and reliable way.

OpenStack [2] is already very well documented and, hence, this document will describe the specific OpenStack services
and features, Cloud Infrastructure features and how we expect them to be implemented.

This reference architecture provides optionality in terms of pluggable components such as SDN, hardware acceleration
and support tools.

The Cloud Infrastructure layer includes the physical infrastructure which is then offered as virtual resources via a
hypervisor. The VIM is the OpenStack Wallaby release.

This chapter is organised as follows:

» Consumable Infrastructure Resources and Services: these are infrastructure services and resources being exposed
northbound for consumption

— Multi-tenancy with quotas
% Virtual compute: vCPU / vVRAM
% Virtual storage: Ephemeral, Persistent and Image
% Virtual networking - neutron standalone: network plugin, virtual switch, accelerator features
% Virtual networking - 3rd party SDN solution
Additional network services: Firewall, DC Gateway

* Cloud Infrastructure Management Software (VIM): is how we manage the Consumable Infrastructure Resources
and Services

42

— VIM Core services (keystone, cinder, nova, neutron, etc.)
% Tenant Separation
% Host aggregates providing resource pooling
% Flavor' management

* Underlying Resources: are what provides the resources that allow the Consumable Infrastructure Resources and
Services to be created and managed by the Cloud Infrastructure Management Software (VIM).

— Virtualisation
— Physical infrastructure
% Compute
% Network: Spine/Leaf; East/West and North/South traffic

% Storage

3.1 Resources and Services exposed to VNFs

This section will describe the different services that are exposed for the VNF consumption within the execution zone:
 Tenants: to provide isolated environments
* Virtual Compute: to provide computing resources
* Virtual Storage: to provide storage capacity and performance

* Virtual networking: to provide connectivity within the Cloud Infrastructure and with external networks

3.1.1 Multi-Tenancy (execution environment)

The multi tenancy service permits hosting of several VNF projects with the assurance of isolated environments for
each project. Tenants or confusingly “Projects” in OpenStack are isolated environments that enable workloads to be
logically separated from each other with:

« differentiated set of associated users
¢ role-based access of two levels - admin or member (see RBAC).
* quota system to provide maximum resources that can be consumed.

This RA does not intend to restrict how workloads are distributed across tenants.

3.1.2 Virtual Compute (vCPU and vRAM)

The virtual compute resources (vCPU and vRAM) used by the VNFs behave like their physical counterparts. A physical
core is an actual processor and can support multiple vCPUs through Simultaneous Multithreading (SMT) and CPU
overbooking. With no overbooking and SMT of 2 (2 threads per core), each core can support 2 vCPUs. With the same
SMT of 2 and overbooking factor of 4, each core can support 8 vCPUs. The performance of a vCPU can be affected
by various configurations such as CPU pinning, NUMA alignment, and SMT.

The configuration of the virtual resources will depend on the software and hardware profiles and the flavour (resource
sizing) needed to host VNF components. Profiles are defined in “Profiles, Profile Extensions & Flavours” in [1].

I Please note “flavours” is used in the Reference Model and shall continue to be used in the context of specifying the geometry of the virtual
resources. The term “flavor” is used in this document in the OpenStack context including when specifying configurations; the OpenStack term flavor
includes the profile configuration information as “extra specs”.

43

3.1.3 Virtual Storage

In the Reference Model [1], the “Storage for tenant consumption” section details consumption models for tenants:
Platform native, object storage, shared file storage and archival. The choice of a solution will depend on the storage
use case needs.

The two storage services offered by Cloud Infrastructure are:
* Persistent storage
* Ephemeral storage

The OpenStack services, Cinder for block storage and Swift for Object Storage, are discussed below in Section “Cloud
Infrastructure Management Software (VIM)”.

Ephemeral data is typically stored on the compute host’s local disks, in the form of a file system as part of the provi-
sioning. This storage is volatile, it is deleted when instances are stopped. In environments that support live instance
migration between compute hosts, the ephemeral data would need to be stored in a storage system shared between the
compute hosts such as on persistent block or object storage.

Three types of persistent data storage are supported in OpenStack:
* Block storage
* Object storage
* Shared file systems storage
The OpenStack Storage Table [28] explains the differences between the storage types and typical use cases.

Block storage is dedicated to persistent data. Data is stored in the form of volumes. Block storage is managed by
OpenStack Cinder service and storage Backends. OpenStack compatible storage backend drivers table [29] lists the
storage backends compatible with Cinder and their capabilities.

The Object storage is a persistent data storage, not attached to an instance. Data is accessed via APIL. Object storage is
managed by OpenStack Swift.

Images are persistent data, stored using the OpenStack Glance service.

Cinder, Swift, and Glance services are discussed in the section VIM OpenStack Services.

3.1.4 Virtual Networking Neutron standalone

Neutron is an OpenStack project that provides “network connectivity as a service” between interface devices (e.g.,
vNICs) managed by other OpenStack services (e.g., Nova). Neutron allows users to create networks, subnets, ports,
routers, etc. Neutron also facilitates traffic isolation between different subnets - within as well as across project(s)
by using different type drivers/mechanism drivers that use VLANs, VXLANs, GRE (Generic Routing Encapsulation)
tunnels, etc. For Neutron API consumer, this is abstracted and provided by Neutron. Multiple network segments
are supported by Neutron via ML2 plugins to simultaneously utilise variety of layer 2 networking technologies like
VLAN, VxLAN, GRE, etc. Neutron also allows to create routers to connect layer 2 networks via “neutron-13-agent”.
In addition, floating IP support is also provided that allows a project VM to be accessed using a public IP.

44

3.1.5 Virtual Networking - 3rd party SDN solution

SDN (Software Defined Networking) controllers separate control and data (user) plane functions where the control
plane programmatically configures and controls all network data path elements via open APIs. Open Networking Forum
(ONF) defines SDN as “Software-Defined Networking (SDN) is an emerging architecture that is dynamic, manageable,
cost-effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applications. This
architecture decouples the network control and forwarding functions enabling the network control to become directly
programmable and the underlying infrastructure to be abstracted for applications and network services.”

The key messages of the SDN definition are:
* Decoupling of control and forwarding functions into control plane and data plane

» Networking capabilities that can be instantiated, deployed, configured, and managed like software. Network
control is programmable and supports dynamic, manageable, and adaptable networking.

* Support for both overlay and underlay networking

OpenStack Neutron supports open APIs and a pluggable backend where different plugins can be incorporated in the
neutron-server.

Plugins for various SDN controllers include either the standard ML-2 plugin or specific monolithic plugins. Neutron
supports both core plugins that deal with L2 connectivity and IP address management, and service plugins that support
services such as L3 routing, Load Balancers, Firewalls, etc.

Below we will explore an example of an SDN controller from LFN projects, that can be integrated with a Neutron
plugin, to help overcome a number of shortcomings of the vanilla Neutron and provide many needed features that can
be consumed by VNF/CNF.

Tungsten Fabric (SDN Controller)

Tungsten Fabric [30], an open source SDN in Linux Foundation Networking, offers neutron networking through ML2
based plugin, additionally it supports advanced networking features beyond basic neutron networking via monolithic
plugin. It also supports the same advanced networking features via CNI plugin in Kubernetes. Hence, it works as
a multi-stack SDN to support VMs, containers, and baremetal workloads. It provides separation of control plane
functions and data plane functions with its two components:

» Tungsten Fabric Controller- a set of software services that maintains a model of networks and network policies,
typically running on several servers for high availability

 Tungsten Fabric vRouter- installed in each host that runs workloads (virtual machines or containers), the vRouter
performs packet forwarding and enforces network and security policies

It is based on proven, standards-based networking technologies but repurposed to work with virtualised workloads and
cloud automation in data centres that can range from large scale enterprise data centres to much smaller telco DC (aka
POPs). It provides many enhanced features over the native networking implementations of orchestrators, including:

* Highly scalable, multi-tenant networking

e Multi-tenant IP address management

e DHCP, ARP proxies to avoid flooding into networks

« Efficient edge replication for broadcast and multicast traffic
* Local, per-tenant DNS resolution

* Distributed firewall with access control lists

* Application-based security policies

* Distributed load balancing across hosts

45

* Network address translation (1:1 floating IPs and distributed SNAT)
* Service chaining with virtual network functions

* Dual stack IPv4 and IPv6

* BGP peering with gateway routers

* BGP as a Service (BGPaaS) for distribution of routes between privately managed customer networks and service
provider networks

Based on the network layering concepts introduced in the “Network™ section in [1], the Tungsten Fabric Controller
performs functions of both the SDN underlay (SDNu) and overlay (SDNo) controllers.

The SDN controller exposes a NB API that can be consumed by ETSI MANO for VNF/CNF onboarding, network
service onboarding and dynamic service function chaining.

3.1.6 Acceleration

Acceleration deals with both hardware and software accelerations. Hardware acceleration is the use of specialised
hardware to perform some function faster than is possible by executing the same function on a general-purpose CPU or
on a traditional networking (or other I/O) device (e.g., NIC, switch, storage controller, etc.). The hardware accelerator
covers the options for ASICs, SmartNIC, FPGAs, GPU, etc. to offload the main CPU, and to accelerate workload
performance. Cloud Infrastructure should manage the accelerators by plugins and provide the acceleration capabilities
to VNFs.

With the acceleration abstraction layer defined, hardware accelerators as well as software accelerators can be abstracted
as a set of acceleration functions (or acceleration capabilities) which exposes a common API to either the VNF or the
host.

3.2 Virtualised Infrastructure Manager (VIM)

The Cloud Infrastructure Management Software (VIM) provides the services for the management of Consumable Re-
sources/Services.

3.2.1 VIM Core services

OpenStack is a complex, multi-project framework, and so we will initially focus on the core services required to provide
Infrastructure-as-a-Service (IaaS) as this is generally all that is required for Cloud Infrastructure/VIM use cases. Other
components are optional and provide functionality above and beyond Cloud Infrastructure/VIM requirements.

The architecture consists of the core services shown in the figure below; Ironic is an optional OpenStack service needed
only for bare-metal containers. The rest of this document will address the specific Anuket conformant implementation
requirements and recommendations for the core services.

We will refer to the functions above as falling into the following categories to avoid any confusion with other terminol-
ogy that may be used:

* Foundation node

* Control nodes

e Compute nodes

 Other supporting service nodes, e.g., network, shared storage, logging, monitoring and alerting.

Each deployment of OpenStack should be a unique cloud with its own API endpoint. Sharing underlying cloud re-
sources across OpenStack clouds is not recommended.

46

Control nodes

Compute nodes

Figure 3.1: OpenStack Core Services

47

(s) =pou fu use pue

(s)epou
juawho|dag

Buyoyuow Fu)Fio

sapou
28el1015

OpenStack Services Topology

OpenStack software services are distributed over 2 planes:
* Control Plane that hosts all Control and Management services

e Data Plane (a.k.a. User plane) that provides physical and virtual resources (compute, storage and networking)
for the actual virtual workloads to run.

The architecture based on OpenStack technology relies on different types of nodes associated with specific roles:
* Controller node types with control and management services, which include VIM functionalities
* Compute node types running workloads
» Network node types offering L3 connectivity
* Storage node types offering external attached storage (block, object, flat files)

The data plane consists of the compute nodes. It is typical to consider the other node types to be part of the control
plane. The following figure depicts the 4 types of nodes constitutive of the Infrastructure: control, compute, network
and storage nodes.

Project (Tenant)

Additional

Project (Tenant)

Virtual z v
Infrastructure
Resources -
Technology .
Agnostic Storage services
Requirements|
Software Layer
Technology Agnostic S & Network

Virtualizationand
orchestration

Overlay Networks

Physical

Infrastructure
Resources

Virtualisation API

Operating System and
Hypervisor Kernel

Physical Infrastructure

Virtualisation API

Operating System and
Hypervisor Kernel

Physical Infrastructure

Virtualisation API

Operating System and
Hypervisor Kernel

Physical Infrastructure

Operating System Kernel

Physical Infrastructure

Resources

Resources Resources

Resources

Controller node(s) Compute node(s) Network node(s) Storage node(s)

Reference Model
Reference Architecture

Figure 3.2: OpenStack Services Topology
Deployments can be structured using the distribution of services amongst the 4 node types as depicted in the figure

above, but depending on workloads requirements, OpenStack services can also be hosted on the same nodes. For
instance, services related to Controller, network and storage roles can be hosted on controller nodes.

48

Foundation Services

To build and lifecycle manage an OpenStack cloud, it is typically necessary to deploy a server or virtual machine as a
deployment node or foundation node.

This function must be able to manage the bare-metal provisioning of the hardware resources but since this does not
affect cloud execution it can be detached from the OpenStack cloud and an operator can select their own tooling as they
wish. Functional requirements of this node include:

* Build the cloud (control, compute, storage, network hardware resources)
* Patch management / upgrades / change management

¢ Grow / Shrink resources

Cloud Controller Services

The following OpenStack components are deployed on the Infrastructure. Some of them will be only deployed on
control hosts and some of them will be deployed within both control and compute hosts. The table below also maps
the OpenStack core services to the Virtual Infrastructure Manager in the Reference Model (RM) [1].

Table 3.1: OpenStack components deployment

RM Management Soft- | Service Description Required / | Deployed | Deployed
ware Optional on Con- | on Com-
troller pute
Nodes Nodes

Identity Management | Keystone the authentication service | Required X
(Additional Management
Functions) + Catalogue
Storage Resources Man- | Glance the image management | Required X
ager service
Storage Resources Man- | Cinder the block storage manage- | Required X
ager ment service
Storage Resources Man- | Swift the Object storage man- | Required X
ager agement service
Network Resources Man- | Neutron the network management | Required X X
ager service
Compute Resources In- | Placement | resource provider inven- | Required X
ventory tory service
Compute Resources Man- | Nova the compute resources | Required X X
ager + Scheduler management service
Compute Resources Man- | Ironic the Bare Metal Provision- | Optional X X
ager ing service
(Tool that utilises APIs) Heat the orchestration service Required X
Ul Horizon the WEB UI service Required X
Key Manager Barbican the secret data manage- | Optional X

ment service
Acceleration Resources | Cyborg the acceleration resources | Optional X X
Manager and their life cycle man-

agement

All components must be deployed within a high available architecture that can withstand at least a single node failure
and respects the anti-affinity rules for the location of the services (i.e., instances of a same service must run on different
nodes).

49

The services can be containerised or VM hosted as long as they provide the high availability principles described above.

The APIs for these OpenStack services are listed in Interfaces and APIs.

Cloud Workload Services

This section describes the core set of services and service components needed to run workloads; instances (such as
VMs), their networks and storage are referred to as the “Compute Node Services” (a.k.a. user or data plane services).
Contrast this with the Controller nodes which host OpenStack services used for cloud administration and management.
The Compute Node Services include virtualisation, hypervisor instance creation/deletion, networking and storage ser-
vices; some of these activities include RabbitMQ queues in the control plane including the scheduling, networking and
cinder volume creation/attachment.

» Compute, Storage, Network services:

— Nova Compute service: nova-compute (creating/deleting servers (a.k.a. instances))

Neutron Networking service: neutron-12-agent (manage local Open vSwitch (OVS) configuration),
VXLAN

Local Storage (Ephemeral, Root, etc.)

Attached Storage (using Local drivers)

3.2.2 Tenant Isolation

In Keystone vl and v2 (both deprecated), the term “tenant” was used in OpenStack. With Keystone v3, the term
“project” got adopted and both the terms became interchangeable. According to OpenStack glossary [31], Projects
represent the base unit of resources (compute, storage and network) in OpenStack, in that all assigned resources in
OpenStack are owned by a specific project. OpenStack offers multi-tenancy by means of resource (compute, network
and storage) separation via projects. OpenStack offers ways to share virtual resources between projects while main-
taining logical separation. As an example, traffic separation is provided by creating different VLAN ids for neutron
networks of different projects. As another example, if host separation is needed, nova scheduler offers AggregateMul-
tiTenancylsolation scheduler filter to separate projects in host aggregates. Thus, if a host in an aggregate is configured
for a particular project, only the instances from that project are placed on the host. Overall, tenant isolation ensures
that the resources of a project are not affected by resources of another project.

This document uses the term “project” when referring to OpenStack services and “tenant” (RM Section “Virtual re-
sources”) to represent an independently manageable logical pool of resources.

3.2.3 Cloud partitioning: Host Aggregates, Availability Zones

Cloud administrators can partition the hosts within an OpenStack cloud using Host Aggregates and Availability Zones.

A Host Aggregate is a group of hosts (compute nodes) with specific characteristics and with the same specifications,
software and/or hardware properties. Example would be a Host Aggregate created for specific hardware or performance
characteristics. The administrator assigns key-value pairs to Host Aggregates, these are then used when scheduling
VMs. A host can belong to multiple Host Aggregates. Host Aggregates are not explicitly exposed to tenants.

Availability Zones (AZs) rely on Host Aggregates and make the partitioning visible to tenants. They are defined by
attaching specific metadata information to an aggregate, making the aggregate visible for tenants. Hosts can only be
in a single Availability Zone. By default a host is part of a default Availability Zone, even if it doesn’t belong to an
aggregate. Availability Zones can be used to provide resiliency and fault tolerance for workloads deployments, for
example by means of physical hosting distribution of Compute Nodes in separate racks with separate power supply and
eventually in different rooms. They permit rolling upgrades - an AZ at a time upgrade with enough time between AZ
upgrades to allow recovery of tenant workloads on the upgraded AZ. AZs can also be used to segregate workloads.

50

An over use of Host Aggregates and Availability Zones can result in a granular partition of the cloud and, hence,
operational complexities and inefficiencies.

3.2.4 Flavor management

In OpenStack a flavor defines the compute, memory, and storage capacity of nova instances. When instances are
spawned, they are mapped to flavors which define the available hardware configuration for them. For simplicity, op-
erators may create named flavors specifying both the sizing and the “Software and Hardware Profile Configurations”

[1].

3.3 Underlying Resources

The number of Compute nodes (for workloads) determines the load on the controller nodes and networking traffic
and, hence, the number of controller nodes needed in the OpenStack cloud; the number of controller nodes required
is determined on the load placed on these controller nodes and the need for High Availability and quorum requires at
least 3 instances of many of the services on these controller nodes.

3.3.1 Virtualisation and hypervisors

Virtualisation is a technology that enables a guest Operating System (OS) to be abstracted from the underlying hardware
and software. This allows to run multiple Virtual Machines(VMs) on the same hardware. Each such VMs have their
own OS and are isolated from each other i.e., an application running on one VM does not have access to the resources
of another VM. Such virtualisation is supported by various hypervisors available as open-source (KVM, Xen, etc.) as
well as commercial (Hyper-V, Citrix XenServer, etc.). Selecting a hypervisor depends on the workload needs and the
features provided by various hypervisors as illustrated in Hypervisor Feature Support Matrix [32]. OpenStack (Nova)
allows the use of various hypervisors within a single installation by means of scheduler filters like ComputeFilter,
ImagePropertiesFilter etc.

Virtualisation Services: The OpenStack nova-compute service supports multiple hypervisors natively or through libvirt.
The preferred supported hypervisor in this Reference Architecture is KVM.

Note: Other hypervisors (such as ESXi) can also be supported as long as they can interoperate with other OpenStack
components (e.g., those listed in this Reference Architecture) using standard interfaces and APIs as specified in Chapter
5.

3.3.2 Physical Infrastructure
The aim is to specify the requirements on deploying the VIM, from ground up (in a shipping container), and what
resources are required of the DC (Data Centre).
* Servers
— Compute
— Storage
— Control (min 3 for Core DC)
* Network considerations
— Data centre gateway
— Firewall (around the control plane, storage, etc.)

— Data centre network fabric / Clos (spine/leaf) - Horizontal scale

51

— Storage networking, control plane and data plane
— Raw packet - tenant networking allowing “wild west” connection
» Storage

— Storage technologies are multiple, they are extensively described in “Storage Implementation Stereotypes”
[1]. Storage backends are discussed in Storage Backend.

* Acceleration
— SmartNIC
- GPU
- FPGA

Physical nodes

Cloud Infrastructure physical Nodes

The physical resources required for the Cloud Infrastructure are mainly based on COTS x86 hardware for control and
data plane nodes. HW profiles are defined in the chapters “Cloud Infrastructure Hardware Profile Description” and
“Cloud Infrastructure Hardware Profiles Features and Requirements” in [1].

Network

The recommended network architecture is spine and leaf topology.

Servers
|

Rack n

Figure 3.3: Network Fabric - Physical

The figure above shows a physical network layout where each physical server is dual homed to TOR (Leaf/Access)
switches with redundant (2x) connections. The Leaf switches are dual homed with redundant connections to spines.

52

Storage

OpenStack supports many different storage architectures and backends [33]. The choice of a particular backend storage
is driven by a number of factors including: scalability, resiliency, availability, data durability, capacity and performance.

Most cloud storage architectures incorporate a number of clustered storage nodes that provide high bandwidth access
to physical storage backends connected by high speed networks. The architecture consists of multiple storage con-
troller units, each a generic server (CPU, Cache, storage), managing a number of high-performance hard drives. The
distributed block storage software creates an abstract single pool of storage by aggregating all of the controller units.
Advanced and high-speed networking (data routing) and global load balancing techniques ensure high-performance,
high availability storage system.

3.4 Cloud Topology

A telco cloud will typically be deployed in multiple locations (“sites”) of varying size and capabilities (HVAC, for
example); or looking at this in the context of OpenStack, multiple clouds (i.e., OpenStack end-points) will be deployed
that do not rely on each other, by design; each cloud consists of a set of resources isolated from resources of the other
clouds. The application layer must span such end-points in order to provide the required service SLA. Irrespective
of the nature of the deployment characteristics (e.g., number of racks, number of hosts), the intent of the architecture
would be to allow VNFs to be deployed in these sites without major changes.

Some examples of such topologies include:
 Large data centre capable of hosting potentially thousands of servers and the networking to support them
 Intermediate data centre (such as a central office) capable of hosting up to a hundred servers
* Edge (not customer premise) capable of hosting ten to fifty servers

In order to provide the expected availability for any given service, a number of different OpenStack deployment topolo-
gies can be considered. This section explores the main options and highlights the characteristics of each. Ultimately
the decision rests with the operator to achieve specific availability target taking into account use case, data centre
capabilities, economics and risks.

3.4.1 Topology Overview

Auvailability of any single OpenStack cloud is dependent on a number of factors including:
* environmental - dual connected power and PDUs, redundant cooling, rack distribution, etc.

* resilient network fabric - ToR (leaf), spine, overlay networking, underlay networking, etc. It is assumed that all
network components are designed to be fault tolerant and all OpenStack controllers, computes and storage are
dual-homed to alternate leaf switches.

* controller nodes setup in-line with the vendor recommendation (e.g., min 3 physical nodes)
* network nodes (where applicable)
* backend storage nodes setup for highly availability based on quorum (aligned with vendor implementation)
» compute nodes sized to handle the entire workload following local failure scenario
Assumptions and conventions:
* Region is represented by a single OpenStack control plane.

* Resource Failure Domain is effectively the “blast radius™ of any major infrastructure failure such as loss of PDU
or network leafs.

* Control plane includes redundant network nodes where OVS-kernel is used.

53

* Controller nodes should be setup for high availability based on quorum (aligned with vendor implementation).

* Shared storage is optional, but it is important to ensure shared assets are distributed across serving clouds such as
boot images. Storage needs, per deployment and use cases, can be found in “Storage Scenarios and Architecture
Fit” [1].

Table 3.2: Cloud Topology: Redundancy Models

Topol- Type Control | Shared | Com- Achiev- | Service | Notes

ogy Planes | Stor- pute able Multi

Ref age AZs Service | -region

(op- Avail- aware-
tional) ability ness
Y%

1 Local Redundancy | 1 1 1 Variable | Not Suitable where only
- workload spread required | limited local applica-
across servers tion availability is re-

quired e.g. nova anti-
affinity

2 Regional Redun- | 1 >=2 >=2 >99.n Not Suitable where local
dancy - workload required | application HA is
spread across AZs required. Control

plane should be
distributed across

DC failure domains
(assuming layer 2
connectivity) but may
be unavailable during

up grades
3 Global Redun- | >=2 >=2 >=2 >99.nn Re- Suitable where local
dancy - workload quired and region applica-
spread across tion HA is required
multiple Regions Control plane could

be kept available in
one site during up-
grades

Topology 1 - Local Redundancy

Under normal operation this deployment can handle a single failure of a controller node or storage node without any
impact to the service. If a compute node fails the application layer (often the VNFM) would need to restart workloads
on a spare compute node of similar capability i.e., cloud may need to be provided with n+1 capacity. In the case of an
active/active application deployed to separate compute nodes (with hypervisor anti-affinity) there would be no service
impact.

Important to consider:
¢ Where possible servers should be distributed and cabled to reduce the impact of any failure e.g., PDU (Power

Distribution Unit), rack failure. Because each operator has individual site constraints this document will not
propose a standard rack layout.

* During maintenance of the control plane, whilst the data (forwarding) plane remains unaffected, the control
plane APIs may not be available and applications relying on these APIs for normal application operations (such
as, scaling) will be impacted. Additionally, if the upgrade involves updating OpenStack services on the compute
nodes care needs to be taken. OVS-kernel networking operations may also be impacted during this time.

54

* During maintenance of storage (e.g., ceph) there is an increased risk of a service-impacting failure, so it is
generally recommended to deploy at least one more server than the minimum required for redundancy.

Topology 2 - Regional Redundancy

Under normal operation this topology can handle a single failure of a controller node but provides additional protection
to the compute plane and storage. If the application is deployed across 2 or more AZs a major failure impacting the
nodes in one AZ can be tolerated assuming the application deployment allows for this. There is a risk with split-brain
so a means of deciding application quorum is recommended or by using a third AZ or arbitrator.

Important to consider:
* All those points listed for Topology 1 above.

* When using 3 controller nodes and distributing these physically across the same locations as the computes, if
you lose the location with 2 controllers the OpenStack services would be impacted as quorum cannot be gained
with a single controller node. It is also possible to use more than 3 controller nodes and co-locate one with each
compute AZ allowing lower-risk maintenance, but care must be taken to avoid split brain.

* The distributed network fabric must support L2 for the OpenStack control plane VIPs.
Topology 3 - Global Redundancy

Following the example set by public cloud providers who provide Regions and Availability Zones this is effectively
a multi-region OpenStack. Assuming the application can make use of this model this provides the highest level of
availability but would mean IP level failure controlled outside of OpenStack by global service load balancing (GSLB)
i.e., DNS with minimum TTL configured, or client applications that are capable of failing over themselves. This has
the added advantage that no resources are shared between different Regions so any fault is isolated to a single cloud
and also allows maintenance to take place without service impact.

4 Cloud Infrastructure & VIM Component Level Architecture

Chapter 3 introduced the components of an OpenStack-based IaaS:
* Consumable Infrastructure Resources and Services

* Cloud Infrastructure Management Software (VIM: OpenStack) core services and architectural constructs needed
to consume and manage the consumable resources

* Underlying physical compute, storage, and networking resources

This chapter delves deeper into the capabilities of these different resources and their needed configurations to create
and operate an OpenStack-based IaaS cloud. This chapter specifies details on the structure of control and user planes,
operating systems, hypervisors, and BIOS configurations, and architectural details of underlay and overlay networking,
and storage, and the distribution of OpenStack service components among nodes. The chapter also covers implemen-
tation support for the “Profiles, Profile Extensions & Flavours” [1]; the OpenStack flavor types capture both the sizing
and the profile configuration (of the host).

55

4.1 Underlying Resources Configuration and Dimensioning

4.1.1 Virtualisation layer

In OpenStack, KVM is configured as the default hypervisor for compute nodes.

» Configuration: OpenStack [34] specifies the steps/instructions to configure KVM:

Enable KVM based hardware virtualisation in BIOS. OpenStack provides instructions on how to enable
hardware virtualisation for different hardware platforms (x86, Power)

% QEMU is similar to KVM in that both are libvirt controlled, have the same feature set and utilise
compatible virtual machine images

Configure Compute backing storage
Specify the CPU Model for KVM guests (VMs)
— KVM Performance Tweaks

* Hardening the virtualisation layers [35]
— OpenStack recommends minimizing the code base by removing unused components

— sVirt (Secure Virtualisation) provides isolation between VM processes, devices, data files and system pro-
cesses

4.1.2 Compute

Cloud Deployment (Foundation/management) Node

Minimal configuration: 1 node

OpenStack Control Plane Servers (Control Nodes)

* BIOS Requirements

For OpenStack control nodes we use the BIOS parameters for the basic profile defined in “Cloud Infrastructure Hard-
ware Profiles Features and Requirements” [1]. Additionally, for OpenStack we need to set the following boot parame-
ters:

Table 4.1: Boot parameters

BIOS/boot Parameter Value

Boot disks RAID 1

CPU reservation for host (kernel) | 1 core per NUMA
CPU allocation ratio 2:1

* How many nodes to meet SLA

— Minimum 3 nodes for high availability
* HW specifications

— Boot disks are dedicated with Flash technology disks
* Sizing rules

— It is easy to horizontally scale the number of control nodes

56

— The number of control nodes is determined by a minimum number needed for high availability (viz., 3
nodes) and the extra nodes needed to handle the transaction volumes, in particular, for Messaging service
(e.g., RabbitMQ) and Database (e.g., MySQL) to track state.

— The number of control nodes only needs to be increased in environments with a lot of changes, such as a
testing lab, or a very large cloud footprint (rule of thumb: number of control nodes = 3 + quotient (number
of compute nodes/1000)).

— The Services Placement Summary table [36] specifies the number of instances that are required based upon
the cloud size (number of nodes).

Network nodes

Networks nodes are mainly used for L3 traffic management for overlay tenant network (see more detail in Neutron
section).

* BIOS requirements

Table 4.2: BIOS requirements

BIOS/boot Parameter | Value
Boot disks RAID 1

* How many nodes to meet SLA
— Minimum 2 nodes for high availability using VRRP.
* HW specifications
— 3 NICs card are needed if we want to isolate the different flows:
1 NIC for Tenant Network
1 NIC for External Network
% 1 NIC for Other Networks (PXE, Mngt ...)
* Sizing rules
— Scale out of network node is not easy

— DVR can be an option for large deployment (see more detail in section Neutron)

Storage nodes

* BIOS requirements

Table 4.3: BIOS requirements

BIOS/boot Parameter | Value
Boot disks RAID 1

* HW specifications: please see “Storage” in [1]

* How many nodes to meet SLA: Active-Passive is the default and recently OpenStack started to support Active-
Active

e Sizing rules: minimum 2 x 1 TB; recommended 2 x 10 TB

57

Compute Nodes

This section specifies the compute node configurations to support the Basic and High-Performance profiles; in Open-
Stack this would be accomplished by specifying the configurations when creating “flavors”. The cloud operator may
choose to implement certain profile-extensions (Profile Extensions (Specialisations) [1]) as a set of standard configu-
rations, of a given profile, capturing some of the variability through different values or extra specifications.

* The software and hardware configurations are as specified in the Cloud Infrastructure Hardware Profiles Features
and Requirements in [1].

* BIOS requirement

— The general BIOS requirements are described in the Cloud Infrastructure Hardware Profiles Features and
Requirements [1].

Example Profiles and their Extensions

The Reference Model specifies the Basic (B) and High-Performance (H) profile types. The Reference Model also
provides a choice of network acceleration capabilities utilising, for example, DPDK and SR-IOV technologies. The
table below lists a few simple examples of profile extensions and some of their capabilities.

Table 4.4: Profile Extensions and Capabilities

Pro- Description CPU SMT CPU NUMA | Huge Data Traf-

file Allo- Pinning pages fic

Ex- cation

ten- Ratio

sions

B1 Basic Profile NoCPU over- sub- | 1:1 Y N N N OVS- ker-
scription profile extension nel

HV High Performance Profile 1:1 Y Y Y Y OVS- ker-

nel

HD High Performance Profile with | 1:1 Y Y Y Y OVS-
DPDK profile extension DPDK

HS High Performance Profile with | 1:1 Y Y Y Y SR-IOV
SR-IOV profile extension

BIOS Settings

A number of capabilities need to be enabled in the BIOS (such as NUMA and SMT); the “Cloud Infrastructure Software
Profile Description” section in the Reference Model specifies the capabilities required to be configured. Please note
that capabilities may need to be configured in multiple systems. For OpenStack, we also need to set the following boot
parameters:

Table 4.5: BIOS requirements

BIOS/boot Parameter | Basic High Performance
Boot disks RAID 1 | RAID 1

* How many nodes to meet SLA

— minimum: two nodes per profile
* HW specifications

— Boot disks are dedicated with Flash technology disks
¢ In case of DPDK usage:

58

Table 4.6: DPDK usage

Layer

Description

Cloud infrastructure

Important is placement of NICs to get NUMA-balanced system (balancing the
I/O, memory, and storage across both sockets), and configuration of NIC fea-
tures. Server BIOS and Host OS kernel command line settings are described in
DPDK release notes [37] and DPDK performance reports [38]. Disabling power
settings (like Intel Turbo Boost Technology) brings stable performance results,
although understanding if and when they benefit workloads and enabling them
can achieve better performance results.

Workload

DPDK uses core affinity along with 1G or 2M huge pages, NUMA settings
(to avoid crossing interconnect between CPUs), and DPDK Poll Mode Drivers
(PMD, on reserved cores) to get the best performance. DPDK versions xx.11
are Long-Term Support maintained stable release with back-ported bug fixes for
a two-year period.

 Sizing rules

Table 4.7: Mnemonic

Description Mnemonic
Number of CPU sockets S

Number of cores c

SMT t

RAM rt

Storage d
Overcommit 0

Average vCPU per instance | v

Average RAM per instance | ri

Table 4.8: Sizing rules

Item Formula Basic High-Performance
of VMs per node (vCPU) | (s*c*t*o)/v | 4*(s*c*t)/v (s*c*t)/v

of VMs per node (RAM) | rt/ri rt/ri rt/ri

Max # of VMs per node min(4*(s*c*t)/v,rt/ri) | min((sc*t)/v,rt/ri)

Caveats:

¢ These are theoretical limits

 Affinity and anti-affinity rules, among other factors, affect the sizing

Compute Resource Pooling Considerations

» Multiple pools of hardware resources where each resource pool caters for workloads of a specific profile (for ex-
ample, High-Performance) leads to inefficient use of the hardware as the server resources are configured specifi-
cally for a profile. If not properly sized or when demand changes, this can lead to oversupply/starvation scenarios;
reconfiguration may not be possible because of the underlying hardware or inability to vacate servers for recon-
figuration to support another profile type.

* Single pool of hardware resources including for controllers have the same CPU configuration. This is opera-
tionally efficient as any server can be utilised to support any profile or controller. The single pool is valuable
with unpredictable workloads or when the demand of certain profiles is insufficient to justify individual hardware

selection.

59

Reservation of Compute Node Cores

The Infrastructure Requirements inf. com. 08 requires the allocation of “certain number of host cores/threads to non-
tenant workloads such as for OpenStack services.” A number (“n”) of random cores can be reserved for host services
(including OpenStack services) by specifying the following in nova.conf:

reserved_host_cpus =n
where n is any positive integer.
If we wish to dedicate specific cores for host processing we need to consider two different usage scenarios:
1. Require dedicated cores for Guest resources
2. No dedicated cores are required for Guest resources

Scenario #1, results in compute nodes that host both pinned and unpinned workloads. In the OpenStack Wallaby release,
scenario #1 is not supported; it may also be something that operators may not allow. Scenario #2 is supported through
the specification of the cpu_shared_set configuration. The cores and their sibling threads dedicated to the host services
are those that do not exist in the cpu_shared_set configuration.

Let us consider a compute host with 20 cores with SMT enabled (let us disregard NUMA) and the following parameters
specified. The physical cores are numbered ‘0’ to ‘19” while the sibling threads are numbered ‘20’ to ‘39’ where the
vCPUs numbered ‘0’ and ‘20°, ‘1’ and ‘21’, etc. are siblings:

cpu_shared_set = 1-7,9-19,21-27,29-39 (can also be specified as cpu_shared_set = 1-19,&8,21-39,&28)

This implies that the two physical cores ‘0’ and ‘8’ and their sibling threads ‘20’ and ‘28’ are dedicated to the host
services, and 19 cores and their sibling threads are available for Guest instances and can be over allocated as per the
specified cpu_allocation_ratio in nova.conf.

Pinned and Unpinned CPUs

When a server (viz., an instance) is created the vCPUs are, by default, not assigned to a particular host CPU. Certain
workloads require real-time or near real-time behavior viz., uninterrupted access to their cores. For such workloads,
CPU pinning allows us to bind an instance’s vCPUs to particular host cores or SMT threads. To configure a flavor to
use pinned vCPUs, we use a dedicated CPU policy.

openstack flavor set .xlarge -property hw:cpu_policy=dedicated

While an instance with pinned CPUs cannot use CPUs of another pinned instance, this does not apply to unpinned
instances; an unpinned instance can utilise the pinned CPUs of another instance. To prevent unpinned instances from
disrupting pinned instances, the hosts with CPU pinning enabled are pooled in their own host aggregate and hosts with
CPU pinning disabled are pooled in another non-overlapping host aggregate.

Compute node configurations for Profiles and OpenStack Flavors

This section specifies the compute node configurations to support profiles and flavors.

60

Cloud Infrastructure Hardware Profile

The Cloud Infrastructure Hardware (or simply “host”) profile and configuration parameters are utilised in the reference
architecture to define different hardware profiles; these are used to configure the BIOS settings on a physical server and
configure utility software (such as Operating System and Hypervisor).

An OpenStack flavor defines the characteristics (“capabilities”) of a server (viz., VMs or instances) that will be deployed
on hosts assigned a host-profile. A many-to-many relationship exists between flavors and host profiles. Multiple flavors
can be defined with overlapping capability specifications with only slight variations that servers of these flavor types
can be hosted on similarly configured (host profile) compute hosts. Similarly, a server can be specified with a flavor
that allows it to be hosted on, say, a host configured as per the Basic profile, or a host configured as per the High-
Performance profile. Please note that workloads that specify a server flavor so as to be hosted on a host configured as
per the High-Performance profile, may not be able to run (adequately with expected performance) on a host configured
as per the Basic profile.

A given host can only be assigned a single host profile; a host profile can be assigned to multiple hosts. Host profiles
are immutable and hence when a configuration needs to be changed, a new host profile is created.

CPU Allocation Ratio and CPU Pinning

A given host (compute node) can only support a single CPU Allocation Ratio. Thus, to support the B1 and B4 Basic
profile extensions (Section Compute Nodes) with CPU Allocation Ratios of 1.0 and 4.0 we will need to create 2 different
host profiles and separate host aggregates for each of the host profiles. The CPU Allocation Ratio is set in the hypervisor
on the host.

When the CPU Allocation Ratio exceeds 1.0 then CPU Pinning also needs to be disabled.

Server Configurations

The different networking choices - OVS-Kernel, OVS-DPDK, SR-IOV - result in different NIC port, LAG (Link Ag-
gregation Group), and other configurations. Some of these are shown diagrammatically in section Compute Nodes.

Leaf and Compute Ports for Server Flavors must align

Compute hosts have varying numbers of Ports/Bonds/LAGs/Trunks/VLANs connected with Leaf ports. Each Leaf port
(in A/B pair) must be configured to align with the interfaces required for the compute flavor.

Physical Connections/Cables are generally the same within a zone, regardless of these specific L2/L.3/SR-IOV config-
urations for the compute.

Compute Bond Port: TOR port maps VLANs directly with IRBs on the TOR pair for tunnel packets and Control
Plane Control and Storage packets. These packets are then routed on the underlay network GRT.

Server Flavors: B1, B4, HV, HD

Compute SR-IOV Port: TOR port maps VLANs with bridge domains that extend to IRBs, using VXLAN VNI. The
TOR port associates each packet’s outer VLAN tag with a bridge domain to support VNF interface adjacencies over
the local EVPN/MAC bridge domain. This model also applies to direct physical connections with transport elements.

Server Flavors: HS
Notes on SR-IOV

SR-IOV, at the compute server, routes Guest traffic directly with a partitioned NIC card, bypassing the hypervisor and
vSwitch software, which provides higher bps/pps throughput for the Guest server. OpenStack and MANO manage
SR-IOV configurations for Tenant server interfaces.

61

* Server, Linux, and NIC card hardware standards include SR-IOV and VF requirements

» High Performance profile for SR-IOV (hs series) with specific NIC/Leaf port configurations

* OpenStack supports SR-IOV provisioning

e Implement Security Policy, Tap/Mirror, QoS, etc. functions in the NIC, Leaf, and other places

Because SR-IOV involves Guest VLANs between the compute server and the ToR/Leafs, Guest automation and server
placement necessarily involves the Leaf switches (e.g., access VLAN outer tag mapping with VXLAN EVPN).

* Local VXLAN tunneling over IP-switched fabric implemented between VTEPs on Leaf switches

¢ Leaf configuration controlled by SDN-Fabric/Global Controller

e Underlay uses VXLAN-enabled switches for EVPN support

SR-IOV-based networking for Tenant Use Cases is required where vSwitch-based networking throughput is inadequate.

Example Host Configurations

Host configurations for Bl, B4 Profile Extensions

Diagram shows physical cores; With HT enabled, each physical coreshallcorrespond to 2 virtual cores/threads (vCPUs)

NUMA Node 0 NUMA Node 1
[Host Resources (0S5, Hypervisor, OpenStack agents) J
[
Tenant Cores
|1 | 2 | 3 | 4 | 5 | 3 | 7 |E ‘ 3 |10|11|1Z‘13‘1‘|15|16|17‘15|15| |11|11|23|1‘|15|16|17|25‘15‘30|31|32|33‘3‘|35|36|37|35|39|
|’ VML | | VM2
\M \M User space
Kernel space
Host PXE, DAM,
Storage
Tenant physical cores bondl
per NUMA - 19 ?
‘.-‘ | portl port2 port3 porcd
Tenant vCPUs per | nOpl | nOp2 | nlpl | nlp2 |
NUMA - 38
LOM

Figure 4.1: Basic Profile Host Configuration (example and simplified)

Let us refer to the data traffic networking configuration depicted in the figure above to be part of the hp-B1-a and
hp-B4-a host profiles and this requires the configurations as Table Configuration of Basic Flavor Capabilities.

Table 4.9: Configuration of Basic Flavor Capabilities

Capability Configured in Host profile: hp- | Host profile: hp-
Bi-a B4-a

CPU Allocation Ratio Hypervisor 1:1 4:1

CPU Pinning BIOS Enable Disable

SMT BIOS Enable Enable

NUMA BIOS Disable Disable

Huge pages BIOS No No

Profile Extensions Bl B4

62

The figure below shows the networking configuration where the storage and OAM share networking but are independent
of the PXE network.

Diagram shows physical cores; With HT enabled, each physical core shall correspond to 2 virtual cores/threads (vCPUs)

NUMA Node 0 | | NUMA Node 1
[Host Resources (OS, Hypervisor, OpenStack agents) J

L
Tenant Cores

‘ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 ‘ 3 |10|11‘12|13|1d|15|15‘17|18|13‘ ‘21|11|23|Zd|15|15|27|23‘19|30|31‘32|33|3d|35|35|37|38|33‘

|’ VM1 | VM2
0OvS) OvS)
(ovs) (Ovs) User space

Kernel space

Host PXE
Tenant physical cores
OAM, St
per NUMA - 19 bondt i

Tenant vCPUs per e:;D m nopl | i
nOp2 :
AL [] P p

Lom

Figure 4.2: Basic Profile Host Configuration with shared Storage and OAM networking (example and simplified)

Let us refer to the above networking set up to be part of the hp-B1-b and hp-B4-b host profiles but the basic configu-
rations as specified in Table Configuration of Basic Flavor Capabilities.

In our example, the Profile Extensions B1 and B4, are each mapped to two different host profiles hp-B1-a and hp-B1-b,
and hp-B4-a and hp-B4-b respectively. Different network configurations, reservation of CPU cores, Lag values, etc.
result in different host profiles.

To ensure Tenant CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack agents),
the following needs to be configured:

Table 4.10: GRUB Configuration of Basic Profile with shared Storage

GRUB Bootloader Parame- | Description Values
ter
isolcpus (Applicable only on | A set of cores isolated from the host pro- | isolcpus=1-19, 21-39, 41-59,
Compute Servers) cesses. Contains vCPUs reserved for Tenants | 61-79
and DPDK

Host configuration for HV Profile Extensions

The above examples of host networking configurations for the B1 and B4 Profile Extensions are also suitable for the
HV Profile Extensions; however, the hypervisor and BIOS settings will be different (see table below) and hence there
will be a need for different host profiles. Table Configuration of High Performance Flavor Capabilities gives examples
of three different host profiles; one each for HV, HD and HS Profile Extensions.

63

Table 4.11: Configuration of High Performance Flavor Capabilities

Capability Configured in Host profile: | Host profile: | Host profile:
hp-hv-a hp-hd-a hp-hs-a

Profile Exten- HV HD HS

sions

CPU Allocation | Hypervisor 1:1 1:1 1:1

Ratio

NUMA BIOS, Operating System, Hypervisor | Enable Enable Enable
and OpenStack Nova Scheduler

CPU Pinning (re- | OpenStack Nova Scheduler Enable Enable Enable

quires NUMA)

SMT BIOS Enable Enable Enable

Huge pages BIOS Yes Yes Yes

Host Networking configuration for HD Profile Extensions

An example of the data traffic configuration for the HD (OVS-DPDK) Profile Extensions is shown in the figure below.

Diagram shows physical cores; With HT enabled, each physical core shallcorrespond to 2 virtual cores/threads (vCPUs)

NUMA Node 0 NUMA Node 1
[Host Resources (OS, Hypervisor, OpenStack agents)]
] OVS-DPDKPMDs][]
i Tenant Cores)
] 3 | ll] 5 | 6 | 7 | k] | 9 [10‘11li!|13|14|15|16|17]13|13l |23[24]25[26|27|28|29|30‘31|32|33]34|35]36|37|33|39|
‘ VM1 VM2 ‘ VM3
(OvS) (OvS) } (OvS)
User space
Host PXE, OAM, Kernel space
Storage
Tenant physical cores ond1
per NUMA - 17 " q
Tenant vCPUs per II port? pert2 Pora port®
NUMA - 34 nOpl n0Op2 nlpl nlp2
LoM

Figure 4.3: High Performance Profile Host Configuration with DPDK acceleration (example and simplified)

To ensure Tenant and DPDK CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack

agents), the following needs to be configured:

Table 4.12: GRUB Configuration of High Performance Flavor with
DPDK

GRUB Bootloader Parame- Values

ter

Description

A set of cores isolated from the host pro-
cesses. Contains VCPUs reserved for Tenants
and DPDK

isolcpus (Applicable only on

Compute Servers) 63-79

isolcpus=3-19, 23-39, 43-59,

Host Networking configuration for HS Profile Extensions

An example of the data traffic configuration for the HS (SR-IOV) Profile Extensions is shown in the figure below.

64

Diagram shows physical cores; With HT enabled, each physicalcoreshall correspond to 2 virtual cores/threads (vCPUs)

NUMA Node 0 | | NUMA Node 1
[Host Resources (0S5, Hypervisor, OpenStack agents)]

Tenant Cores

‘1 | 2 | 3 | 4 | 5 | 3 | 7 |8 | El ‘10|11‘12|13‘14|15|16|17|18|19| ‘Zil!!|23|24|25|26|2?‘ZB|29‘30|31‘32|33‘34|35|36|37|38|39|

{' VM1 1 | VM5
—_(srioV) | (sRioV) |

OVS-Kernel, Host
PXE, OAM, Storage

Virtual

Functions
(LTI Bel [T T] e LTI EREC T

Virtual
Functions

Tenant physical cores

per NUMA -19 |
Tenant vCPUs per ExEl B port3 port 4
NUMA - 38 Lom | nOpl | nOp2 | nlpl | nlp2 |

Figure 4.4: High Performance Profile Host Configuration with SR-IOV (example and simplified)

To ensure Tenant CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack agents),
the following needs to be configured:

Table 4.13: GRUB Configuration of High Performance Flavor with SR-

()%
GRUB Bootloader Parame- | Description Values
ter
isolcpus (Applicable only on | A set of cores isolated from the host processes. | isolcpus=1-19, 21-39, 41-59,
Compute Servers) Contains vCPUs reserved for Tenants 61-79

Using Hosts of a Host Profile type

As we have seen, Profile Extensions are supported by configuring hosts in accordance with the Profile Extensions
specifications. For example, an instance of flavor type B1 can be hosted on a compute node that is configured as an
hp-B1-a or hp-B1-b host profile. All compute nodes configured with hp-B1-a or hp-B1-b host profile are made part of
a host aggregate, say, ha-B1 and, thus, during server instantiation of B1 flavor hosts from the ha-B1 host aggregate will
be selected.

4.1.3 Network Fabric

Networking Fabric consists of:
* Physical switches, routers.. .
* Switch OS
¢ Minimum number of switches
* Dimensioning for East/West and North/South

» Spine / Leaf topology - east - west

Global Network parameters

65

* OpenStack control plane VLAN / VXLAN layout
* Provider VLANs

Physical Network Topology

High Level Logical Network Layout

Provisioning & Management

Intermal API
]]
1 1
1 1 ‘StorageManagement
H H
] n
1 I
H i Storagefront-end
H W
[] N n T
1 H n 1
i H 1]] Tenam
1 1 u]
T L T
i | 1] |
1 1 n H External API
1 H 1}
i 1 ! I [
[1 1 n 1 External Provider (FIP)
i] 1
H | I
r ot
| — e
1 : 1 :: H External Provider (VLANS)
! I H
1]
i
1
R 802.1gtaggzed
Native

NUMAQ B NUMA 1

1PMI / Out of band

Figure 4.5: Indicative OpenStack Network Layout

66

Table 4.14: OpenStack Network Characteristics

Network Description Characteristics
Provisioning & | Initial OS bootstrapping of the servers via PXE,) i
M * Security Domain: Management
anagement deployment of software and thereafter for access
from within the control plane * Externally Routable: No
* Connected to: All nodes
Internal API Intra-OpenStack service API communications, . .
messaging, and database replication * Security Domain: Management
» Externally Routable: No
e Connected to: All nodes except
foundation
Storage Manage- | Backend connectivity between storage nodes for .s v D 0 St
ment heartbeats, data object replication and synchro- ccurity LJomain: Storage

nisation

Externally Routable: No
Connected to: All nodes except
foundation

Storage Front-end

Block/Object storage access via cinder/swift

Security Domain: Storage
Externally Routable: No
Connected to: All nodes except

foundation
Tenant VXLAN/ Geneve project overlay networks (OVS . .
. . » Security Domain: Underlay
kernel mode) - i.e., REC1918 [39] re-usable pri-
.. » Externally Routable: No
vate networks as controlled by cloud administra-
tor e Connected to: controllers and
computes
External API Hosts the public OpenStack API endpoints in-

cluding the dashboard (Horizon)

Security Domain: Public
Externally routable: Yes
Connected to: controllers

External Provider
(FIP)

Network with a pool of externally routable IP ad-
dresses used by neutron routers to NAT to/from
the tenant RFC1918 [39] private networks

Security Domain: Data Centre
Externally routable: Yes
Connected to: controllers, OVS
computes

External Provider
(VLAN)

External Data Centre L2 networks (VLANS) that
are directly accessible to the project

Note: External IP address management is re-
quired

Security Domain: Data Centre
Externally routable: Yes
Connected to: OVS DPDK com-
putes

IPMI/ Out of Band

The remote “lights-out” management port of the
servers e.g., iLO, IDRAC / IPMI / Redfish

Security Domain: Management
Externally routable: No
Connected to: IPMI port on all
servers

A VNF application network topology is expressed in terms of servers, vNIC interfaces with vNet access networks,

67

and WAN Networks while the VNF Application Servers require multiple vINICs, VLANS, and host routes configured
within the server’s Kernel.

Octavia v2 API conformant Load Balancing

Load balancing is needed for automatic scaling, managing availability and changes. Octavia [40] is an open-source load
balancer for OpenStack, based on HAProxy, and replaces the deprecated (as of OpenStack Queens release) Neutron
LBaaS. The Octavia v2 API is a superset of the deprecated Neutron LBaaS v2 API and has a similar CLI for seamless
transition.

As a default Octavia utilises Amphorae Load Balancer. Amphorae consists of a fleet of servers (VMs, containers or
bare metal servers) and delivers horizontal scaling by managing and spinning these resources on demand. The reference
implementation of the Amphorae image is an Ubuntu virtual machine running HAProxy.

Octavia depends upon a number of OpenStack services including Nova for spinning up compute resources on demand
and their life cycle management; Neutron for connectivity between the compute resources, project environment and
external networks; Keystone for authentication; and Glance for storing of the compute resource images.

Octavia supports provider drivers which allows third-party load balancing drivers (such as F5, AVI, etc.) to be utilised
instead of the default Amphorae load balancer. When creating a third-party load balancer, the provider attribute is
used to specify the backend to be used to create the load balancer. The list providers lists all enabled provider drivers.
Instead of using the provider parameter, an alternate is to specify the flavor_id in the create call where provider-specific
Octavia flavors have been created.

Neutron Extensions

OpenStack Neutron is an extensible framework that allows incorporation through plugins and API Extensions. API
Extensions provide a method for introducing new functionality and vendor specific capabilities. Neutron plugins sup-
port new or vendor-specific functionality. Extensions also allow specifying new resources or extensions to existing
resources and the actions on these resources. Plugins implement these resources and actions.

This Reference Architecture supports the ML2 plugin (see below) as well as the service plugins including for LBaaS
(Load Balancer as a Service) [41], and VPNaaS (VPN as a Service) [42]. The OpenStack wiki provides a list of Neutron
plugins [43].

Every Neutron plugin needs to implement a minimum set of common methods (actions for Wallaby release) [44].
Resources can inherit Standard Attributes and thereby have the extensions for these standard attributes automatically
incorporated. Additions to resources, such as additional attributes, must be accompanied by an extension.

The section Interfaces and APIs of this Reference Architecture provides a list of Neutron Extensions. The current
available extensions can be obtained using the List Extensions API [45] and details about an extension using the Show
extension details API [46].

Neutron ML2 integration The OpenStack Modular Layer 2 (ML2) plugin simplifies adding networking technologies
by utilising drivers that implement these network types and methods for accessing them. Each network type is managed
by an ML2 type driver and the mechanism driver exposes interfaces to support the actions that can be performed on
the network type resources. The OpenStack ML2 documentation [47] lists example mechanism drivers.

68

Network quality of service

For VNF workloads, the resource bottlenecks are not only the CPU and the memory but also the I/O bandwidth and
the forwarding capacity of virtual and non-virtual switches and routers within the infrastructure. Several techniques
(all complementary) can be used to improve QoS and try to avoid any issue due to a network bottleneck (mentioned
per order of importance):

» Nodes interfaces segmentation: Have separated NIC ports for Storage and Tenant networks. Actually, the storage
traffic is bursty, and especially in case of service restoration after some failure or new service implementation,
upgrades, etc. Control and management networks should rely on a separate interface from the interface used to
handle tenant networks.

* Capacity planning: FW, physical links, switches, routers, NIC interfaces and DCGW dimensioning (+ load
monitoring: each link within a LAG or a bond shouldn’t be loaded over 50% of its maximum capacity to guaranty
service continuity in case of individual failure).

* Hardware choice: e.g., ToR/fabric switches, DCGW and NIC cards should have appropriate buffering and queu-
ing capacity.

* High Performance compute node tuning (including OVS-DPDK).

Integration Interfaces

* DHCP:

When the Neutron-DHCP agent is hosted in controller nodes, then for the servers, on a Tenant network, that need
to acquire an IPv4 and/or IPv6 address, the VLAN for the Tenant must be extended to the control plane servers
so that the Neutron agent can receive the DHCP requests from the server and send the response to the server with
the IPv4 and/or IPv6 addresses and the lease time. Please see OpenStack provider Network.

* DNS
* LDAP
* [PAM

4.1.4 Storage Backend

Storage systems are available from multiple vendors and can also utilise commodity hardware from any number of open-
source based storage packages (such as LVM, Ceph, NFS, etc.). The proprietary and open-source storage systems are
supported in Cinder through specific plugin drivers. The OpenStack Cinder documentation [48] specifies the minimum
functionality that all storage drivers must support. The functions include:

* Volume: create, delete, attach, detach, extend, clone (volume from volume), migrate
* Snapshot: create, delete and create volume from snapshot
* Image: create from volume

The document also includes a matrix for a number of proprietary drivers and some of the optional functions that these
drivers support. This matrix is a handy tool to select storage backends that have the optional storage functions needed
by the cloud operator. The cloud workload storage requirements help determine the backends that should be deployed
by the cloud operator. The common storage backend attachment methods include iSCSI, NFS, local disk, etc. and
the matrix lists the supported methods for each of the vendor drivers. The OpenStack Cinder Available Drivers [49]
documentation provides a list of all OpenStack compatible drivers and their configuration options.

69

The Cinder Configuration [50] document provides information on how to configure Cinder including Anuket required
capabilities for volume encryption, Policy configuration, quotas, etc. The Cinder Administration [51] document pro-
vides information on the capabilities required by Anuket including managing volumes, snapshots, multi-storage back-
ends, migrate volumes, etc.

Ceph [52] is the default Anuket Reference Architecture storage backend and is discussed below.

Ceph Storage Cluster

The Ceph storage cluster is deployed on bare metal hardware. The minimal configuration is a cluster of three bare metal
servers to ensure High availability. The Ceph Storage cluster consists of the following components:

* CEPH-MON (Ceph Monitor)
* OSD (object storage daemon)
* RadosGW (Rados Gateway)
* Journal

* Manager

Ceph monitors maintain a master copy of the maps of the cluster state required by Ceph daemons to coordinate with
each other. Ceph OSD handles the data storage (read/write data on the physical disks), data replication, recovery,
rebalancing, and provides some monitoring information to Ceph Monitors. The RadosGW provides Object Storage
RESTful gateway with a Swift-compatible API for Object Storage.

== openstack

KEYSTONE CINDER GLANCE

|

ﬁ RADOS CLUSTER E

@ ceph

Figure 4.6: Ceph Storage System

BIOS Requirement for Ceph servers

Table 4.15: BIOS Requirement for Ceph servers

BIOS/boot Parameter | Value
Boot disks RAID 1

How many nodes to meet SLA:

70

e minimum: three bare metal servers where Monitors are collocated with OSD. Note: at least 3 Monitors and 3
OSDs are required for High Availability.

HW specifications:

* Boot disks are dedicated with Flash technology disks

* For an IOPS oriented cluster (Flash technology), the journal can be hosted on OSD disks

* For a capacity-oriented cluster (HDD), the journal must be hosted on dedicated Flash technology disks
Sizing rules:

e Minimum of 6 disks per server

* Replication factor : 3

* 1 Core-GHz per OSD

¢ 16GB RAM baseline + 2-3 GB per OSD

4.2 VIM OpenStack Services

This section covers:
* Detailed breakdown of OpenStack core services

¢ Specific build-time parameters

4.2.1 VIM Services

A high-level overview of the core OpenStack Services was provided in Virtualised Infrastructure Manager (VIM). In
this section we describe the core and other needed services in more detail.

Keystone

Keystone [53] is the authentication service, the foundation of identity management in OpenStack. Keystone needs to be
the first deployed service. Keystone has services running on the control nodes and no services running on the compute
nodes:

» Keystone admin API
» Keystone public API - in Keystone V3 this is the same as the admin API

Glance

Glance [54] is the image management service. Glance has only a dependency on the Keystone service therefore it is
the second one deployed. Glance has services running on the control nodes and no services running on the compute
nodes:

¢ Glance API
* Glance Registry
The Glance backends include Swift, Ceph RBD, and NFS.

71

Cinder

Cinder [55] is the block device management service, depends on Keystone and possibly Glance to be able to create
volumes from images. Cinder has services running on the control nodes and no services running on the compute nodes:
- Cinder API - Cinder Scheduler - Cinder Volume - the Cinder volume process needs to talk to its backends

The Cinder backends include SAN/NAS storage, iSCSI drives, Ceph RBD, and NFS.

Swift

Swift [56] is the object storage management service, Swift depends on Keystone and possibly Glance to be able to
create volumes from images. Swift has services running on the control nodes and the compute nodes:

* Proxy Services

* Object Services

¢ Container Services
¢ Account Services

The Swift backends include iSCSI drives, Ceph RBD, and NFS.

Neutron

Neutron [57] is the networking service, depends on Keystone and has services running on the control nodes and the
compute nodes. Depending upon the workloads to be hosted by the infrastructure, and the expected load on the con-
troller node, some of the Neutron services can run on separate network node(s). Factors affecting controller node load
include the number of compute nodes and the number of API calls being served for the various OpenStack services
(nova, neutron, cinder, glance etc.). To reduce controller node load, network nodes are widely added to manage L3
traffic for overlay tenant networks and interconnection with external networks. The Table below lists the networking
service components and their placement. Please note that while network nodes are listed in the table below, network
nodes only deal with tenant networks and not provider networks. Also, network nodes are not required when SDN is
utilised for networking.

72

Table 4.16: Neutron Services Placement

Networking Ser-
vice component

Description

Required or Op-
tional Service

Placement

neutron server
(neutron-server

Manages user requests and exposes the
Neutron APIs

Required

Controller node

and neutron-*-

plugin)

DHCP agent | Provides DHCP services to tenant net- | Optional depend- | Network node (Controller
(neutron-dhcp- works and is responsible for maintain- | ing upon plug-in node if no network node
agent) ing DHCP configuration. For High avail- present)

ability, multiple DHCP agents can be as-
signed.

L3 agent (neutron-
13-agent)

Provides L3/NAT forwarding for exter-
nal network access of servers on tenant
networks and supports services such as
Firewall-as-a-service (FWaaS) and Load
Balancer-as-a-service (LBaaS)

Optional depend-
ing upon plug-in

Network node (Controller
node if no network node
present) NB in DVR based
OpenStack Networking,
also in all Compute nodes.

neutron metadata
agent (neutron-
metadata-agent)

The metadata service provides a way
for instances to retrieve instance-specific
data. The networking service, neutron,
is responsible for intercepting these re-
quests and adding HTTP headers which
uniquely identify the source of the request
before forwarding it to the metadata API
server. These functions are performed by
the neutron metadata agent.

Optional

Network node (Controller
node if no network node
present)

neutron plugin
agent (neutron-*-
agent)

Runs on each compute node to con-
trol and manage the local virtual net-
work driver (such as the Open vSwitch
or Linux Bridge) configuration and lo-
cal networking configuration for servers
hosted on that node.

Required

Every Compute Node

Issues with the standard networking (centralised routing) approach

The network node performs both routing and NAT functions and represents both a scaling bottleneck and a single point
of failure.

Consider two servers on different compute nodes and using different project networks (a.k.a. tenant networks) where
both of the project networks are connected by a project router. For communication between the two servers (instances
with a fixed or floating IP address), the network node routes East-West network traffic among project networks using
the same project router. Even though the instances are connected by a router, all routed traffic must flow through the
network node, and this becomes a bottleneck for the whole network.

While the separation of the routing function from the controller node to the network node provides a degree of scaling
it is not a truly scalable solution. We can either add additional cores/compute-power or network node to the network
node cluster, but, eventually, it runs out of processing power especially with high throughput requirement. Therefore,
for scaled deployments, there are multiple options including the use of Dynamic Virtual Routing (DVR) and Software
Defined Networking (SDN).

73

Distributed Virtual Routing (DVR)

With DVR, each compute node also hosts the L3-agent (provides the distributed router capability), and this then allows
direct instance to instance (East-West) communications.

The OpenStack “High Availability Using Distributed Virtual Routing (DVR) [58]” provides an in-depth view into how
DVR works and the traffic flow between the various nodes and interfaces for three different use cases. Please note that
DVR was introduced in the OpenStack Juno release and, thus, its detailed analysis in the Liberty release documentation
is not out of character for OpenStack documentation.

DVR addresses both scalability and high availability for some L3 functions but is not fully fault tolerant. For example,
North/South SNAT traffic is vulnerable to single node (network node) failures. DVR with VRRP [59] addresses this
vulnerability.

Software Defined Networking (SDN)

For the most reliable solution that addresses all the above issues and Telco workload requirements requires SDN to
offload Neutron calls.

SDN provides a truly scalable and preferred solution to support dynamic, very large-scale, high-density, telco cloud en-
vironments. OpenStack Neutron, with its plugin architecture, provides the ability to integrate SDN controllers (Virtual
Networking - 3rd party SDN solution). With SDN incorporated in OpenStack, changes to the network are triggered by
workloads (and users), translated into Neutron APIs and then handled through neutron plugins by the corresponding
SDN agents.

Nova

Nova [60] is the compute management service, depends on all above components and is deployed after their deployment.
Nova has services running on the control nodes and the compute nodes:

* nova-metadata-api

* nova-compute api

* nova-consoleauth

* nova-scheduler

* nova-conductor

* NOVa-noOVNCProxy

* nova-compute-agent which runs on Compute node

Please note that the Placement-API must have been installed and configured prior to nova compute starts.

Ironic

Ironic [61] is the bare metal provisioning service. Ironic depends on all above components and is deployed after them.
Ironic has services running on the control nodes and the compute nodes:

e Ironic API
¢ ironic-conductor which executes operation on bare metal nodes

Note: This is an optional service. The Ironic APIs [62] are still under development.

74

Heat

Heat [63] is the orchestration service using templates to provision cloud resources, Heat integrates with all OpenStack
services. Heat has services running on the control nodes and no services running on the compute nodes:

* heat-api
* heat-cfn-api

* heat-engine

Horizon

Horizon [64] is the Web User Interface to all OpenStack services. Horizon has services running on the control nodes
and no services running on the compute nodes.

Placement

The OpenStack Placement service [65] enables tracking (or accounting) and scheduling of resources. It provides a
RESTful API and a data model for the managing of resource provider inventories and usage for different classes of
resources. In addition to standard resource classes, such as vCPU, MEMORY_MB and DISK_GB, the Placement
service supports custom resource classes (prefixed with “CUSTOM_") provided by some external resource pools such
as a shared storage pool provided by, say, Ceph. The placement service is primarily utilised by nova-compute and
nova-scheduler. Other OpenStack services such as Neutron or Cyborg can also utilise placement and do so by creating
Provider Trees [66]. The following data objects are utilised in the placement service [67]:

* Resource Providers provide consumable inventory of one or more classes of resources (CPU, memory or disk).
A resource provider can be a compute host, for example.

» Resource Classes specify the type of resources (vCPU, MEMORY_MB and DISK_GB or CUSTOM_¥*)

* Inventory: Each resource provider maintains the total and reserved quantity of one or more classes of resources.
For example, RP_1 has an available inventory of 16 vCPU, 16384 MEMORY_MB and 1024 DISK_GB.

* Traits are qualitative characteristics of the resources from a resource provider. For example, the trait for RPA_1
“is_SSD” to indicate that the DISK_GB provided by RP_1 are solid state drives.

* Allocations represent resources that have been assigned/used by some consumer of that resource.
 Allocation candidates is the collection of resource providers that can satisfy an allocation request.

The Placement API is stateless and, thus, resiliency, availability, and scaling, it is possible to deploy as many servers
as needed. On start, the nova-compute service will attempt to make a connection to the Placement API and keep
attempting to connect to the Placement API, logging and warning periodically until successful. Thus, the Placement
API must be installed and enabled prior to Nova compute.

Placement has services running on the control node: - nova-placement-api

75

Barbican

Barbican [68] is the OpenStack Key Manager service. It is an optional service hosted on controller nodes. It provides
secure storage, provisioning, and management of secrets as passwords, encryption keys and X.509 Certificates. Bar-
bican API is used to centrally manage secrets used by OpenStack services, e.g., symmetric encryption keys used for
Block Storage encryption or Object Storage encryption, and asymmetric keys and certificates used for Glance image
signing and verification.

Barbican usage provides a means to fulfil security requirements such as sec.sys.012 “The Platform must protect all
secrets by using strong encryption techniques and storing the protected secrets externally from the component” and
sec.ci.001 “The Platform must support Confidentiality and Integrity of data at rest and in transit.”.

Cyborg

Cyborg [69] is the OpenStack project for the general purpose management framework for accelerators (including GPUs,
FPGAs, ASIC-based devices, etc.), and their lifecycle management.

Cyborg will support only a subset of the Nova operations [70]; the set of Nova operations supported in Cyborg depends
upon the merge of a set of Nova patches in Cyborg. In Wallaby, not all the required Nova patches have been merged.
The list of Cyborg operations with Nova dependencies supported in Wallaby are listed in [71]; the Nova operations
supported in Cyborg at any given time are also available in [72].

Cyborg supports:
* Acceleration Resource Discovery
* Accelerator Life Cycle Management
Accelerators can be of type:
» Software: dpdk/spdk, pmem, ...
* Hardware (device types): FPGA, GPU, ARM SoC, NVMe SSD, CCIX based Caches, ...

The Cyborg architecture [73] consists of the cyborg-api, cyborg-conductor, cyborg-db, cyborg-agent, and generic de-
vice type drivers. cyborg-api, cyborg-conductor and cyborg-db are hosted on control nodes. cyborg-agent, which runs
on compute nodes, interacts with generic device type drivers on those nodes. These generic device type drivers are an
abstraction of the vendor specific drivers; there is a generic device type driver for each device type (see above for list
of some of the device types). The current list of the supported vendor drivers is listed under “Driver Support [72]”.

4.2.2 Containerised OpenStack Services

Containers are lightweight compared to Virtual Machines, and lead to efficient resource utilisation. Kubernetes auto
manages scaling, recovery from failures, etc. Thus, it is recommended that the OpenStack services be containerised
for resiliency and resource efficiency.

The Chapter 3 shows a high level Virtualised OpenStack services topology. The containerised OpenStack services
topology version is shown in the figure below.

76

i
i

oject [Tenant) A

Pr

libwirt exec space

Figure 4.7: Containerised OpenStack Services Topology

77

4.3 Consumable Infrastructure Resources and Services

4.3.1 Support for Cloud Infrastructure Profiles and flavors

Chapters 4 and 5 in [1] provide information about the Cloud Infrastructure Profiles and their size information. Open-
Stack flavors with their set of properties describe the server capabilities and size required to determine the compute
host which will run this server. The set of properties must match compute profiles available in the infrastructure. To
implement these profiles and sizes, it is required to set up the flavors as specified in the tables below.

78

Table 4.17: Neutron Services Placement

Flavor Reference Basic High-Performance
Capabilities | RM Chapter
4and5
CPU allo- | in- In flavor create or flavor set -property | In flavor create or flavor set -property
cation ratio | fra.com.cfg. cpu_all ocation_ratio=4.0 cpu_allocation_ratio=1.0
(custom 001
extra_specs)
NUMA in- In flavor create or flavor set spec-
Awareness fra.com.cfg. ify -property hw:numa_nodes=<integer
002 range of 0 to #numa_nodes - 1>. To re-
strict an instance’s vCPUs to a single
host NUMA node, specify: -property
hw:numa_nodes=1. Some compute in-
tensive* workloads with highly sensi-
tive memory latency or bandwidth re-
quirements, the instance may benefit
from spreading across multiple NUMA
nodes: -property hw:numa_nodes=2
CPU Pinning | in- In flavor create or flavor set specify - | In flavor create or flavor set specify -
fra.com.cfg. | property hw: cpu_policy=shared (de- | property hw:cpu_policy=dedicated
003 fault) and -property
hw:cpu_thread_policy=<prefer, re-
quire, isolate>. Use “isolate” thread
policy for very high compute intensive
workloads that require that each vCPU
be placed on a different physical core
Huge pages in- -property hw:mem_page_size=<small
fra.com.cfg. [large | size>
004
SMT in- In flavor create or fla-
fra.com.cfg. vor set specify -property
005 hw:cpu_threads=<integer#threads
(usually 1 or 2)>
OVS-DPDK | infra.net.acc. ml2.conf.ini configured to support
cfg.001 [OVS] datapath_type=netdev
Note: huge pages should be configured
to large
Local Stor- | infra.hw.stg. trait: STORAGEDISK_SSD=required trait: STORAGE_DISK_SSD=required
age SSD ssd.cfg.002
Port speed infra.hw.nic. | -property quota | -property quota
cfg.002 vif_inbound_average=1310720 and | vif_inboundaverage=3125000 and

vif_outbound_average=1310720.
Note:10 Gbps = 1250000 kilobytes per
second

vif_outbound_average=3125000
Note: 25 Gbps = 3125000 kilobytes per
second

* To configure profile-extensions, for example, the “Storage Intensive High Performance” profile, as defined in
Profile Extensions (Specialisations) [1], in addition to the above, need to configure the storage IOPS: the following
two parameters need to be specified in the flavor create: -property quota:disk_write_iops_sec=<IOPS#> and -
property quota:disk_read_iops_sec=<IOPS#>.

The flavor create command and the mandatory and optional configuration parameters is documented in OpenStack

Flavors [74].

79

4.3.2 Logical segregation and high availability

To ensure logical segregation and high availability, the architecture will rely on the following principles:

¢ Availability zone: provide resiliency and fault tolerance for VNF deployments, by means of physical hosting
distribution of compute nodes in separate racks with separate power supply, in the same or different DC room

 Affinity-groups: allow tenants to make sure that VNFC instances are on the same compute node or are on different
compute nodes.

Note: The Cloud Infrastructure doesn’t provide any resiliency mechanisms at the service level. Any server restart shall
be triggered by the VNF Manager instead of OpenStack:

¢ ITtdoesn’timplement Instance High Availability which could allow OpenStack Platform to automatically re-spawn
instances on a different compute node when their host compute node breaks.

* Physical host reboot does not trigger automatic server recovery.
* Physical host reboot does not trigger the automatic start of a server.
Limitations and constraints

* NUMA Opverhead: isolated core will be used for overhead tasks from the hypervisor.

4.3.3 Transaction Volume Considerations

Storage transaction volumes impose a requirement on North-South network traffic in and out of the storage backend.
Data availability requires that the data be replicated on multiple storage nodes and each new write imposes East-West
network traffic requirements.

4.4 Cloud Topology and Control Plane Scenarios

Typically, Clouds have been implemented in large (central) data centres with hundreds to tens of thousands of servers.
Telco Operators have also been creating intermediate data centres in central office locations, colocation centres, and
now edge centres at the physical edge of their networks because of the demand for low latency and high throughput for
5@, IoT and connected devices (including autonomous driverless vehicles and connected vehicles). Cloud Topology
discusses and lists 3 types of data centres: Large, Intermediate and Edge.

For ease of convenience, unless specifically required, in this section we will use Central Cloud Centre, Edge Cloud Cen-
tre and Intermediate Cloud Centre as representative terms for cloud services hosted at centralised large data centres,
Telco edge locations and for locations with capacity somewhere in between the large data centres and edge locations,
respectively. The mapping of various terms, including the Reference Model terminology specified in the chapter “Com-
parison of Deployment Topologies and Edge Terms” and Open Glossary of Edge Computing [75], is as follows:

* Central Cloud Centre: Large Centralised Data Centre, Regional Data Centre
 Intermediate Cloud Centre: Metro Data Centre, Regional Edge, Aggregation Edge

» Edge Cloud Centre: Edge, Mini-/Micro-Edge, Micro Modular Data Centre, Service Provider Edge, Access Edge,
Aggregation Edge

In the Intermediate and Edge cloud centres, there may be limitations on the resource capacity, as in the number of
servers, and the capacity of these servers in terms of # of cores, RAM, etc. restricting the set of services that can be
deployed and, thus, creating a dependency between other data centres. “Telco Edge Cloud” chapter in [1] specifies the
physical and environmental characteristics, infrastructure capabilities and deployment scenarios of different locations.

OpenStack Services Topology of this document, specifies the differences between the Control Plane and Data Plane,
and specifies which of the control nodes, compute nodes, storage nodes (optional) and network nodes (optional) are
components of these planes. The previous sections of this Chapter 4 include a description of the OpenStack services

80

and their deployment in control nodes, compute nodes, and optionally storage nodes and network nodes (rarely). The
Control Plane deployment scenarios determine the distribution of OpenStack and other needed services among the
different node types. This section considers the Centralised Control Plane (CCP) and Distributed Control Plane (DCP)
scenarios. The choice of control plane and the cloud centre resource capacity and capabilities determine the deployment
of OpenStack services in the different node types.

The Central Cloud Centres are organised around a Centralised Control Plane. With the introduction of Intermediate
and Edge Cloud Centres, the Distributed Control Plane deployment becomes a possibility. A number of independent
control planes (sometimes referred to as Local Control Planes (LCP)) exist in the Distributed Control Plane scenario,
compared with a single control plane in the Centralised Control Plane scenario. Thus, in addition to the control plane
and controller services deployed at the Central Cloud Centre, Local Control Planes hosting a full-set or subset of
the controller services are also deployed on the Intermediate and Edge Cloud Centres. The following table presents
examples of such deployment choices.

81

Table 4.18: Distribution of OpenStack services on different nodes de-
pending upon Control Plane Scenario

Control Deployed | Orches- Identity Image Compute | Network Storage
Plane in tration Manage- Manage- Manage- Manage-
ment ment ment ment
CCpP Centralised | heat-api, Identity Glance nova- neutron- Cinder
DC - | heat- Provider API, compute server, API,
control engine, (IdP), Glance api, nova- | neutron- Cinder
nodes nova- Keystone Registry scheduler, dhcp- Scheduler,
placement- | API nova- agent, Cinder
api conductor neutron- Volume
L2-agent,
neutron-
L3-agent
(optional),
neutron-
metadata
-agent
DCP: com- | Any DC | heat-api, Identity Glance nova- neutron- Cinder
bination - Control | heat- Provider API, compute server, API,
of services | nodes engine, (IdP), Glance api, nova- | neutron- Cinder
depend- Option 1 nova- Keystone Registry scheduler, dhcp- Scheduler,
ing upon placement- | API nova- agent, Cinder
Center size api conductor neutron- Volume
L2-agent,
neutron-
L3-agent
(optional),
neutron-
metadata
-agent
Any DC | in one of | intheLarge | intheLarge | in one of | in one of | in one of
- Control | the DC DC DC the DC ther DC the DC
nodes Op-
tion 2: split
services
between
two or
more DCs
CCp or | Compute nova- neutron-
DCP nodes compute L2- agent,
-agent neutron-
L3-agent
(optional)
CCP Compute nova- nova- neutron
nodes placement- compute- -server,
api agent, neutron-
nova- dhcp-
conductor agent,
neutron-
L2-agent,
neutron-
L3-agent
(optional)

82

4.4.1 Edge Cloud Topology

The Reference Model “Telco Edge Cloud” chapter [1] presents the deployment environment characteristics, infrastruc-
ture characteristics and new values for the Infrastructure Profiles at the Edge.

The Edge computing whitepaper [76] includes information such as the services that run on various nodes. The infor-
mation from the whitepaper coupled with that from the OpenStack Reference Architecture [77] for 100, 300 and 500
nodes will help in deciding which OpenStack and other services (such as database, messaging) run on which nodes in
what Cloud Centre and the number of copies that should be deployed. These references also present the pros and cons
of DCP and CCP and designs to address some of the challenges of each of the models.

“Telco Edge Cloud: Platform Services Deployment” [1] lists the Platform Services that may be placed in the different
node types (control, compute, and storage). Depending upon the capacity and resources available only the compute
nodes may exist at the Edge thereby impacting operations.

“Telco Edge Cloud: Infrastructure Profiles” [1] lists a number of Infrastructure Profile characteristics and the changes
that may need to be made for certain Edge clouds depending upon their resource capabilities. It should be noted that
none of these changes affect the definition of OpenStack flavors.

The previous section listed the OpenStack services deployed on the controller nodes depending upon the control plane
distribution. As specified earlier in this chapter, at least 3 controller nodes should be deployed for HA. Compute nodes
may also exist at the sites where controller nodes are deployed.

Control plane services are not hosted at edge sites. Each edge site can be treated as its own OpenStack AZ. The compute
nodes will host nova-compute, a component of the Compute Service (Nova), and neutron-L2-agent, a component of
the Network Service (Neutron).

The Edge sites may or may not contain local storage. If the edge sites contain storage, then the Block Storage service
(Cinder) is usually deployed to run in an active/active mode with the centrally deployed Block Storage service. Instance
images are downloaded and stored locally; they can be downloaded even prior to use.

If the edge site doesn’t contain storage, then the images would need to be cached from the central site. Two options
exist:

* The instance images would be downloaded and cached in the Nova cache on first use; they will then be available
for subsequent use.

* Pre-caching the instance images for low time-to-boot latency. This has been supported in Nova since the Open-
Stack Ussuri release.

Image caching and considerations for its use are discussed in the OpenStack document Image Caching [78].

Edge Cloud Deployment Tools

Deployment at the Edge requires support for large scale deployment. A number of open-source tools are available for
this purpose including:

* Airship [79]: declaratively configure, deploy and maintain an integrated virtualisation and containerisation plat-
form

» Starling-X [80]: cloud infrastructure software stack for the edge
* Triple-O [81]: for installing, upgrading and operating OpenStack clouds

These installers are described in more details in Operations and Life Cycle Management.

83

5 Interfaces and APIs

This chapter presents a consolidated set of OpenStack Service APIs corresponding to the ETSI NFV Nf-Vi, Vi-Vnfm
and Or-Vi interfaces. The OpenStack Wallaby version is used as the baseline for these APIs and CLIs in this Reference
Architecture (RA-1) version. Any Cloud Infrastructure + VIM reference implementations that get certified by RC
(Reference Conformance) can be considered as Anuket RA Conformant.

The Chapter presents the APIs for the core OpenStack services defined in Chapter 3 and a consolidated view of these
and other APIs that are of interest.

OpenStack is a multi-project framework composed of independently evolving services. It is not enough to rely only
on the OpenStack release to characterise the capabilities supported by these services. Regarding OpenStack services
APIs, an “API version” is associated with each OpenStack service. In addition to major API versions, some Open-
Stack services (Nova, Glance, Keystone, Cinder...) support microversions. The microversions allow new features to
be introduced over time. In this chapter, the major version and microversion are specified per service. The specified
microversion is the minimal microversion that supports the features requested for this RA. For the purpose of confor-
mance tests, this chapter also identifies the set of features, offered by a service, that are mandatory for Anuket compliant
implementation.

5.1 Core OpenStack Services APIs

Please note that OpenStack provides a maximum microversion to be used with an OpenStack release. In the follow-
ing sections the “Maximal API Version” refers to this maximum microversion specified for the OpenStack Wallaby
release. Please note that in Reference Conformance (RC-1) testing, the System Under Test (SUT) can utilise newer
microversions because of the OpenStack microversion policies. As per multiple OpenStack services documentation,
for example the Compute Service [82], “A cloud that is upgraded to support newer microversions will still support all
older microversions to maintain the backward compatibility for those users who depend on older microversions.”

5.1.1 Keystone API

Table 5.1: Keystone

OpenStack Service | API Version | Maximal APl Microversion
Identity: Keystone v3 3.14

Table 5.2: Keystone Features

Keystone Features Mandatory
access_rules
application_credentials | X
external_idp
federation

oauth1

project_tags
security_compliance
trust

| >

Identity API v3: [83]
Identity API v3 extensions: [84]
Security compliance and PCI-DSS: [85]

84

5.1.2 Glance API

Table 5.3: Glance

OpenStack Service

API Version

Maximal API Microversion

Image: Glance

v2

2.9

Table 5.4: Glance Features

Glance Features

Mandatory

impor