
Anuket Reference Architecture for
OpenStack based cloud infrastructure

(RA1)

Anuket Project of Linux Foundation Networking

Sep 26, 2022

Contents

1 Introduction 4
1.1 Overview . 4

1.1.1 Vision . 4
1.2 Use Cases . 4
1.3 OpenStack Reference Release . 5
1.4 Principles . 5

1.4.1 Architectural principles . 5
1.4.2 OpenStack specific principles . 5

1.5 Document Organisation . 6
1.6 Terminology . 6
1.7 Abbreviations . 9
1.8 Conventions . 11

2 Architecture Requirements 11
2.1 Reference Model Requirements . 11

2.1.1 Cloud Infrastructure Software Profile Requirements for Compute 12
2.1.2 Cloud Infrastructure Software Profile Extensions Requirements for Compute 13
2.1.3 Cloud Infrastructure Software Profile Requirements for Networking 13
2.1.4 Cloud Infrastructure Software Profile Extensions Requirements for Networking 14
2.1.5 Cloud Infrastructure Software Profile Requirements for Storage 15
2.1.6 Cloud Infrastructure Software Profile Extensions Requirements for Storage 15
2.1.7 Cloud Infrastructure Hardware Profile Requirements . 16
2.1.8 Cloud Infrastructure Hardware Profile Extensions Requirements 17
2.1.9 Cloud Infrastructure Management Requirements . 17
2.1.10 Cloud Infrastructure Security Requirements . 18

2.2 Architecture and OpenStack Requirements . 28
2.2.1 General Requirements . 28
2.2.2 Infrastructure Requirements . 28
2.2.3 VIM Requirements . 30
2.2.4 Interfaces & APIs Requirements . 31
2.2.5 Tenant Requirements . 31
2.2.6 Operations and LCM . 32
2.2.7 Assurance Requirements . 32

2.3 Architecture and OpenStack Recommendations . 32

1

2.3.1 General Recommendations . 33
2.3.2 Infrastructure Recommendations . 33
2.3.3 VIM Recommendations . 34
2.3.4 Interfaces and APIs Recommendations . 35
2.3.5 Tenant Recommendations . 35
2.3.6 Operations and LCM Recommendations . 35
2.3.7 Assurance Recommendations . 35
2.3.8 Security Recommendations . 36

3 Cloud Infrastructure Architecture - OpenStack 41
3.1 Resources and Services exposed to VNFs . 42

3.1.1 Multi-Tenancy (execution environment) . 42
3.1.2 Virtual Compute (vCPU and vRAM) . 42
3.1.3 Virtual Storage . 43
3.1.4 Virtual Networking Neutron standalone . 43
3.1.5 Virtual Networking - 3rd party SDN solution . 44
3.1.6 Acceleration . 45

3.2 Virtualised Infrastructure Manager (VIM) . 45
3.2.1 VIM Core services . 45
3.2.2 Tenant Isolation . 49
3.2.3 Cloud partitioning: Host Aggregates, Availability Zones . 49
3.2.4 Flavor management . 50

3.3 Underlying Resources . 50
3.3.1 Virtualisation and hypervisors . 50
3.3.2 Physical Infrastructure . 50

3.4 Cloud Topology . 52
3.4.1 Topology Overview . 52

4 Cloud Infrastructure & VIM Component Level Architecture 54
4.1 Underlying Resources Configuration and Dimensioning . 55

4.1.1 Virtualisation layer . 55
4.1.2 Compute . 55
4.1.3 Network Fabric . 64
4.1.4 Storage Backend . 68

4.2 VIM OpenStack Services . 70
4.2.1 VIM Services . 70
4.2.2 Containerised OpenStack Services . 75

4.3 Consumable Infrastructure Resources and Services . 77
4.3.1 Support for Cloud Infrastructure Profiles and flavors . 77
4.3.2 Logical segregation and high availability . 79
4.3.3 Transaction Volume Considerations . 79

4.4 Cloud Topology and Control Plane Scenarios . 79
4.4.1 Edge Cloud Topology . 82

5 Interfaces and APIs 83
5.1 Core OpenStack Services APIs . 83

5.1.1 Keystone API . 83
5.1.2 Glance API . 84
5.1.3 Cinder API . 84
5.1.4 Swift API . 85
5.1.5 Neutron API . 85
5.1.6 Nova API . 87
5.1.7 Placement API . 88
5.1.8 Heat API . 89

2

5.2 Consolidated Set of APIs . 89
5.2.1 OpenStack Interfaces . 89
5.2.2 Kubernetes Interfaces . 89
5.2.3 KVM Interfaces . 89
5.2.4 Libvirt Interfaces . 90
5.2.5 Barbican API . 90

6 Security 90
6.1 Security Requirements . 90
6.2 Cloud Infrastructure and VIM Security . 90

6.2.1 System Hardening . 90
6.2.2 Platform Access . 93
6.2.3 Confidentiality and Integrity . 95
6.2.4 Workload Security . 97
6.2.5 SR-IOV and DPDK Considerations . 97
6.2.6 Image Security . 97
6.2.7 Security LCM . 98
6.2.8 Monitoring and Security Audit . 98

7 Operations and Life Cycle Management 101
7.1 Procedural versus Declarative code . 101
7.2 Mutable versus Immutable infrastructure . 101
7.3 Cloud Infrastructure provisioning and configuration management . 101

7.3.1 Underlying resources provisioning . 102
7.3.2 VIM deployment . 102
7.3.3 Configuration Management . 103

7.4 Cloud Infrastructure and VIM Maintenance . 103
7.5 Logging, Monitoring and Analytics . 103

7.5.1 Logging . 104
7.5.2 Monitoring . 104
7.5.3 Alerting . 104
7.5.4 Logging, Monitoring, and Analytics (LMA) Framework . 105

8 Conformance 105
8.1 Requirements and Testing Principles . 106
8.2 Test Case Integration and Tooling . 106

8.2.1 Anuket Toolchains . 107
8.2.2 Test Case Integration . 107
8.2.3 Testing Cookbooks . 107

8.3 Conformance Test Suite . 108
8.3.1 Functest in a nutshell . 108
8.3.2 Test Case traceability . 110

8.4 Test Cases Traceability to Requirements . 126
8.4.1 RM/RA-1 Requirements . 126
8.4.2 TC Mapping to Requirements . 127

8.5 OpenStack Testing Cookbook . 127
8.5.1 OpenStack API testing configuration . 128
8.5.2 Run OpenStack based cloud infrastructure Conformance . 128

9 Gaps, Innovation, and Development 128
9.1 The Gap . 128

9.1.1 Autoscaling . 128

References 129

3

1 Introduction

1.1 Overview

This Reference Architecture is focussed on OpenStack as the Virtualised Infrastructure Manager (VIM) chosen based
on the criteria laid out in the Cloud Infrastructure Reference Model [1] (referred to as “Reference Model” or “RM” in the
document). OpenStack [2] has the advantage of being a mature and widely accepted open-source technology; a strong
ecosystem of vendors that support it, the OpenInfra Foundation for managing the community, and, most importantly, it
is widely deployed by the global operator community for both internal infrastructure and external facing products and
services. This means that resources with the right skill sets to support a Cloud Infrastructure (or Network Function
Virtualisation Infrastructure, NFVI [3]) are available. Another reason to choose OpenStack is that it has a large active
community of vendors and operators, which means that any code or component changes needed to support the Common
Telco Cloud Infrastructure requirements can be managed through the existing project communities’ processes to add
and validate the required features through well-established mechanisms.

1.1.1 Vision

This Reference Architecture specifies OpenStack based Cloud Infrastructure for hosting NFV workloads, primarily
VNFs (Virtual Network Functions). The Reference Architecture document can be used by operators to deploy Anuket
conformant infrastructure; hereafter, “conformant” denotes that the resource can satisfy tests conducted to verify con-
formance with this reference architecture.

1.2 Use Cases

Several NFV use cases are documented in OpenStack. For more examples and details refer to the OpenStack Use cases
[4].

Examples include:

• Overlay networks: The overlay functionality design includes OpenStack Networking in Open vSwitch [5] GRE
tunnel mode. In this case, the layer-3 external routers pair with VRRP, and switches pair with an implementation
of MLAG to ensure that you do not lose connectivity with the upstream routing infrastructure.

• Performance tuning: Network level tuning for this workload is minimal. Quality of Service (QoS) applies to
these workloads for a middle ground Class Selector depending on existing policies. It is higher than a best effort
queue, but lower than an Expedited Forwarding or Assured Forwarding queue. Since this type of application
generates larger packets with longer-lived connections, you can optimise bandwidth utilisation for long duration
TCP. Normal bandwidth planning applies here with regards to benchmarking a session’s usage multiplied by the
expected number of concurrent sessions with overhead.

• Network functions: are software components that support the exchange of information (data, voice, multi-
media) over a system’s network. Some of these workloads tend to consist of a large number of small-sized
packets that are short lived, such as DNS queries or SNMP traps. These messages need to arrive quickly and,
thus, do not handle packet loss. Network function workloads have requirements that may affect configurations
including at the hypervisor level. For an application that generates 10 TCP sessions per user with an average
bandwidth of 512 kilobytes per second per flow and expected user count of ten thousand (10,000) concurrent
users, the expected bandwidth plan is approximately 4.88 gigabits per second. The supporting network for this
type of configuration needs to have a low latency and evenly distributed load across the topology. These types
of workload benefit from having services local to the consumers of the service. Thus, use a multi-site approach,

4

as well as, deploying many copies of the application to handle load as close as possible to consumers. Since
these applications function independently, they do not warrant running overlays to interconnect tenant networks.
Overlays also have the drawback of performing poorly with rapid flow setup and may incur too much overhead
with large quantities of small packets and therefore we do not recommend them. QoS is desirable for some
workloads to ensure delivery. DNS has a major impact on the load times of other services and needs to be
reliable and provide rapid responses. Configure rules in upstream devices to apply a higher-Class Selector to
DNS to ensure faster delivery or a better spot in queuing algorithms.

1.3 OpenStack Reference Release

This Reference Architecture document conforms to the OpenStack Wallaby [6] release. While many features and
capabilities are conformant with many OpenStack releases, this document will refer to features, capabilities and APIs
that are part of the OpenStack Wallaby release. For ease, this Reference Architecture document version can be referred
to as “RA-1 OSTK Wallaby.”

1.4 Principles

1.4.1 Architectural principles

This Reference Architecture for OpenStack based Cloud Infrastructure must obey the following set of architectural
principles:

1. Open-source preference: for building Cloud Infrastructure solutions, components and tools, using open-source
technology.

2. Open APIs: to enable interoperability, component substitution, and minimise integration efforts.

3. Separation of concerns: to promote lifecycle independence of different architectural layers and modules (e.g.,
disaggregation of software from hardware).

4. Automated lifecycle management: to minimise the end-to-end lifecycle costs, maintenance downtime (target
zero downtime), and errors resulting from manual processes.

5. Automated scalability: of workloads to minimise costs and operational impacts.

6. Automated closed loop assurance: for fault resolution, simplification, and cost reduction of cloud operations.

7. Cloud nativeness: to optimise the utilisation of resources and enable operational efficiencies.

8. Security compliance: to ensure the architecture follows the industry best security practices and is at all levels
compliant to relevant security regulations.

9. Resilience and Availability: to withstand Single Point of Failure.

1.4.2 OpenStack specific principles

OpenStack considers the following Four Opens essential for success:

• Open Source

• Open Design

• Open Development

• Open Community

5

This OpenStack Reference Architecture is organised around the three major Cloud Infrastructure resource types as core
services of compute, storage and networking, and a set of shared services of identity management, image management,
graphical user interface, orchestration engine, etc.

1.5 Document Organisation

Chapter 2 defines the Reference Architecture requirements and, when appropriate, provides references to where these
requirements are addressed in this document. The intent of this document is to address all of the mandatory (“must”)
requirements and the most useful of the other optional (“should”) requirements. Chapter 3 and 4 cover the Cloud In-
frastructure resources and the core OpenStack services, while the APIs are covered in Chapter 5. Chapter 6 covers the
implementation and enforcement of security capabilities and controls. Life Cycle Management of the Cloud Infras-
tructure and VIM are covered in Chapter 7 with stress on Logging, Monitoring and Analytics (LMA), configuration
management and some other operational items. Please note that Chapter 7 is not a replacement for the implementation,
configuration and operational documentation that accompanies the different OpenStack distributions. Chapter 8 ad-
dresses the conformance. It provides an automated validation mechanism to test the conformance of a deployed cloud
infrastructure to this reference architecture. Finally, Chapter 9 identifies certain Gaps that currently exist and plans on
howto address them (for example, resources autoscaling).

1.6 Terminology

Abstraction: Process of removing concrete, fine-grained or lower-level details or attributes or common properties in
the study of systems to focus attention on topics of greater importance or general concepts. It can be the result of
decoupling.

Anuket: A LFN open-source project developing open reference infrastructure models, architectures, tools, and pro-
grams.

Cloud Infrastructure: A generic term covering NFVI, IaaS and CaaS capabilities - essentially the infrastructure on
which a Workload can be executed. NFVI, IaaS and CaaS layers can be built on top of each other. In case of CaaS
some cloud infrastructure features (e.g.: HW management or multitenancy) are implemented by using an underlying
IaaS layer.

Cloud Infrastructure Hardware Profile: defines the behaviour, capabilities, configuration, and metrics provided by
a cloud infrastructure hardware layer resources available for the workloads.

Host Profile: is another term for a Cloud Infrastructure Hardware Profile.

Cloud Infrastructure Profile: The combination of the Cloud Infrastructure Software Profile and the Cloud Infras-
tructure Hardware Profile that defines the capabilities and configuration of the Cloud Infrastructure resources available
for the workloads.

Cloud Infrastructure Software Profile: defines the behaviour, capabilities and metrics provided by a Cloud Infras-
tructure Software Layer on resources available for the workloads.

Cloud Native Network Function (CNF): A cloud native network function (CNF) is a cloud native application that
implements network functionality. A CNF consists of one or more microservices. All layers of a CNF are developed
using Cloud Native Principles including immutable infrastructure, declarative APIs, and a “repeatable deployment
process”. This definition is derived from the Cloud Native Thinking for Telecommunications Whitepaper, which also
includes further detail and examples.

Compute Node: An abstract definition of a server. A compute node can refer to a set of hardware and software that
support the VMs or Containers running on it.

Container: A lightweight and portable executable image that contains software and all of its dependencies. OCI
defines Container as “An environment for executing processes with configurable isolation and resource limitations.
For example, namespaces, resource limits, and mounts are all part of the container environment.” A Container provides
operating-system-level virtualisation by abstracting the “user space”. One big difference between Containers and VMs

6

is that unlike VMs, where each VM is self-contained with all the operating systems components are within the VM
package, containers “share” the host system’s kernel with other containers.

Container Image: Stored instance of a container that holds a set of software needed to run an application.

Core (physical): An independent computer processing unit that can independently execute CPU instructions and is
integrated with other cores on a multiprocessor (chip, integrated circuit die). Please note that the multiprocessor chip
is also referred to as a CPU that is placed in a socket of a computer motherboard.

CPU Type: A classification of CPUs by features needed for the execution of computer programs; for example, instruc-
tion sets, cache size, number of cores.

Decoupling, Loose Coupling: Loosely coupled system is one in which each of its components has, or makes use of,
little or no knowledge of the implementation details of other separate components. Loose coupling is the opposite of
tight coupling

Encapsulation: Restricting of direct access to some of an object’s components.

External Network: External networks provide network connectivity for a cloud infrastructure tenant to resources
outside of the tenant space.

Fluentd: An open-source data collector for unified logging layer, which allows data collection and consumption for
better use and understanding of data. Fluentd is a CNCF graduated project.

Functest: An open-source project part of Anuket LFN project. It addresses functional testing with a collection of
state-of-the-art virtual infrastructure test suites, including automatic VNF testing.

Hardware resources: Compute/Storage/Network hardware resources on which the cloud infrastructure platform soft-
ware, virtual machines and containers run on.

Huge pages: Physical memory is partitioned and accessed using the basic page unit (in Linux default size of 4 KB).
Hugepages, typically 2 MB and 1GB size, allows large amounts of memory to be utilised with reduced overhead. In
an NFV environment, huge pages are critical to support large memory pool allocation for data packet buffers. This
results in fewer Translation Lookaside Buffers (TLB) lookups, which reduces the virtual to physical pages’ address
translations. Without huge pages enabled high TLB miss rates would occur thereby degrading performance.

Hypervisor: a software that abstracts and isolates workloads with their own operating systems from the underlying
physical resources. Also known as a virtual machine monitor (VMM).

Instance: is a virtual compute resource, in a known state such as running or suspended, that can be used like a physical
server. It can be used to specify VM Instance or Container Instance.

Kibana: An open-source data visualisation system.

Kubernetes: An open-source system for automating deployment, scaling, and management of containerised applica-
tions.

Monitoring (Capability): Monitoring capabilities are used for the passive observation of workload-specific traffic
traversing the Cloud Infrastructure. Note, as with all capabilities, Monitoring may be unavailable or intentionally
disabled for security reasons in a given cloud infrastructure instance.

Multi-tenancy: feature where physical, virtual or service resources are allocated in such a way that multiple tenants
and their computations and data are isolated from and inaccessible by each other.

Network Function (NF): functional block or application that has well-defined external interfaces and well-defined
functional behaviour. Within NFV, a Network Function is implemented in a form of Virtualised NF (VNF) or a
Cloud Native NF (CNF).

NFV Orchestrator (NFVO): Manages the VNF lifecycle and Cloud Infrastructure resources (supported by the VIM)
to ensure an optimised allocation of the necessary resources and connectivity.

Network Function Virtualisation (NFV): The concept of separating network functions from the hardware they run
on by using a virtual hardware abstraction layer.

7

Network Function Virtualisation Infrastructure (NFVI): The totality of all hardware and software components
used to build the environment in which a set of virtual applications (VAs) are deployed; also referred to as cloud
infrastructure. The NFVI can span across many locations, e.g., places where data centres or edge nodes are operated.
The network providing connectivity between these locations is regarded to be part of the cloud infrastructure. NFVI
and VNF are the top-level conceptual entities in the scope of Network Function Virtualisation. All other components
are sub-entities of these two main entities.

Network Service (NS): composition of Network Function(s) and/or Network Service(s), defined by its functional
and behavioural specification, including the service lifecycle.

Open Network Automation Platform (ONAP): A LFN project developing a comprehensive platform for orchestra-
tion, management, and automation of network and edge computing services for network operators, cloud providers,
and enterprises.

ONAP OpenLab: ONAP community lab.

Open Platform for NFV (OPNFV): A collaborative project under the Linux Foundation. OPNFV is now part of
the LFN Anuket project. It aims to implement, test, and deploy tools for conformance and performance of NFV
infrastructure.

OPNFV Verification Program (OVP): An open-source, community-led compliance and verification program aiming
to demonstrate the readiness and availability of commercial NFV products and services using OPNFV and ONAP
components.

Platform: A cloud capabilities type in which the cloud service user can deploy, manage and run customer-created or
customer-acquired applications using one or more programming languages and one or more execution environments
supported by the cloud service provider. Adapted from ITU-T Y.3500. This includes the physical infrastructure,
Operating Systems, virtualisation/containerisation software and other orchestration, security, monitoring/logging and
life-cycle management software.

Prometheus: An open-source monitoring and alerting system.

Quota: An imposed upper limit on specific types of resources, usually used to prevent excessive resource consumption
by a given consumer (tenant, VM, container).

Resource pool: A logical grouping of cloud infrastructure hardware and software resources. A resource pool can be
based on a certain resource type (for example, compute, storage and network) or a combination of resource types. A
Cloud Infrastructure resource can be part of none, one or more resource pools.

Simultaneous Multithreading (SMT): Simultaneous multithreading (SMT) is a technique for improving the overall
efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution
on a single core to better utilise the resources provided by modern processor architectures.

Shaker: A distributed data-plane testing tool built for OpenStack.

Software Defined Storage (SDS): An architecture which consists of the storage software that is independent from
the underlying storage hardware. The storage access software provides data request interfaces (APIs) and the SDS
controller software provides storage access services and networking.

Tenant: cloud service users sharing access to a set of physical and virtual resources, ITU-T Y.3500. Tenants repre-
sent an independently manageable logical pool of compute, storage and network resources abstracted from physical
hardware.

Tenant Instance: refers to an Instance owned by or dedicated for use by a single Tenant.

Tenant (Internal) Networks: Virtual networks that are internal to Tenant Instances.

User: Natural person, or entity acting on their behalf, associated with a cloud service customer that uses cloud services.
Examples of such entities include devices and applications.

Virtual CPU (vCPU): Represents a portion of the host’s computing resources allocated to a virtualised resource, for
example, to a virtual machine or a container. One or more vCPUs can be assigned to a virtualised resource.

8

Virtualised Infrastructure Manager (VIM): Responsible for controlling and managing the Network Function Virtu-
alisation Infrastructure (NFVI) compute, storage and network resources.

Virtual Machine (VM): virtualised computation environment that behaves like a physical computer/server. A VM con-
sists of all of the components (processor (CPU), memory, storage, interfaces/ports, etc.) of a physical computer/server.
It is created using sizing information or Compute Flavour.

Virtualised Network Function (VNF): A software implementation of a Network Function, capable of running on the
Cloud Infrastructure. VNFs are built from one or more VNF Components (VNFC) and, in most cases, the VNFC is
hosted on a single VM or Container.

Virtual Compute resource (a.k.a. virtualisation container): partition of a compute node that provides an isolated
virtualised computation environment.

Virtual Storage resource: virtualised non-volatile storage allocated to a virtualised computation environment hosting
a VNFC.

Virtual Networking resource: routes information among the network interfaces of a virtual compute resource and
physical network interfaces, providing the necessary connectivity.

VMTP: A data path performance measurement tool built specifically for OpenStack clouds.

Workload: an application (for example VNF, or CNF) that performs certain task(s) for the users. In the Cloud Infras-
tructure, these applications run on top of compute resources such as VMs or Containers.

1.7 Abbreviations

Abbreviation/Acronym Definition
API Application Programming Interface
BGP VPN Border gateway Protocol Virtual Private network
CI/CD Continuous Integration/Continuous Deployment
CNTT Cloud iNfrastructure Task Force
CPU Central Processing Unit
DNS Domain Name System
DPDK Data Plane Development Kit
DHCP Dynamic Host Configuration Protocol
ECMP Equal Cost Multi-Path routing
ETSI European Telecommunications Standards Institute
FPGA Field Programmable Gate Array
MB/GB/TB MegaByte/GigaByte/TeraByte
GPU Graphics Processing Unit
GRE Generic Routing Encapsulation
GSM Global System for Mobile Communications (originally Groupe Spécial Mobile)
GSMA GSM Association
GSLB Global Service Load Balancer
GUI Graphical User Interface
HA High Availability
HDD Hard Disk Drive
HTTP HyperText Transfer Protocol
HW Hardware
IaaC (also IaC) Infrastructure as a Code
IaaS Infrastructure as a Service
ICMP Internet Control Message Protocol
IMS IP Multimedia Sub System

continues on next page

9

Table 1.1 – continued from previous page
Abbreviation/Acronym Definition
IO Input/Output
IOPS Input/Output per Second
IPMI Intelligent Platform Management Interface
KVM Kernel-based Virtual Machine
LCM LifeCycle Management
LDAP Lightweight Directory Access Protocol
LFN Linux Foundation Networking
LMA Logging, Monitoring and Analytics
LVM Logical Volume Management
MANO Management ANd Orchestration
MLAG Multi-chassis Link Aggregation Group
NAT Network Address Translation
NFS Network File System
NFV Network Function Virtualisation
NFVI Network Function Virtualisation Infrastructure
NIC Network Interface Card
NPU Numeric Processing Unit
NTP Network Time Protocol
NUMA Non-Uniform Memory Access
OAI Open Air Interface
OS Operating System
OSTK OpenStack
OPNFV Open Platform for NFV
OVS Open vSwitch
OWASP Open Web Application Security Project
PCIe Peripheral Component Interconnect Express
PCI-PT PCIe PassThrough
PXE Preboot Execution Environment
QoS Quality of Service
RA Reference Architecture
RA-1 Reference Architecture 1 (i.e., Reference Architecture for OpenStack-based Cloud In-

frastructure)
RBAC Role-based Access Control
RBD RADOS Block Device
REST Representational state transfer
RI Reference Implementation
RM Reference Model
SAST Static Application Security Testing
SDN Software Defined Networking
SFC Service Function Chaining
SG Security Group
SLA Service Level Agreement
SMP Symmetric MultiProcessing
SMT Simultaneous MultiThreading
SNAT Source Network Address Translation
SNMP Simple Network Management Protocol
SR-IOV Single Root Input Output Virtualisation
SSD Solid State Drive
SSL Secure Sockets Layer

continues on next page

10

Table 1.1 – continued from previous page
Abbreviation/Acronym Definition
SUT System Under Test
TCP Transmission Control Protocol
TLS Transport Layer Security
ToR Top of Rack
TPM Trusted Platform Module
UDP User Data Protocol
VIM Virtualised Infrastructure Manager
VLAN Virtual LAN
VM Virtual Machine
VNF Virtual Network Function
VRRP Virtual Router Redundancy Protocol
VTEP VXLAN Tunnel End Point
VXLAN Virtual Extensible LAN
WAN Wide Area Network
ZTA Zero Trust Architecture

1.8 Conventions

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”,
and “optional” in this document are to be interpreted as described in RFC 2119 [7].

2 Architecture Requirements

This chapter includes both “Requirements” that must be satisfied in an RA-1 conformant implementation and “Recom-
mendations” that are optional for implementation.

2.1 Reference Model Requirements

The tables below contain the requirements from the Reference Model [1] to cover the Basic and High-Performance
profiles.

To ensure alignment with the infrastructure profile catalogue, the following requirements are referenced through:

• Those relating to Cloud Infrastructure Software Profiles

• Those relating to Cloud Infrastructure Hardware Profiles

• Those relating to Cloud Infrastructure Management

• Those relating to Cloud Infrastructure Security

11

2.1.1 Cloud Infrastructure Software Profile Requirements for Compute

Table 2.1: Reference Model Requirements: Cloud Infrastructure Soft-
ware Profile Capabilities

Reference Description Requirement
for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

e.cap.001 Max number of vCPU that
can be assigned to a single
instance by the Cloud In-
frastructure

At least 16 At least 16 Compute Nodes

e.cap.002 Max memory that can be
assigned to a single in-
stance by the Cloud Infras-
tructure

at least 32 GB at least 32 GB Virtual Storage

e.cap.003 Max storage that can be
assigned to a single in-
stance by the Cloud Infras-
tructure

at least 320
GB

at least 320
GB

Virtual Storage and
Storage Backend

e.cap.004 Max number of connec-
tion points that can be as-
signed to a single instance
by the Cloud Infrastruc-
ture

6 6 Not Detailed

e.cap.005 Max storage that can be at-
tached / mounted to an in-
stance by the Cloud Infras-
tructure

Up to 16TB
[*]

Up to 16TB
[*]

Storage Backend

e.cap.006 /
infra.com.cfg.003

CPU pinning support Not required Must support Consumable Infras-
tructure Resources
and Services

e.cap.007 /
infra.com.cfg.002

NUMA support Not required Must support Consumable Infras-
tructure Resources
and Services

e.cap.018 /
infra.com.cfg.005

Simultaneous Multi-
threading (SMT) enabled

Must Optional sup-
port

Consumable Infras-
tructure Resources
and Services

i.cap.018 /
infra.com.cfg.004

Huge pages configured Not required Must support Consumable Infras-
tructure Resources
and Services

[*] Defined in the .bronze configuration in “Storage extensions” in [1].

12

2.1.2 Cloud Infrastructure Software Profile Extensions Requirements for Compute

Table 2.2: Cloud Infrastructure Software Profile Extensions Require-
ments for Compute

Reference Description Profile Ex-
tensions

Profile Extra-
Specs

Specification Ref-
erence

e.cap.008 /
infra.com.acc.cfg.001

IPSec Acceleration using
the virtio-ipsec interface

Compute
Intensive
GPU

Acceleration

e.cap.010 /
infra.com.acc.cfg.002

Transcoding Acceleration Compute
Intensive
GPU

Video
Transcod-
ing

Acceleration

e.cap.011 /
infra.com.acc.cfg.003

Programmable Accelera-
tion

Firmware-
programmable
adapter

Accelerator Acceleration

e.cap.012 Enhanced Cache Manage-
ment: L=Lean; E=Equal;
X=eXpanded

E E Not detailed

e.cap.014 /
infra.com.acc.cfg.004

Hardware coprocessor
support (GPU/NPU)

Compute
Intensive
GPU

Acceleration

e.cap.016 /
infra.com.acc.cfg.005

FPGA/other Acceleration
H/W

Firmware-
programmable
adapter

Acceleration

2.1.3 Cloud Infrastructure Software Profile Requirements for Networking

The features and configuration requirements related to virtual networking for the two (2) types of Cloud Infrastructure
Profiles are specified below followed by networking bandwidth requirements.

Table 2.3: Reference Model Requirements - Virtual Networking
Reference Description Requirement

for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

infra.net.cfg.001 IO virtualisation using vir-
tio1.1

Must support Must support Virtualisation layer

infra.net.cfg.002 The overlay network
encapsulation protocol
needs to enable ECMP
in the underlay to take
advantage of the scale-out
features of the network
fabric

Must support
VXLAN,
MPLSoUDP,
GENEVE,
other

No require-
ment specified

Network Fabric

infra.net.cfg.003 Network Address Transla-
tion

Must support Must support Network Fabric

infra.net.cfg.004 Security Groups Must support Must support Workload Security
infra.net.cfg.005 SFC support Not required Must support Virtual Networking -

3rd party SDN solu-
tion

infra.net.cfg.006 Traffic patterns symmetry Must support Must support Not detailed

13

The required number of connection points to an instance is described in e.cap.004 above. The table below specifies
the required bandwidth of those connection points.

Table 2.4: Reference Model Requirements - Network Interface Specifi-
cations

Reference Description Requirement
for Basic
Profile

Requirement
for High
Performance
Profile

Specification Ref-
erence

n1, n2, n3, n4, n5, n6 1, 2, 3, 4, 5, 6 Gbps Must support Must support Not detailed
n10, n20, n30, n40, n50,
n60

10, 20, 30, 40, 50, 60 Gbps Must support Must support Not detailed

n25, n50, n75, n100, n125,
n150

25, 50, 75, 100, 125, 150
Gbps

Optional Must support Not detailed

n50, n100, n150, n200,
n250, n300

50, 100, 150, 200, 250,
300 Gbps

Optional Must support Not detailed

n100, n200, n300, n400,
n500, n600

100, 200, 300, 400, 500,
600 Gbps

Optional Must support Not detailed

2.1.4 Cloud Infrastructure Software Profile Extensions Requirements for Networking

Table 2.5: Cloud Infrastructure Software Profile Extensions Require-
ments for Networking

Reference Description Requirement
for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

e.cap.013 /
infra.hw.nac.cfg.004

SR-IOV over PCI-PT N Y Compute Nodes

e.cap.019 /
infra.net.acc.cfg.001

vSwitch optimisation
(DPDK)

N Y Compute Nodes and
Network quality of
service

e.cap.015 /
infra.net.acc.cfg.002

SmartNIC (for HW Of-
fload)

N Optional Acceleration

e.cap.009 /
infra.net.acc.cfg.003

Crypto acceleration N Optional Not detailed

infra.net.acc.cfg.004 Crypto Acceleration Inter-
face

N Optional Not detailed

14

2.1.5 Cloud Infrastructure Software Profile Requirements for Storage

Table 2.6: Reference Model Requirements - Cloud Infrastructure Soft-
ware Profile Requirements for Storage

Reference Description Requirement
for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

infra.stg.cfg.002 Storage Block Must support Must support Storage and Cinder
infra.stg.cfg.003 Storage with replication Not required Must support Storage and Trans-

action Volume Con-
siderations

infra.stg.cfg.004 Storage with encryption Must support Must support Storage
infra.stg.acc.cfg.001 Storage IOPS oriented Not required Must support Storage
infra.stg.acc.cfg.002 Storage capacity oriented Not required Not required Storage

2.1.6 Cloud Infrastructure Software Profile Extensions Requirements for Storage

Table 2.7: Reference Model Requirements - Cloud Infrastructure Soft-
ware Profile Extensions Requirements for Storage

Reference Description Profile Ex-
tensions

Profile Extra-
Specs

Specification Ref-
erence

infra.stg.acc.cfg.001 Storage IOPS oriented Storage In-
tensive High-
performance
storage

Not detailed

infra.stg.acc.cfg.002 Storage capacity oriented High Capacity Not detailed

15

2.1.7 Cloud Infrastructure Hardware Profile Requirements

Table 2.8: Reference Model Requirements - Cloud Infrastructure Hard-
ware Profile Requirements

Reference Description Requirement
for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

infra.hw.001 CPU Architecture (Values
such as x64, ARM, etc.)

infra.hw.cpu.cfg.001 Minimum number of CPU
(Sockets)

2 2 Compute

infra.hw.cpu.cfg.002 Minimum number of
Cores per CPU

20 20 Compute

infra.hw.cpu.cfg.003 NUMA Not required Must support Compute
infra.hw.cpu.cfg.004 Simultaneous Multi-

threading/Symmetric
Multiprocessing
(SMT/SMP)

Must support Optional Compute

infra.hw.stg.hdd.cfg.001 Local Storage HDD No require-
ment specified

No require-
ment specified

Consumable Infras-
tructure Resources
and Services

infra.hw.stg.ssd.cfg.002 Local Storage SSD Should sup-
port

Should sup-
port

Consumable Infras-
tructure Resources
and Services

infra.hw.nic.cfg.001 Total Number of NIC
Ports available in the host

4 4 Compute

infra.hw.nic.cfg.002 Port speed specified in
Gbps (minimum values)

10 25 Consumable Infras-
tructure Resources
and Services

infra.hw.pci.cfg.001 Number of PCIe slots
available in the host

8 8 Not detailed

infra.hw.pci.cfg.002 PCIe speed Gen 3 Gen 3 Not detailed
infra.hw.pci.cfg.003 PCIe Lanes 8 8 Not detailed
infra.hw.nac.cfg.003 Compression No require-

ment specified
No require-
ment specified

Not detailed

16

2.1.8 Cloud Infrastructure Hardware Profile Extensions Requirements

Table 2.9: Reference Model Requirements - Cloud Infrastructure Hard-
ware Profile Extensions Requirements

Reference Description Requirement
for Basic
Profile

Requirement
for High-
Performance
Profile

Specification Ref-
erence

e.cap.014 /
infra.hw.cac.cfg.001

GPU N Optional Acceleration

e.cap.016 /
infra.hw.cac.cfg.002

FPGA/other Acceleration
H/W

N Optional Acceleration

e.cap.009 /
infra.hw.nac.cfg.001

Crypto Acceleration N Optional Acceleration

e.cap.015 /
infra.hw.nac.cfg.002

SmartNIC N Optional Acceleration

infra.hw.nac.cfg.003 Compression Optional Optional Acceleration
e.cap.013 /
infra.hw.nac.cfg.004

SR-IOV over PCI-PT N Yes Compute node con-
figurations for Pro-
files and OpenStack
Flavors

2.1.9 Cloud Infrastructure Management Requirements

Table 2.10: Reference Model Requirements - Cloud Infrastructure Man-
agement Requirements

Reference Description Requirement
(common to all
Profiles)

Specification Ref-
erence

e.man.001 Capability to allocate virtual compute resources to
a workload

Must support Resources and
Services exposed to
VNFs

e.man.002 Capability to allocate virtual storage resources to
a workload

Must support Resources and
Services exposed to
VNFs

e.man.003 Capability to allocate virtual networking resources
to a workload

Must support Resources and
Services exposed to
VNFs

e.man.004 Capability to isolate resources between tenants Must support Tenant Isolation
e.man.005 Capability to manage workload software images Must support Glance
e.man.006 Capability to provide information related to allo-

cated virtualised resources per tenant
Must support Logging, Monitor-

ing and Analytics
e.man.007 Capability to notify state changes of allocated re-

sources
Must support Logging, Monitor-

ing and Analytics
e.man.008 Capability to collect and expose performance in-

formation on virtualised resources allocated
Must support Logging, Monitor-

ing and Analytics
e.man.009 Capability to collect and notify fault information

on virtualised resources
Must support Logging, Monitor-

ing and Analytics

17

2.1.10 Cloud Infrastructure Security Requirements

System Hardening Requirements

Table 2.11: Reference Model Requirements - System Hardening
Requirements

Reference sub-category Description Specification Ref-
erence

sec.gen.001 Hardening The Platform must maintain the specified config-
uration

Security LCM and
Cloud Infrastruc-
ture provisioning
and configuration
management

sec.gen.002 Hardening All systems part of Cloud Infrastructure must sup-
port hardening as defined in CIS Password Policy
Guide [8]

Password policy

sec.gen.003 Hardening All servers part of Cloud Infrastructure must sup-
port a root of trust and secure boot

Server boot harden-
ing

sec.gen.004 Hardening The Operating Systems of all the servers part of
Cloud Infrastructure must be hardened by remov-
ing or disabling unnecessary services, applications
and network protocols, configuring operating sys-
tem user authentication, configuring resource con-
trols, installing and configuring additional security
controls where needed, and testing the security of
the Operating System (NIST SP 800-123)

Function and Soft-
ware

sec.gen.005 Hardening The Platform must support Operating System
level access control

System Access

sec.gen.006 Hardening The Platform must support Secure logging. Log-
ging with root account must be prohibited when
root privileges are not required

System Access

sec.gen.007 Hardening All servers part of Cloud Infrastructure must be
Time synchronised with authenticated Time ser-
vice

Security Logs Time
Synchronisation

sec.gen.008 Hardening All servers part of Cloud Infrastructure must be
regularly updated to address security vulnerabili-
ties

Security LCM

sec.gen.009 Hardening The Platform must support software integrity pro-
tection and verification

Integrity of Open-
Stack components
configuration

sec.gen.010 Hardening The Cloud Infrastructure must support encrypted
storage, for example, block, object and file storage,
with access to encryption keys restricted based on
a need to know (Controlled Access Based on the
Need to Know [9])

Confidentiality and
Integrity

sec.gen.012 Hardening The Operator must ensure that only authorised ac-
tors have physical access to the underlying infras-
tructure

This requirement’s
verification must be
part of the organ-
isation’s security
process

continues on next page

18

Table 2.11 – continued from previous page
Reference sub-category Description Specification Ref-

erence
sec.gen.013 Hardening The Platform must ensure that only authorised ac-

tors have logical access to the underlying infras-
tructure

System Access

sec.gen.015 Hardening Any change to the Platform must be logged as a
security event, and the logged event must include
the identity of the entity making the change, the
change, the date and the time of the change

Security LCM

Platform and Access Requirements

Table 2.12: Reference Model Requirements - Platform and Access
Requirements

Reference sub-category Description Specification Ref-
erence

sec.sys.001 Access The Platform must support authenticated and se-
cure access to API, GUI and command line inter-
faces

RBAC

sec.sys.002 Access The Platform must support Traffic Filtering for
workloads (for example, Firewall)

Workload Security

sec.sys.003 Access The Platform must support Secure and encrypted
communications, and confidentiality and integrity
of network

Confidentiality and
Integrity

sec.sys.004 Access The Cloud Infrastructure must support authenti-
cation, integrity and confidentiality on all network
channels

Confidentiality and
Integrity

sec.sys.005 Access The Cloud Infrastructure must segregate the un-
derlay and overlay networks

Confidentiality and
Integrity

sec.sys.006 Access The Cloud Infrastructure must be able to utilise
the Cloud Infrastructure Manager identity lifecy-
cle management capabilities

Identity Security

sec.sys.007 Access The Platform must implement controls enforcing
separation of duties and privileges, least privilege
use and least common mechanism (Role-Based
Access Control)

RBAC

sec.sys.008 Access The Platform must be able to assign the Entities
that comprise the tenant networks to different trust
domains. Communication between different trust
domains is not allowed, by default

Workload Security

sec.sys.009 Access The Platform must support creation of Trust Re-
lationships between trust domains. These maybe
uni-directional relationships where the trusting
domain trusts another domain (the “trusted do-
main”) to authenticate users for them them or to
allow access to its resources from the trusted do-
main. In a bidirectional relationship both domain
are “trusting” and “trusted”

Logical segregation
and high availabil-
ity

continues on next page

19

Table 2.12 – continued from previous page
Reference sub-category Description Specification Ref-

erence
sec.sys.010 Access For two or more domains without existing trust re-

lationships, the Platform must not allow the effect
of an attack on one domain to impact the other do-
mains either directly or indirectly

Logical segregation
and high availabil-
ity

sec.sys.011 Access The Platform must not reuse the same authentica-
tion credentials (e.g., key pairs) on different Plat-
form components (e.g., different hosts, or different
services)

System Access

sec.sys.012 Access The Platform must protect all secrets by using
strong encryption techniques and storing the pro-
tected secrets externally from the component (e.g.,
in OpenStack Barbican)

Barbican

sec.sys.013 Access The Platform must generate secrets dynamically
as and when needed

Barbican

sec.sys.015 Access The Platform must not contain back door entries
(unpublished access points, APIs, etc.)

Not detailed

sec.sys.016 Access Login access to the Platform’s components must
be through encrypted protocols such as SSH v2 or
TLS v1.2 or higher. Note: Hardened jump servers
isolated from external networks are recommended

Security LCM

sec.sys.017 Access The Platform must provide the capability of using
digital certificates that comply with X.509 stan-
dards issued by a trusted Certification Authority

Confidentiality and
Integrity

sec.sys.018 Access The Platform must provide the capability of al-
lowing certificate renewal and revocation

Confidentiality and
Integrity

sec.sys.019 Access The Platform must provide the capability of test-
ing the validity of a digital certificate (CA signa-
ture, validity period, non revocation identity)

Confidentiality and
Integrity

20

Confidentiality and Integrity Requirements

Table 2.13: Reference Model Requirements - Confidentiality and In-
tegrity Requirements

Reference sub-category Description Specification Ref-
erence

sec.ci.001 Confidentiality /
Integrity

The Platform must support Confidentiality and In-
tegrity of data at rest and in transit

Confidentiality and
Integrity

sec.ci.003 Confidentiality /
Integrity

The Platform must support Confidentiality and In-
tegrity of data related metadata

Confidentiality and
Integrity

sec.ci.004 Confidentiality The Platform must support Confidentiality of pro-
cesses and restrict information sharing with only
the process owner (e.g., tenant)

Confidentiality and
Integrity

sec.ci.005 Confidentiality /
Integrity

The Platform must support Confidentiality and In-
tegrity of process- related metadata and restrict
information sharing with only the process owner
(e.g., tenant)

Confidentiality and
Integrity

sec.ci.006 Confidentiality /
Integrity

The Platform must support Confidentiality and
Integrity of workload resource utilisation (RAM,
CPU, Storage, Network I/O, cache, hardware of-
fload) and restrict information sharing with only
the workload owner (e.g., tenant)

Platform Access

sec.ci.007 Confidentiality /
Integrity

The Platform must not allow Memory Inspection
by any actor other than the authorised actors for
the Entity to which Memory is assigned (e.g., ten-
ants owning the workload), for Lawful Inspection,
and for secure monitoring services. Administra-
tive access must be managed using Platform Iden-
tity Lifecycle Management

Platform Access

sec.ci.008 Confidentiality The Cloud Infrastructure must support tenant net-
works segregation

Workload Security

21

Workload Security Requirements

Table 2.14: Reference Model Requirements - Workload Security Require-
ments

Reference sub-category Description Specification Ref-
erence

sec.wl.001 Workload The Platform must support Workload placement
policy

Workload Security

sec.wl.002 Workload The Cloud Infrastructure must provide methods
to ensure the platform’s trust status and integrity
(e.g., remote attestation, Trusted Platform Mod-
ule)

Cloud Infrastruc-
ture and VIM
Security

sec.wl.003 Workload The Platform must support secure provisioning of
Workloads

Workload Security

sec.wl.004 Workload The Platform must support Location assertion (for
mandated in- country or location requirements)

Workload Security

sec.wl.005 Workload The Platform must support the separation of pro-
duction and non- production Workloads

Workload Security

sec.wl.006 Workload The Platform must support the separation of
Workloads based on their categorisation (for ex-
ample, payment card information, healthcare, etc.)

Workload Security

sec.wl.007 Workload The Operator must implement processes and tools
to verify NF authenticity and integrity

Image Security

Image Security Requirements

Table 2.15: Reference Model Requirements - Image Security Require-
ments

Reference sub-category Description Specification Ref-
erence

sec.img.001 Image Images from untrusted sources must not be used Image Security
sec.img.002 Image Images must be scanned to be maintained free

from known vulnerabilities
Image Security

sec.img.003 Image Images must not be configured to run with privi-
leges higher than the privileges of the actor autho-
rised to run them

Image Security

sec.img.004 Image Images must only be accessible to authorised ac-
tors

Integrity of Open-
Stack components
configuration

sec.img.005 Image Image Registries must only be accessible to au-
thorised actors

Integrity of Open-
Stack components
configuration

sec.img.006 Image Image Registries must only be accessible over net-
works that enforce authentication, integrity and
confidentiality

Integrity of Open-
Stack components
configuration

sec.img.007 Image Image registries must be clear of vulnerable and
out of date versions

Image Security

sec.img.008 Image Images must not include any secrets. Secrets in-
clude passwords, cloud provider credentials, SSH
keys, TLS certificate keys, etc.

Image Security

22

Security LCM Requirements

Table 2.16: Reference Model Requirements - Security LCM Require-
ments

Reference sub-category Description Specification Ref-
erence

sec.lcm.001 LCM The Platform must support Secure Provisioning,
Availability, and Deprovisioning (Secure Clean-
Up) of workload resources where Secure Clean-
Up includes tear-down, defense against virus or
other attacks

Monitoring and Se-
curity Audit

sec.lcm.002 LCM The Cloud Operator must use management proto-
cols limiting security risk such as SNMPv3, SSH
v2, ICMP, NTP, syslog and TLS v1.2 or higher

Security LCM

sec.lcm.003 LCM The Cloud Operator must implement and strictly
follow change management processes for Cloud
Infrastructure, Infrastructure Manager and other
components of the cloud, and Platform change
control on hardware

Monitoring and Se-
curity Audit

sec.lcm.005 LCM Platform must provide logs and these logs must be
monitored for anomalous behaviour

Monitoring and Se-
curity Audit

sec.lcm.006 LCM The Platform must verify the integrity of all Re-
source management requests

Confidentiality and
Integrity of tenant
data (sec.ci.001)

sec.lcm.007 LCM The Platform must be able to update newly in-
stantiated, suspended, hibernated, migrated and
restarted images with current time information

Not detailed

sec.lcm.008 LCM The Platform must be able to update newly in-
stantiated, suspended, hibernated, migrated and
restarted images with relevant DNS information

Not detailed

sec.lcm.009 LCM The Platform must be able to update the tag
of newly instantiated, suspended, hibernated, mi-
grated and restarted images with relevant geoloca-
tion (geographical) information

Not detailed

sec.lcm.010 LCM The Platform must log all changes to geolocation
along with the mechanisms and sources of location
information (i.e. GPS, IP block, and timing)

Not detailed

sec.lcm.011 LCM The Platform must implement Security life cycle
management processes including the proactive up-
date and patching of all deployed Cloud Infrastruc-
ture software

Patches

sec.lcm.012 LCM The Platform must log any access privilege esca-
lation

What to Log / What
NOT to Log

23

Monitoring and Security Audit Requirements

The Platform is assumed to provide configurable alerting and notification capability and the operator is assumed to
have automated systems, policies and procedures to act on alerts and notifications in a timely fashion. In the following
the monitoring and logging capabilities can trigger alerts and notifications for appropriate action.

Table 2.17: Reference Model Requirements - Monitoring and Security
Audit Requirements

Reference sub-category Description Specification Ref-
erence

sec.mon.001 Monitoring / Audit Platform must provide logs and these logs must
be regularly monitored for events of interest. The
logs must contain the following fields: event type,
date/time, protocol, service or program used for
access, success/failure, login ID or process ID,
IP address and ports (source and destination) in-
volved

Required Fields

sec.mon.002 Monitoring Security logs must be time synchronised Security Logs Time
Synchronisation

sec.mon.003 Monitoring The Platform must log all changes to time server
source, time, date and time zones

Security Logs Time
Synchronisation

sec.mon.004 Audit The Platform must secure and protect Audit logs
(containing sensitive information) both in-transit
and at rest

Security LCM

sec.mon.005 Monitoring / Audit The Platform must Monitor and Audit various be-
haviours of connection and login attempts to de-
tect access attacks and potential access attempts
and take corrective accordingly actions

What to Log / What
NOT to Log

sec.mon.006 Monitoring / Audit The Platform must Monitor and Audit operations
by authorised account access after login to detect
malicious operational activity and take corrective
actions

Monitoring and Se-
curity Audit

sec.mon.007 Monitoring / Audit The Platform must Monitor and Audit security
parameter configurations for compliance with de-
fined security policies

Integrity of Open-
Stack components
configuration

sec.mon.008 Monitoring / Audit The Platform must Monitor and Audit externally
exposed interfaces for illegal access (attacks) and
take corrective security hardening measures

Confidentiality
and Integrity of
communications
(sec.ci.001)

sec.mon.009 Monitoring / Audit The Platform must Monitor and Audit service for
various attacks (malformed messages, signalling
flooding and replaying, etc.) and take corrective
actions accordingly

Monitoring and Se-
curity Audit

sec.mon.010 Monitoring / Audit The Platform must Monitor and Audit running
processes to detect unexpected or unauthorised
processes and take corrective actions accordingly

Monitoring and Se-
curity Audit

sec.mon.011 Monitoring / Audit The Platform must Monitor and Audit logs from
infrastructure elements and workloads to detected
anomalies in the system components and take cor-
rective actions accordingly

Creating Logs

continues on next page

24

Table 2.17 – continued from previous page
Reference sub-category Description Specification Ref-

erence
sec.mon.012 Monitoring / Audit The Platform must Monitor and Audit Traffic pat-

terns and volumes to prevent malware download
attempts

Confidentiality and
Integrity

sec.mon.013 Monitoring The monitoring system must not affect the secu-
rity (integrity and confidentiality) of the infras-
tructure, workloads, or the user data (through back
door entries)

Not detailed

sec.mon.015 Monitoring The Platform must ensure that the Monitoring sys-
tems are never starved of resources and must ac-
tivate alarms when resource utilisation exceeds a
configurable threshold

Monitoring and Se-
curity Audit

sec.mon.017 Audit The Platform must audit systems for any missing
security patches and take appropriate actions

Patches

sec.mon.018 Monitoring The Platform, starting from initialisation, must
collect and analyse logs to identify security events,
and store these events in an external system

Where to Log

sec.mon.019 Monitoring The Platform’s components must not include an
authentication credential, e.g., password, in any
logs, even if encrypted

What to Log / What
NOT to Log

sec.mon.020 Monitoring / Audit The Platform’s logging system must support the
storage of security audit logs for a configurable pe-
riod of time

Data Retention

sec.mon.021 Monitoring The Platform must store security events locally
if the external logging system is unavailable and
shall periodically attempt to send these to the ex-
ternal logging system until successful

Where to Log

Open-Source Software Security Requirements

Table 2.18: Reference Model Requirements - Open-Source Software Se-
curity Requirements

Reference sub-category Description Specification Ref-
erence

sec.oss.001 Software Open-source code must be inspected by tools with
various capabilities for static and dynamic code
analysis

Image Security

sec.oss.002 Software The CVE (Common Vulnerabilities and Expo-
sures) must be used to identify vulnerabilities and
their severity rating for open-source code part of
Cloud Infrastructure and workloads software

Patches

sec.oss.003 Software Critical and high severity rated vulnerabilities
must be fixed in a timely manner. Refer to the
CVSS (Common Vulnerability Scoring System) to
know a vulnerability score and its associated rate
(low, medium, high, or critical)

Patches

sec.oss.004 Software A dedicated internal isolated repository separated
from the production environment must be used to
store vetted open-source content

Workload Security

25

IaaC security Requirements

Secure Code Stage Requirements

Table 2.19: Reference Model Requirements: IaaC Security Require-
ments, Secure Code Stage

Reference sub-category Description Specification Ref-
erence

sec.code.001 IaaC SAST -Static Application Security Testing must
be applied during Secure Coding stage triggered
by Pull, Clone or Comment trigger. Security
testing that analyses application source code for
software vulnerabilities and gaps against bestprac-
tices. Example: open source OWASP range of
tools

Workload Security

Continuous Build, Integration and Testing Stage Requirements

Table 2.20: Reference Model Requirements - IaaC Security Require-
ments, Continuous Build, Integration and Testing Stage

Reference sub-category Description Specification Ref-
erence

sec.bld.003 IaaC Image Scan must be applied during the Continu-
ous Build, Integration and Testing stage triggered
by Package trigger, example: A push of a container
image to a containerregistry may trigger a vulner-
ability scan before the image becomes available in
the registry

Image Security

Continuous Delivery and Deployment Stage Requirements

26

Table 2.21: Reference Model Requirements - IaaC Security Require-
ments, Continuous Delivery and Deployment Stage

Reference sub-category Description Specification Ref-
erence

sec.del.001 IaaC Image Scan must be applied during the Continu-
ous Delivery and Deployment stage triggered by
Publish to Artifact and Image Repository trigger.
Example: GitLab uses the open source Clair en-
gine for container image scanning

Image Security

sec.del.002 IaaC Code Signing must be applied during the Con-
tinuous Deliveryand Deployment stage and Image
Repository trigger. Code Signing provides authen-
tication to assure that downloaded files are form
the publisher named on the certificate

Image Security

sec.del.004 IaaC Component Vulnerability Scan must be applied
during the Continuous Delivery and Deployment
stage triggered by Instantiate Infrastructure trig-
ger. The vulnerability scanning system is deployed
on the cloud platform to detect security vulnera-
bilities of specified components through scanning
and to provide timely security protection. Exam-
ple: OWASP Zed Attack Proxy (ZAP)

Image Security

Runtime Defence and Monitoring Requirements

Table 2.22: Reference Model Requirements - IaaC Security Require-
ments, Runtime Defence and Monitoring Stage

Reference sub-category Description Specification Ref-
erence

sec.run.001 IaaC Component Vulnerability Monitoring must be
continuously applied during the Runtime Defence
and monitoring stage. Security technology that
monitors components like virtual servers and as-
sesses data, applications, and infrastructure forse-
curity risks

Not detailed

Compliance with Standards Requirements

Table 2.23: Reference Model Requirements: Compliance with Standards
Reference sub-category Description Specification Ref-

erence
sec.std.012 Standards The Public Cloud Operator must, and the Private

Cloud Operator may be certified to be compliant
with the International Standard on Awareness En-
gagements (ISAE) 3402 (in the US:SSAE 16); In-
ternational Standard on Awareness Engagements
(ISAE) 3402. US Equivalent: SSAE16

Not detailed

27

2.2 Architecture and OpenStack Requirements

“Architecture” in this chapter refers to Cloud Infrastructure (referred to as NFVI by ETSI) and VIM, as specified in
Reference Model Chapter 3.

2.2.1 General Requirements

Table 2.24: General Requirements
Reference sub-category Description Specification Ref-

erence
gen.ost.01 Open source The Architecture must use OpenStack APIs Consolidated Set of

APIs
gen.ost.02 Open source The Architecture must support dynamic request

and configuration of virtual resources (compute,
network, storage) through OpenStack APIs

Consolidated Set of
APIs

gen.rsl.01 Resiliency The Architecture must support resilient Open-
Stack components that are required for the contin-
ued availability of running workloads

Containerised
OpenStack Services

gen.avl.01 Availability The Architecture must provide High Availability
for OpenStack components

Underlying Re-
sources Con-
figuration and
Dimensioning

2.2.2 Infrastructure Requirements

Table 2.25: Infrastructure Requirements
Reference sub-category Description Specification Ref-

erence
inf.com.01 Compute The Architecture must provide compute resources

for instances
Cloud Workload
Services

inf.com.04 Compute The Architecture must be able to support multiple
CPU type options to support various infrastructure
profiles (Basic and High Performance)

Support for Cloud
Infrastructure Pro-
files and flavors

inf.com.05 Compute The Architecture must support Hardware Plat-
forms with NUMA capabilities

Support for Cloud
Infrastructure Pro-
files and flavors

inf.com.06 Compute The Architecture must support CPU Pinning of
the vCPUs of an instance

Support for Cloud
Infrastructure Pro-
files and flavors

inf.com.07 Compute The Architecture must support different hardware
configurations to support various infrastructure
profiles (Basic and High Performance)

Cloud partitioning:
Host Aggregates,
Availability Zones

continues on next page

28

Table 2.25 – continued from previous page
Reference sub-category Description Specification Ref-

erence
inf.com.08 Compute The Architecture must support allocating certain

number of host cores for all non-tenant workloads
such as for OpenStack services. SMT threads can
be allocated to individual OpenStack services or
their components. Dedicating host cores to certain
workloads (e.g., OpenStack services) [10]. Please
see example, Configuring libvirt compute nodes
for CPU pinning [11]

Cloud partitioning:
Host Aggregates,
Availability Zones

inf.com.09 Compute The Architecture must ensure that the host cores
assigned to non-tenant and tenant workloads are
SMT aware: that is, a host core and its associated
SMT threads are either all assigned to non-tenant
workloads or all assigned to tenant workloads

Pinned and Un-
pinned CPUs

inf.stg.01 Storage The Architecture must provide remote (not di-
rectly attached to the host) Block storage for In-
stances

Storage

inf.stg.02 Storage The Architecture must provide Object storage for
Instances. Operators may choose not to imple-
ment Object Storage but must be cognizant of the
the risk of “Compliant VNFs” failing in their en-
vironment

Swift

inf.nw.01 Network The Architecture must provide virtual network in-
terfaces to instances

Neutron API

inf.nw.02 Network The Architecture must include capabilities for in-
tegrating SDN controllers to support provision-
ing of network services, from the SDN OpenStack
Neutron service, such as networking of VTEPs to
the Border Edge based VRFs

Virtual Networking -
3rd party SDN solu-
tion

inf.nw.03 Network The Architecture must support low latency and
high throughput traffic needs

Network Fabric

inf.nw.05 Network The Architecture must allow for East/West tenant
traffic within the cloud (via tunnelled encapsula-
tion overlay such as VXLAN or Geneve)

Network Fabric

inf.nw.07 Network The Architecture must support network resiliency Network
inf.nw.10 Network The Cloud Infrastructure Network Fabric must be

capable of enabling highly available (Five 9’s or
better) Cloud Infrastructure

Network

inf.nw.15 Network The Architecture must support multiple network-
ing options for Cloud Infrastructure to support var-
ious infrastructure profiles (Basic and High Perfor-
mance)

Neutron Extensions
and OpenStack Neu-
tron Plugins [12]

inf.nw.16 Network The Architecture must support dual stack IPv4
and IPv6 for tenant networks and workloads

Not detailed

29

2.2.3 VIM Requirements

Table 2.26: VIM Requirements
Reference sub-category Description Specification Ref-

erence
vim.01 General The Architecture must allow infrastructure re-

source sharing
Resources and
Services exposed to
VNFs

vim.03 General The Architecture must allow VIM to discover and
manage Cloud Infrastructure resources

Placement API

vim.05 General The Architecture must include image repository
management

Glance API

vim.07 General The Architecture must support multi-tenancy Multi-Tenancy (exe-
cution environment)

vim.08 General The Architecture must support resource tagging OpenStack Re-
source Tags [13]

30

2.2.4 Interfaces & APIs Requirements

Table 2.27: Interfaces and APIs Requirements
Reference sub-category Description Specification Ref-

erence
int.api.01 API The Architecture must provide APIs to access the

authentication service and the associated manda-
tory features detailed in chapter 5

Keystone API

int.api.02 API The Architecture must provide APIs to access
the image management service and the associated
mandatory features detailed in chapter 5

Glance API

int.api.03 API The Architecture must provide APIs to access the
block storage management service and the associ-
ated mandatory features detailed in chapter 5

Cinder API

int.api.04 API The Architecture must provide APIs to access the
object storage management service and the asso-
ciated mandatory features detailed in chapter 5

Swift API

int.api.05 API The Architecture must provide APIs to access the
network management service and the associated
mandatory features detailed in chapter 5

Neutron API

int.api.06 API The Architecture must provide APIs to access the
compute resources management service and the
associated mandatory features detailed in chapter
5

Nova API

int.api.07 API The Architecture must provide GUI access to ten-
ant facing cloud platform core services except at
Edge/Far Edge clouds

Horizon

int.api.08 API The Architecture must provide APIs needed to
discover and manage Cloud Infrastructure re-
sources

Placement API

int.api.09 API The Architecture must provide APIs to access the
orchestration service

Heat API

int.api.10 API The Architecture must expose the latest version
and microversion of the APIs for the given Anuket
OpenStack release for each of the OpenStack core
services

Core OpenStack
Services APIs

2.2.5 Tenant Requirements

Table 2.28: Tenant Requirements
Reference sub-category Description Specification Ref-

erence
tnt.gen.01 General The Architecture must support self-service dash-

board (GUI) and APIs for users to deploy, config-
ure and manage their workloads

Horizon and Cloud
Workload Services

31

2.2.6 Operations and LCM

Table 2.29: LCM Requirements
Reference sub-category Description Specification Ref-

erence
lcm.gen.01 General The Architecture must support zero downtime of

running workloads when the number of compute
hosts and/or the storage capacity is being expanded
or unused capacity is being removed

Not detailed

lcm.adp.02 Automated deploy-
ment

The Architecture must support upgrades of soft-
ware, provided by the cloud provider, so that the
running workloads are not impacted (viz., hitless
upgrades). Please note that this means that the ex-
isting data plane services should not fail (go down)

Containerised
OpenStack Services

2.2.7 Assurance Requirements

Table 2.30: Assurance Requirements
Reference sub-category Description Specification Ref-

erence
asr.mon.01 Integration The Architecture must include integration with

various infrastructure components to support col-
lection of telemetry for assurance monitoring and
network intelligence

Logging, Monitor-
ing and Analytics

asr.mon.03 Monitoring The Architecture must allow for the collection and
dissemination of performance and fault informa-
tion

Logging, Monitor-
ing and Analytics

asr.mon.04 Network The Cloud Infrastructure Network Fabric and Net-
work Operating System must provide network op-
erational visibility through alarming and stream-
ing telemetry services for operational manage-
ment, engineering planning, troubleshooting, and
network performance optimisation

Logging, Monitor-
ing and Analytics

2.3 Architecture and OpenStack Recommendations

The requirements listed in this section are optional, and are not required in order to be deemed a conformant imple-
mentation.

32

2.3.1 General Recommendations

Table 2.31: General Recommendations
Reference sub-category Description Notes
gen.cnt.01 Cloud nativeness The Architecture should consist of stateless ser-

vice components. However, where state is re-
quired it must be kept external to the component

OpenStack consists
of both stateless
and stateful services
where the stateful
services utilise a
database. For latter
see Configuring the
stateful services
[14]

gen.cnt.02 Cloud nativeness The Architecture should consist of service com-
ponents implemented as microservices that are in-
dividually dynamically scalable

gen.scl.01 Scalability The Architecture should support policy driven
auto-scaling.

This requirement
is currently not
addressed but will
likely be supported
through Senlin [15],
cluste management
service

gen.rsl.02 Resiliency The Architecture should support resilient Open-
Stack service components that are not subject to
gen.rsl.01

2.3.2 Infrastructure Recommendations

Table 2.32: Infrastructure Recommendations
Reference sub-category Description Notes
inf.com.02 Compute The Architecture should include industry standard

hardware management systems at both HW device
level (embedded) and HW platform level (external
to device)

inf.com.03 Compute The Architecture should support Symmetric Mul-
tiprocessing with shared memory access as well as
Simultaneous Multithreading

inf.stg.08 Storage The Architecture should allow use of externally
provided large archival storage for its Backup / Re-
store / Archival needs

inf.stg.09 Storage The Architecture should make available all non-
host OS / Hypervisor / Host systems storage as
network-based Block, File or Object Storage for
tenant/management consumption

inf.stg.10 Storage The Architecture should provide local Block stor-
age for Instances

Virtual Storage

inf.nw.04 Network The Architecture should support service function
chaining

continues on next page

33

Table 2.32 – continued from previous page
Reference sub-category Description Notes
inf.nw.06 Network The Architecture should support Distributed Vir-

tual Routing (DVR) to allow compute nodes to
route traffic efficiently

inf.nw.08 Network The Cloud Infrastructure Network Fabric should
embrace the concepts of open networking and dis-
aggregation using commodity networking hard-
ware and disaggregated Network Operating Sys-
tems

inf.nw.09 Network The Cloud Infrastructure Network Fabric should
embrace open-based standards and technologies

inf.nw.11 Network The Cloud Infrastructure Network Fabric should
be architected to provide a standardised, scalable,
and repeatable deployment model across all appli-
cable Cloud Infrastructure sites

inf.nw.17 Network The Architecture should use dual stack IPv4 and
IPv6 for Cloud Infrastructure internal networks

inf.acc.01 Acceleration The Architecture should support Application Spe-
cific Acceleration (exposed to VNFs)

Acceleration

inf.acc.02 Acceleration The Architecture should support Cloud Infras-
tructure Acceleration (such as SmartNICs)

OpenStack Future -
Specs defined [16]

inf.acc.03 Acceleration The Architecture may rely on on SR-IOV PCI-
Pass through to provide acceleration to VNFs

inf.img.01 Image The Architecture should make the immutable im-
ages available via location independent means

Glance

2.3.3 VIM Recommendations

Table 2.33: VIM Recommendations
Reference sub-category Description Notes
vim.02 General The Architecture should support deployment of

OpenStack components in containers
Containerised
OpenStack Services

vim.04 General The Architecture should support Enhanced Plat-
form Awareness (EPA) only for discovery of in-
frastructure resource capabilities

vim.06 General The Architecture should allow orchestration solu-
tions to be integrated with VIM

vim.09 General The Architecture should support horizontal scal-
ing of OpenStack core services

34

2.3.4 Interfaces and APIs Recommendations

Table 2.34: Interfaces and APIs Recommendations
Reference sub-category Description Notes
int.acc.01 Acceleration The Architecture should provide an open and stan-

dard acceleration interface to VNFs
int.acc.02 Acceleration The Architecture should not rely on SR-IOV PCI-

Pass through for acceleration interface exposed to
VNFs

duplicate of
inf.acc.03 under
“Infrastructure
Recommendation”

2.3.5 Tenant Recommendations

This section is left blank for future use.

2.3.6 Operations and LCM Recommendations

Table 2.35: LCM Recommendations
Reference sub-category Description Notes
lcm.adp.01 Automated deploy-

ment
The Architecture should allow for cookie cutter
automated deployment, configuration, provision-
ing and management of multiple Cloud Infrastruc-
ture sites

lcm.adp.03 Automated deploy-
ment

The Architecture should support hitless upgrade
of all software provided by the cloud provider that
are not covered by lcm.adp.02. Whenever hitless
upgrades are not feasible, attempt should be made
to minimise the duration and nature of impact

lcm.adp.04 Automated deploy-
ment

The Architecture should support declarative spec-
ifications of hardware and software assets for au-
tomated deployment, configuration, maintenance
and management

lcm.adp.05 Automated deploy-
ment

The Architecture should support automated pro-
cess for Deployment and life-cycle management of
VIM Instances

lcm.cid.02 CI/CD The Architecture should support integrating with
CI/CD Toolchain for Cloud Infrastructure and
VIM components Automation

2.3.7 Assurance Recommendations

Table 2.36: Assurance Recommendations
Reference sub-category Description Notes
asr.mon.02 Monitoring The Architecture should support Network Intelli-

gence capabilities that allow richer diagnostic ca-
pabilities which take as input broader set of data
across the network and from VNF workloads

35

2.3.8 Security Recommendations

System Hardening Recommendations

Table 2.37: System Hardening Recommendations
Reference sub-category Description Notes
sec.gen.011 Hardening The Cloud Infrastructure should support Read and

Write only storage partitions (write only permis-
sion to one or more authorised actors)

sec.gen.014 Hardening All servers part of Cloud Infrastructure should
support measured boot and an attestation server
that monitors the measurements of the servers

Platform and Access Recommendations

Table 2.38: Platform and Access Recommendations
Reference sub-category Description Notes
sec.sys.014 Access The Platform should use Linux Security Modules

such as SELinux to control access to resources
sec.sys.020 Access The Cloud Infrastructure architecture should rely

on Zero Trust principles to build a secure by design
environment

Zero Trust Ar-
chitecture (ZTA)
described in NIST
SP 800-207

Confidentiality and Integrity Recommendations

Table 2.39: Confidentiality and Integrity Recommendations
Reference sub-category Description Notes
sec.ci.002 Confidentiality /

Integrity
The Platform should support self-encrypting stor-
age devices

sec.ci.009 Confidentiality /
Integrity

For sensitive data encryption, the key manage-
ment service should leverage a Hardware Security
Module to manage and protect cryptographic keys

Workload Security Recommendations

Table 2.40: Workload Security Recommendations
Reference sub-category Description Notes
sec.wl.007 Workload The Operator should implement processes and

tools to verify VNF authenticity and integrity

36

Image Security Recommendations

Table 2.41: Image Security Recommendations
Reference sub-category Description Notes
sec.img.009 Image CIS Hardened Images should be used whenever

possible
sec.img.010 Image Minimalist base images should be used whenever

possible

Security LCM Recommendations

Table 2.42: LCM Security Recommendations
Reference sub-category Description Notes
sec.lcm.004 LCM The Cloud Operator should support automated

templated approved changes; Templated approved
changes for automation where available

Monitoring and Security Audit Recommendations

The Platform is assumed to provide configurable alerting and notification capability and the operator is assumed to
have automated systems, policies and procedures to act on alerts and notifications in a timely fashion. In the following
the monitoring and logging capabilities can trigger alerts and notifications for appropriate action.

Table 2.43: Monitoring and Security Audit Recommendations
Reference sub-category Description Notes
sec.mon.014 Monitoring The Monitoring systems should not impact IaaS,

PaaS, and SaaS SLAs including availability SLAs
sec.mon.016 Monitoring The Platform Monitoring components should fol-

low security best practices for auditing, including
secure logging and tracing

Open-Source Software Security Recommendations

Table 2.44: Open-Source Software Security Recommendations
Reference sub-category Description Notes
sec.oss.005 Software A Software Bill of Materials (SBOM) should be

provided or build, and maintained to identify the
software components and their origins. Inventory
of software components

NTIA SBOM [17]

37

IaaC security Recommendations

Secure Design and Architecture Stage

Table 2.45: Reference Model Requirements: IaaC Security, Design and
Architecture Stage

Reference sub-category Description Notes
sec.arch.001 IaaC Threat Modelling methodologies and tools should

be used during the Secure Design and Architec-
ture stage triggered by Software Feature Design
trigger. Methodology to identify and understand
threats impacting a resource or set of resources

It may be done man-
ually or using tools
like open source
OWASP Threat
Dragon

sec.arch.002 IaaC Security Control Baseline Assessment should be
performed during the Secure Design and Archi-
tecture stage triggered by Software Feature Design
trigger

Typically done
manually by inter-
nal or independent
assessors

Secure Code Stage Recommendations

Table 2.46: Reference Model Requirements: IaaC Security, Secure Code
Stage

Reference sub-category Description Notes
sec.code.002 IaaC SCA - Software Composition Analysis should be

applied during Secure Coding stage triggered by
Pull, Clone or Comment trigger. Security testing
that analyses application source code or compiled
code for software components with known vulner-
abilities

Example: open
source OWASP
range of tools

sec.code.003 IaaC Source Code Review should be performed contin-
uously during Secure Coding stage.

Typically done man-
ually.

sec.code.004 IaaC Integrated SAST via IDE Plugins should be used
during Secure Coding stage triggered by Devel-
oper Code trigger. On the local machine: through
the IDE or integrated test suites; triggered on com-
pletion of coding by developer

sec.code.005 IaaC SAST of Source Code Repo should be performed
during Secure Coding stage triggered by Devel-
oper Code trigger. Continuous delivery pre -
deployment: scanning prior to deployment

Continuous Build, Integration and Testing Stage Recommendations

38

Table 2.47: Reference Model Requirements: IaaC Security, Continuous
Build, Integration and Testing Stage

Reference sub-category Description Notes
sec.bld.001 IaaC SAST -Static Application Security Testing should

be applied during the Continuous Build, Integra-
tion and Testing stage triggered by Build and Inte-
grate trigger

Example: open
source OWASP
range of tools.

sec.bld.002 IaaC SCA - Software Composition Analysis should be
applied during the Continuous Build, Integration
and Testing stage triggered by Build and Integrate
trigger

Example: open
source OWASP
range of tools

sec.bld.004 IaaC SDAST - Dynamic Application Security Testing
should be applied during the Continuous Build,
Integration and Testing stage triggered by Stage &
Test trigger. Security testing that analyses a run-
ning application by exercising application func-
tionality and detecting vulnerabilities based on ap-
plication behaviour and response

Example: OWASP
ZAP

sec.bld.005 IaaC Fuzzing should be applied during the Continuous
Build, Integration and testing stage triggered by
Stage & Test trigger. Fuzzing or fuzz testing is an
automated software testing technique that involves
providing invalid, unexpected, or random data as
inputs to a computer program

Example: GitLab
Open Sources
Protocol Fuzzer
Community Edition

sec.bld.006 IaaC IAST - Interactive Application Security Testing
should be applied during the Continuous Build,
Integration and Testing stage triggered by Stage &
Test trigger. Software component deployed with
an application that assesses application behaviour
and detects presence of vulnerabilities on an appli-
cation being exercised in realistic testing scenarios

Example: Contrast
Community Edition

Continuous Delivery and Deployment Stage Recommendations

Table 2.48: Reference Model Requirements: IaaC Security, Continuous
Delivery and Deployment Stage

Reference sub-category Description Notes
sec.del.003 IaaC Artifact and Image Repository Scan should be

continuously applied during the Continuous De-
livery and Deployment stage

Example: GitLab
uses the open source
Clair engine for
container scanning

Runtime Defence and Monitoring Recommendations

39

Table 2.49: Reference Model Requirements: Iaac Security, Runtime De-
fence and Monitoring Stage

Reference sub-category Description Notes
sec.run.002 IaaC RASP - Runtime Application Self-Protection

should be continuously applied during the Run-
time Defence and Monitoring stage. Security tech-
nology deployed within the target application in
production for detecting, alerting, and blocking at-
tacks

sec.run.003 IaaC Application testing and Fuzzing should be contin-
uously applied during the Runtime Defence and
Monitoring stage. Fuzzing or fuzz testing is an
automated software testing technique that involves
providing invalid, unexpected, or random data as
inputs to a computer program

Example: GitLab
Open Sources
Protocol Fuzzer
Community Edition

sec.run.004 IaaC Penetration Testing should be continuously ap-
plied during the Runtime Defence and Monitoring
stage

Typically done man-
ually

Compliance with Standards Recommendations

Table 2.50: Compliance with Security Recommendations
Reference sub-category Description Notes
sec.std.001 Standards The Cloud Operator should comply with Center

for Internet Security CIS Controls [18]
sec.std.002 Standards The Cloud Operator, Platform and Workloads

should follow the guidance in the CSA Security
Guidance for Critical Areas of Focus in Cloud
Computing (latest version)- CSA, Cloud Security
Alliance [19]

sec.std.003 Standards The Platform and Workloads should follow the
guidance in the OWASP Cheat Sheet Series
(OCSS) [20] - OWASP, Open Web Application Se-
curity Project [21]

sec.std.004 Standards The Cloud Operator, Platform and Workloads
should ensure that their code is not vulnerable to
the OWASP Top Ten Security Risks [22]

sec.std.005 Standards The Cloud Operator, Platform and Workloads
should strive to improve their maturity on the
OWASP Software Maturity Model (SAMM) [23]

sec.std.006 Standards The Cloud Operator, Platform and Workloads
should utilise the OWASP Web Security Testing
Guide [24]

sec.std.007 Standards The Cloud Operator, and Platform should sat-
isfy the requirements for Information Manage-
ment Systems specified in ISO/IEC 27001 [25];
ISO/IEC 27001 is the international Standard for
best-practice information security management
systems (ISMSs)

continues on next page

40

Table 2.50 – continued from previous page
Reference sub-category Description Notes
sec.std.008 Standards The Cloud Operator, and Platform should imple-

ment the Code of practice for Security Controls
specified ISO/IEC 27002:2013 (or latest) [26]

sec.std.009 Standards The Cloud Operator, and Platform should imple-
ment the ISO/IEC 27032:2012 (or latest) Guide-
lines for Cybersecurity techniques [27]; ISO/IEC
27032 is the international Standard focusing ex-
plicitly on cybersecurity

sec.std.010 Standards The Cloud Operator should conform to the
ISO/IEC 27035 standard for incidence manage-
ment; ISO/IEC 27035 is the international Standard
for incident management

sec.std.011 Standards The Cloud Operator should conform to the
ISO/IEC 27031 standard for business continuity;
ISO/IEC 27031 - ISO/IEC 27031 is the interna-
tional Standard for ICT readiness for business con-
tinuity

3 Cloud Infrastructure Architecture - OpenStack

This Reference Architecture aims to provide an OpenStack distribution agnostic reference architecture that includes
the Network Function Virtualisation Infrastructure (NFVI) and Virtual Infrastructure Manager (VIM). The different
OpenStack distributions, without the not up-streamed vendor specific enhancements, are assumed to be Anuket confor-
mant. This Reference Architecture allows operators to provide a common OpenStack-based architecture for any Anuket
compliant VNF to be deployed and operated as expected. The purpose of this chapter is to outline all the components
required to provide the Cloud Infrastructure (NFVI and the VIM) in a consistent and reliable way.

OpenStack [2] is already very well documented and, hence, this document will describe the specific OpenStack services
and features, Cloud Infrastructure features and how we expect them to be implemented.

This reference architecture provides optionality in terms of pluggable components such as SDN, hardware acceleration
and support tools.

The Cloud Infrastructure layer includes the physical infrastructure which is then offered as virtual resources via a
hypervisor. The VIM is the OpenStack Wallaby release.

This chapter is organised as follows:

• Consumable Infrastructure Resources and Services: these are infrastructure services and resources being exposed
northbound for consumption

– Multi-tenancy with quotas

∗ Virtual compute: vCPU / vRAM

∗ Virtual storage: Ephemeral, Persistent and Image

∗ Virtual networking - neutron standalone: network plugin, virtual switch, accelerator features

∗ Virtual networking - 3rd party SDN solution

∗ Additional network services: Firewall, DC Gateway

• Cloud Infrastructure Management Software (VIM): is how we manage the Consumable Infrastructure Resources
and Services

41

– VIM Core services (keystone, cinder, nova, neutron, etc.)

∗ Tenant Separation

∗ Host aggregates providing resource pooling

∗ Flavor1 management

• Underlying Resources: are what provides the resources that allow the Consumable Infrastructure Resources and
Services to be created and managed by the Cloud Infrastructure Management Software (VIM).

– Virtualisation

– Physical infrastructure

∗ Compute

∗ Network: Spine/Leaf; East/West and North/South traffic

∗ Storage

3.1 Resources and Services exposed to VNFs

This section will describe the different services that are exposed for the VNF consumption within the execution zone:

• Tenants: to provide isolated environments

• Virtual Compute: to provide computing resources

• Virtual Storage: to provide storage capacity and performance

• Virtual networking: to provide connectivity within the Cloud Infrastructure and with external networks

3.1.1 Multi-Tenancy (execution environment)

The multi tenancy service permits hosting of several VNF projects with the assurance of isolated environments for
each project. Tenants or confusingly “Projects” in OpenStack are isolated environments that enable workloads to be
logically separated from each other with:

• differentiated set of associated users

• role-based access of two levels - admin or member (see RBAC).

• quota system to provide maximum resources that can be consumed.

This RA does not intend to restrict how workloads are distributed across tenants.

3.1.2 Virtual Compute (vCPU and vRAM)

The virtual compute resources (vCPU and vRAM) used by the VNFs behave like their physical counterparts. A physical
core is an actual processor and can support multiple vCPUs through Simultaneous Multithreading (SMT) and CPU
overbooking. With no overbooking and SMT of 2 (2 threads per core), each core can support 2 vCPUs. With the same
SMT of 2 and overbooking factor of 4, each core can support 8 vCPUs. The performance of a vCPU can be affected
by various configurations such as CPU pinning, NUMA alignment, and SMT.

The configuration of the virtual resources will depend on the software and hardware profiles and the flavour (resource
sizing) needed to host VNF components. Profiles are defined in “Profiles, Profile Extensions & Flavours” in [1].

1 Please note “flavours” is used in the Reference Model and shall continue to be used in the context of specifying the geometry of the virtual
resources. The term “flavor” is used in this document in the OpenStack context including when specifying configurations; the OpenStack term flavor
includes the profile configuration information as “extra specs”.

42

3.1.3 Virtual Storage

In the Reference Model [1], the “Storage for tenant consumption” section details consumption models for tenants:
Platform native, object storage, shared file storage and archival. The choice of a solution will depend on the storage
use case needs.

The two storage services offered by Cloud Infrastructure are:

• Persistent storage

• Ephemeral storage

The OpenStack services, Cinder for block storage and Swift for Object Storage, are discussed below in Section “Cloud
Infrastructure Management Software (VIM)”.

Ephemeral data is typically stored on the compute host’s local disks, in the form of a file system as part of the provi-
sioning. This storage is volatile, it is deleted when instances are stopped. In environments that support live instance
migration between compute hosts, the ephemeral data would need to be stored in a storage system shared between the
compute hosts such as on persistent block or object storage.

Three types of persistent data storage are supported in OpenStack:

• Block storage

• Object storage

• Shared file systems storage

The OpenStack Storage Table [28] explains the differences between the storage types and typical use cases.

Block storage is dedicated to persistent data. Data is stored in the form of volumes. Block storage is managed by
OpenStack Cinder service and storage Backends. OpenStack compatible storage backend drivers table [29] lists the
storage backends compatible with Cinder and their capabilities.

The Object storage is a persistent data storage, not attached to an instance. Data is accessed via API. Object storage is
managed by OpenStack Swift.

Images are persistent data, stored using the OpenStack Glance service.

Cinder, Swift, and Glance services are discussed in the section VIM OpenStack Services.

3.1.4 Virtual Networking Neutron standalone

Neutron is an OpenStack project that provides “network connectivity as a service” between interface devices (e.g.,
vNICs) managed by other OpenStack services (e.g., Nova). Neutron allows users to create networks, subnets, ports,
routers, etc. Neutron also facilitates traffic isolation between different subnets - within as well as across project(s)
by using different type drivers/mechanism drivers that use VLANs, VxLANs, GRE (Generic Routing Encapsulation)
tunnels, etc. For Neutron API consumer, this is abstracted and provided by Neutron. Multiple network segments
are supported by Neutron via ML2 plugins to simultaneously utilise variety of layer 2 networking technologies like
VLAN, VxLAN, GRE, etc. Neutron also allows to create routers to connect layer 2 networks via “neutron-l3-agent”.
In addition, floating IP support is also provided that allows a project VM to be accessed using a public IP.

43

3.1.5 Virtual Networking - 3rd party SDN solution

SDN (Software Defined Networking) controllers separate control and data (user) plane functions where the control
plane programmatically configures and controls all network data path elements via open APIs. Open Networking Forum
(ONF) defines SDN as “Software-Defined Networking (SDN) is an emerging architecture that is dynamic, manageable,
cost-effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature of today’s applications. This
architecture decouples the network control and forwarding functions enabling the network control to become directly
programmable and the underlying infrastructure to be abstracted for applications and network services.”

The key messages of the SDN definition are:

• Decoupling of control and forwarding functions into control plane and data plane

• Networking capabilities that can be instantiated, deployed, configured, and managed like software. Network
control is programmable and supports dynamic, manageable, and adaptable networking.

• Support for both overlay and underlay networking

OpenStack Neutron supports open APIs and a pluggable backend where different plugins can be incorporated in the
neutron-server.

Plugins for various SDN controllers include either the standard ML-2 plugin or specific monolithic plugins. Neutron
supports both core plugins that deal with L2 connectivity and IP address management, and service plugins that support
services such as L3 routing, Load Balancers, Firewalls, etc.

Below we will explore an example of an SDN controller from LFN projects, that can be integrated with a Neutron
plugin, to help overcome a number of shortcomings of the vanilla Neutron and provide many needed features that can
be consumed by VNF/CNF.

Tungsten Fabric (SDN Controller)

Tungsten Fabric [30], an open source SDN in Linux Foundation Networking, offers neutron networking through ML2
based plugin, additionally it supports advanced networking features beyond basic neutron networking via monolithic
plugin. It also supports the same advanced networking features via CNI plugin in Kubernetes. Hence, it works as
a multi-stack SDN to support VMs, containers, and baremetal workloads. It provides separation of control plane
functions and data plane functions with its two components:

• Tungsten Fabric Controller- a set of software services that maintains a model of networks and network policies,
typically running on several servers for high availability

• Tungsten Fabric vRouter- installed in each host that runs workloads (virtual machines or containers), the vRouter
performs packet forwarding and enforces network and security policies

It is based on proven, standards-based networking technologies but repurposed to work with virtualised workloads and
cloud automation in data centres that can range from large scale enterprise data centres to much smaller telco DC (aka
POPs). It provides many enhanced features over the native networking implementations of orchestrators, including:

• Highly scalable, multi-tenant networking

• Multi-tenant IP address management

• DHCP, ARP proxies to avoid flooding into networks

• Efficient edge replication for broadcast and multicast traffic

• Local, per-tenant DNS resolution

• Distributed firewall with access control lists

• Application-based security policies

• Distributed load balancing across hosts

44

• Network address translation (1:1 floating IPs and distributed SNAT)

• Service chaining with virtual network functions

• Dual stack IPv4 and IPv6

• BGP peering with gateway routers

• BGP as a Service (BGPaaS) for distribution of routes between privately managed customer networks and service
provider networks

Based on the network layering concepts introduced in the “Network” section in [1], the Tungsten Fabric Controller
performs functions of both the SDN underlay (SDNu) and overlay (SDNo) controllers.

The SDN controller exposes a NB API that can be consumed by ETSI MANO for VNF/CNF onboarding, network
service onboarding and dynamic service function chaining.

3.1.6 Acceleration

Acceleration deals with both hardware and software accelerations. Hardware acceleration is the use of specialised
hardware to perform some function faster than is possible by executing the same function on a general-purpose CPU or
on a traditional networking (or other I/O) device (e.g., NIC, switch, storage controller, etc.). The hardware accelerator
covers the options for ASICs, SmartNIC, FPGAs, GPU, etc. to offload the main CPU, and to accelerate workload
performance. Cloud Infrastructure should manage the accelerators by plugins and provide the acceleration capabilities
to VNFs.

With the acceleration abstraction layer defined, hardware accelerators as well as software accelerators can be abstracted
as a set of acceleration functions (or acceleration capabilities) which exposes a common API to either the VNF or the
host.

3.2 Virtualised Infrastructure Manager (VIM)

The Cloud Infrastructure Management Software (VIM) provides the services for the management of Consumable Re-
sources/Services.

3.2.1 VIM Core services

OpenStack is a complex, multi-project framework, and so we will initially focus on the core services required to provide
Infrastructure-as-a-Service (IaaS) as this is generally all that is required for Cloud Infrastructure/VIM use cases. Other
components are optional and provide functionality above and beyond Cloud Infrastructure/VIM requirements.

The architecture consists of the core services shown in the figure below; Ironic is an optional OpenStack service needed
only for bare-metal containers. The rest of this document will address the specific Anuket conformant implementation
requirements and recommendations for the core services.

We will refer to the functions above as falling into the following categories to avoid any confusion with other terminol-
ogy that may be used:

• Foundation node

• Control nodes

• Compute nodes

• Other supporting service nodes, e.g., network, shared storage, logging, monitoring and alerting.

Each deployment of OpenStack should be a unique cloud with its own API endpoint. Sharing underlying cloud re-
sources across OpenStack clouds is not recommended.

45

Figure 3.1: OpenStack Core Services

46

OpenStack Services Topology

OpenStack software services are distributed over 2 planes:

• Control Plane that hosts all Control and Management services

• Data Plane (a.k.a. User plane) that provides physical and virtual resources (compute, storage and networking)
for the actual virtual workloads to run.

The architecture based on OpenStack technology relies on different types of nodes associated with specific roles:

• Controller node types with control and management services, which include VIM functionalities

• Compute node types running workloads

• Network node types offering L3 connectivity

• Storage node types offering external attached storage (block, object, flat files)

The data plane consists of the compute nodes. It is typical to consider the other node types to be part of the control
plane. The following figure depicts the 4 types of nodes constitutive of the Infrastructure: control, compute, network
and storage nodes.

Figure 3.2: OpenStack Services Topology

Deployments can be structured using the distribution of services amongst the 4 node types as depicted in the figure
above, but depending on workloads requirements, OpenStack services can also be hosted on the same nodes. For
instance, services related to Controller, network and storage roles can be hosted on controller nodes.

47

Foundation Services

To build and lifecycle manage an OpenStack cloud, it is typically necessary to deploy a server or virtual machine as a
deployment node or foundation node.

This function must be able to manage the bare-metal provisioning of the hardware resources but since this does not
affect cloud execution it can be detached from the OpenStack cloud and an operator can select their own tooling as they
wish. Functional requirements of this node include:

• Build the cloud (control, compute, storage, network hardware resources)

• Patch management / upgrades / change management

• Grow / Shrink resources

Cloud Controller Services

The following OpenStack components are deployed on the Infrastructure. Some of them will be only deployed on
control hosts and some of them will be deployed within both control and compute hosts. The table below also maps
the OpenStack core services to the Virtual Infrastructure Manager in the Reference Model (RM) [1].

Table 3.1: OpenStack components deployment
RM Management Soft-
ware

Service Description Required /
Optional

Deployed
on Con-
troller
Nodes

Deployed
on Com-
pute
Nodes

Identity Management
(Additional Management
Functions) + Catalogue

Keystone the authentication service Required X

Storage Resources Man-
ager

Glance the image management
service

Required X

Storage Resources Man-
ager

Cinder the block storage manage-
ment service

Required X

Storage Resources Man-
ager

Swift the Object storage man-
agement service

Required X

Network Resources Man-
ager

Neutron the network management
service

Required X X

Compute Resources In-
ventory

Placement resource provider inven-
tory service

Required X

Compute Resources Man-
ager + Scheduler

Nova the compute resources
management service

Required X X

Compute Resources Man-
ager

Ironic the Bare Metal Provision-
ing service

Optional X X

(Tool that utilises APIs) Heat the orchestration service Required X
UI Horizon the WEB UI service Required X
Key Manager Barbican the secret data manage-

ment service
Optional X

Acceleration Resources
Manager

Cyborg the acceleration resources
and their life cycle man-
agement

Optional X X

All components must be deployed within a high available architecture that can withstand at least a single node failure
and respects the anti-affinity rules for the location of the services (i.e., instances of a same service must run on different
nodes).

48

The services can be containerised or VM hosted as long as they provide the high availability principles described above.

The APIs for these OpenStack services are listed in Interfaces and APIs.

Cloud Workload Services

This section describes the core set of services and service components needed to run workloads; instances (such as
VMs), their networks and storage are referred to as the “Compute Node Services” (a.k.a. user or data plane services).
Contrast this with the Controller nodes which host OpenStack services used for cloud administration and management.
The Compute Node Services include virtualisation, hypervisor instance creation/deletion, networking and storage ser-
vices; some of these activities include RabbitMQ queues in the control plane including the scheduling, networking and
cinder volume creation/attachment.

• Compute, Storage, Network services:

– Nova Compute service: nova-compute (creating/deleting servers (a.k.a. instances))

– Neutron Networking service: neutron-l2-agent (manage local Open vSwitch (OVS) configuration),
VXLAN

– Local Storage (Ephemeral, Root, etc.)

– Attached Storage (using Local drivers)

3.2.2 Tenant Isolation

In Keystone v1 and v2 (both deprecated), the term “tenant” was used in OpenStack. With Keystone v3, the term
“project” got adopted and both the terms became interchangeable. According to OpenStack glossary [31], Projects
represent the base unit of resources (compute, storage and network) in OpenStack, in that all assigned resources in
OpenStack are owned by a specific project. OpenStack offers multi-tenancy by means of resource (compute, network
and storage) separation via projects. OpenStack offers ways to share virtual resources between projects while main-
taining logical separation. As an example, traffic separation is provided by creating different VLAN ids for neutron
networks of different projects. As another example, if host separation is needed, nova scheduler offers AggregateMul-
tiTenancyIsolation scheduler filter to separate projects in host aggregates. Thus, if a host in an aggregate is configured
for a particular project, only the instances from that project are placed on the host. Overall, tenant isolation ensures
that the resources of a project are not affected by resources of another project.

This document uses the term “project” when referring to OpenStack services and “tenant” (RM Section “Virtual re-
sources”) to represent an independently manageable logical pool of resources.

3.2.3 Cloud partitioning: Host Aggregates, Availability Zones

Cloud administrators can partition the hosts within an OpenStack cloud using Host Aggregates and Availability Zones.

A Host Aggregate is a group of hosts (compute nodes) with specific characteristics and with the same specifications,
software and/or hardware properties. Example would be a Host Aggregate created for specific hardware or performance
characteristics. The administrator assigns key-value pairs to Host Aggregates, these are then used when scheduling
VMs. A host can belong to multiple Host Aggregates. Host Aggregates are not explicitly exposed to tenants.

Availability Zones (AZs) rely on Host Aggregates and make the partitioning visible to tenants. They are defined by
attaching specific metadata information to an aggregate, making the aggregate visible for tenants. Hosts can only be
in a single Availability Zone. By default a host is part of a default Availability Zone, even if it doesn’t belong to an
aggregate. Availability Zones can be used to provide resiliency and fault tolerance for workloads deployments, for
example by means of physical hosting distribution of Compute Nodes in separate racks with separate power supply and
eventually in different rooms. They permit rolling upgrades - an AZ at a time upgrade with enough time between AZ
upgrades to allow recovery of tenant workloads on the upgraded AZ. AZs can also be used to segregate workloads.

49

An over use of Host Aggregates and Availability Zones can result in a granular partition of the cloud and, hence,
operational complexities and inefficiencies.

3.2.4 Flavor management

In OpenStack a flavor defines the compute, memory, and storage capacity of nova instances. When instances are
spawned, they are mapped to flavors which define the available hardware configuration for them. For simplicity, op-
erators may create named flavors specifying both the sizing and the “Software and Hardware Profile Configurations”
[1].

3.3 Underlying Resources

The number of Compute nodes (for workloads) determines the load on the controller nodes and networking traffic
and, hence, the number of controller nodes needed in the OpenStack cloud; the number of controller nodes required
is determined on the load placed on these controller nodes and the need for High Availability and quorum requires at
least 3 instances of many of the services on these controller nodes.

3.3.1 Virtualisation and hypervisors

Virtualisation is a technology that enables a guest Operating System (OS) to be abstracted from the underlying hardware
and software. This allows to run multiple Virtual Machines(VMs) on the same hardware. Each such VMs have their
own OS and are isolated from each other i.e., an application running on one VM does not have access to the resources
of another VM. Such virtualisation is supported by various hypervisors available as open-source (KVM, Xen, etc.) as
well as commercial (Hyper-V, Citrix XenServer, etc.). Selecting a hypervisor depends on the workload needs and the
features provided by various hypervisors as illustrated in Hypervisor Feature Support Matrix [32]. OpenStack (Nova)
allows the use of various hypervisors within a single installation by means of scheduler filters like ComputeFilter,
ImagePropertiesFilter etc.

Virtualisation Services: The OpenStack nova-compute service supports multiple hypervisors natively or through libvirt.
The preferred supported hypervisor in this Reference Architecture is KVM.

Note: Other hypervisors (such as ESXi) can also be supported as long as they can interoperate with other OpenStack
components (e.g., those listed in this Reference Architecture) using standard interfaces and APIs as specified in Chapter
5.

3.3.2 Physical Infrastructure

The aim is to specify the requirements on deploying the VIM, from ground up (in a shipping container), and what
resources are required of the DC (Data Centre).

• Servers

– Compute

– Storage

– Control (min 3 for Core DC)

• Network considerations

– Data centre gateway

– Firewall (around the control plane, storage, etc.)

– Data centre network fabric / Clos (spine/leaf) - Horizontal scale

50

– Storage networking, control plane and data plane

– Raw packet - tenant networking allowing “wild west” connection

• Storage

– Storage technologies are multiple, they are extensively described in “Storage Implementation Stereotypes”
[1]. Storage backends are discussed in Storage Backend.

• Acceleration

– SmartNIC

– GPU

– FPGA

Physical nodes

Cloud Infrastructure physical Nodes

The physical resources required for the Cloud Infrastructure are mainly based on COTS x86 hardware for control and
data plane nodes. HW profiles are defined in the chapters “Cloud Infrastructure Hardware Profile Description” and
“Cloud Infrastructure Hardware Profiles Features and Requirements” in [1].

Network

The recommended network architecture is spine and leaf topology.

Figure 3.3: Network Fabric - Physical

The figure above shows a physical network layout where each physical server is dual homed to TOR (Leaf/Access)
switches with redundant (2x) connections. The Leaf switches are dual homed with redundant connections to spines.

51

Storage

OpenStack supports many different storage architectures and backends [33]. The choice of a particular backend storage
is driven by a number of factors including: scalability, resiliency, availability, data durability, capacity and performance.

Most cloud storage architectures incorporate a number of clustered storage nodes that provide high bandwidth access
to physical storage backends connected by high speed networks. The architecture consists of multiple storage con-
troller units, each a generic server (CPU, Cache, storage), managing a number of high-performance hard drives. The
distributed block storage software creates an abstract single pool of storage by aggregating all of the controller units.
Advanced and high-speed networking (data routing) and global load balancing techniques ensure high-performance,
high availability storage system.

3.4 Cloud Topology

A telco cloud will typically be deployed in multiple locations (“sites”) of varying size and capabilities (HVAC, for
example); or looking at this in the context of OpenStack, multiple clouds (i.e., OpenStack end-points) will be deployed
that do not rely on each other, by design; each cloud consists of a set of resources isolated from resources of the other
clouds. The application layer must span such end-points in order to provide the required service SLA. Irrespective
of the nature of the deployment characteristics (e.g., number of racks, number of hosts), the intent of the architecture
would be to allow VNFs to be deployed in these sites without major changes.

Some examples of such topologies include:

• Large data centre capable of hosting potentially thousands of servers and the networking to support them

• Intermediate data centre (such as a central office) capable of hosting up to a hundred servers

• Edge (not customer premise) capable of hosting ten to fifty servers

In order to provide the expected availability for any given service, a number of different OpenStack deployment topolo-
gies can be considered. This section explores the main options and highlights the characteristics of each. Ultimately
the decision rests with the operator to achieve specific availability target taking into account use case, data centre
capabilities, economics and risks.

3.4.1 Topology Overview

Availability of any single OpenStack cloud is dependent on a number of factors including:

• environmental - dual connected power and PDUs, redundant cooling, rack distribution, etc.

• resilient network fabric - ToR (leaf), spine, overlay networking, underlay networking, etc. It is assumed that all
network components are designed to be fault tolerant and all OpenStack controllers, computes and storage are
dual-homed to alternate leaf switches.

• controller nodes setup in-line with the vendor recommendation (e.g., min 3 physical nodes)

• network nodes (where applicable)

• backend storage nodes setup for highly availability based on quorum (aligned with vendor implementation)

• compute nodes sized to handle the entire workload following local failure scenario

Assumptions and conventions:

• Region is represented by a single OpenStack control plane.

• Resource Failure Domain is effectively the “blast radius” of any major infrastructure failure such as loss of PDU
or network leafs.

• Control plane includes redundant network nodes where OVS-kernel is used.

52

• Controller nodes should be setup for high availability based on quorum (aligned with vendor implementation).

• Shared storage is optional, but it is important to ensure shared assets are distributed across serving clouds such as
boot images. Storage needs, per deployment and use cases, can be found in “Storage Scenarios and Architecture
Fit” [1].

Table 3.2: Cloud Topology: Redundancy Models
Topol-
ogy
Ref

Type Control
Planes

Shared
Stor-
age
(op-
tional)

Com-
pute
AZs

Achiev-
able
Service
Avail-
ability
%

Service
Multi
-region
aware-
ness

Notes

1 Local Redundancy
- workload spread
across servers

1 1 1 Variable Not
required

Suitable where only
limited local applica-
tion availability is re-
quired e.g. nova anti-
affinity

2 Regional Redun-
dancy - workload
spread across AZs

1 >=2 >=2 >99.n Not
required

Suitable where local
application HA is
required. Control
plane should be
distributed across
DC failure domains
(assuming layer 2
connectivity) but may
be unavailable during
up grades

3 Global Redun-
dancy - workload
spread across
multiple Regions

>=2 >=2 >=2 >99.nn Re-
quired

Suitable where local
and region applica-
tion HA is required
Control plane could
be kept available in
one site during up-
grades

Topology 1 - Local Redundancy

Under normal operation this deployment can handle a single failure of a controller node or storage node without any
impact to the service. If a compute node fails the application layer (often the VNFM) would need to restart workloads
on a spare compute node of similar capability i.e., cloud may need to be provided with n+1 capacity. In the case of an
active/active application deployed to separate compute nodes (with hypervisor anti-affinity) there would be no service
impact.

Important to consider:

• Where possible servers should be distributed and cabled to reduce the impact of any failure e.g., PDU (Power
Distribution Unit), rack failure. Because each operator has individual site constraints this document will not
propose a standard rack layout.

• During maintenance of the control plane, whilst the data (forwarding) plane remains unaffected, the control
plane APIs may not be available and applications relying on these APIs for normal application operations (such
as, scaling) will be impacted. Additionally, if the upgrade involves updating OpenStack services on the compute
nodes care needs to be taken. OVS-kernel networking operations may also be impacted during this time.

53

• During maintenance of storage (e.g., ceph) there is an increased risk of a service-impacting failure, so it is
generally recommended to deploy at least one more server than the minimum required for redundancy.

Topology 2 - Regional Redundancy

Under normal operation this topology can handle a single failure of a controller node but provides additional protection
to the compute plane and storage. If the application is deployed across 2 or more AZs a major failure impacting the
nodes in one AZ can be tolerated assuming the application deployment allows for this. There is a risk with split-brain
so a means of deciding application quorum is recommended or by using a third AZ or arbitrator.

Important to consider:

• All those points listed for Topology 1 above.

• When using 3 controller nodes and distributing these physically across the same locations as the computes, if
you lose the location with 2 controllers the OpenStack services would be impacted as quorum cannot be gained
with a single controller node. It is also possible to use more than 3 controller nodes and co-locate one with each
compute AZ allowing lower-risk maintenance, but care must be taken to avoid split brain.

• The distributed network fabric must support L2 for the OpenStack control plane VIPs.

Topology 3 - Global Redundancy

Following the example set by public cloud providers who provide Regions and Availability Zones this is effectively
a multi-region OpenStack. Assuming the application can make use of this model this provides the highest level of
availability but would mean IP level failure controlled outside of OpenStack by global service load balancing (GSLB)
i.e., DNS with minimum TTL configured, or client applications that are capable of failing over themselves. This has
the added advantage that no resources are shared between different Regions so any fault is isolated to a single cloud
and also allows maintenance to take place without service impact.

4 Cloud Infrastructure & VIM Component Level Architecture

Chapter 3 introduced the components of an OpenStack-based IaaS:

• Consumable Infrastructure Resources and Services

• Cloud Infrastructure Management Software (VIM: OpenStack) core services and architectural constructs needed
to consume and manage the consumable resources

• Underlying physical compute, storage, and networking resources

This chapter delves deeper into the capabilities of these different resources and their needed configurations to create
and operate an OpenStack-based IaaS cloud. This chapter specifies details on the structure of control and user planes,
operating systems, hypervisors, and BIOS configurations, and architectural details of underlay and overlay networking,
and storage, and the distribution of OpenStack service components among nodes. The chapter also covers implemen-
tation support for the “Profiles, Profile Extensions & Flavours” [1]; the OpenStack flavor types capture both the sizing
and the profile configuration (of the host).

54

4.1 Underlying Resources Configuration and Dimensioning

4.1.1 Virtualisation layer

In OpenStack, KVM is configured as the default hypervisor for compute nodes.

• Configuration: OpenStack [34] specifies the steps/instructions to configure KVM:

– Enable KVM based hardware virtualisation in BIOS. OpenStack provides instructions on how to enable
hardware virtualisation for different hardware platforms (x86, Power)

∗ QEMU is similar to KVM in that both are libvirt controlled, have the same feature set and utilise
compatible virtual machine images

– Configure Compute backing storage

– Specify the CPU Model for KVM guests (VMs)

– KVM Performance Tweaks

• Hardening the virtualisation layers [35]

– OpenStack recommends minimizing the code base by removing unused components

– sVirt (Secure Virtualisation) provides isolation between VM processes, devices, data files and system pro-
cesses

4.1.2 Compute

Cloud Deployment (Foundation/management) Node

Minimal configuration: 1 node

OpenStack Control Plane Servers (Control Nodes)

• BIOS Requirements

For OpenStack control nodes we use the BIOS parameters for the basic profile defined in “Cloud Infrastructure Hard-
ware Profiles Features and Requirements” [1]. Additionally, for OpenStack we need to set the following boot parame-
ters:

Table 4.1: Boot parameters
BIOS/boot Parameter Value
Boot disks RAID 1
CPU reservation for host (kernel) 1 core per NUMA
CPU allocation ratio 2:1

• How many nodes to meet SLA

– Minimum 3 nodes for high availability

• HW specifications

– Boot disks are dedicated with Flash technology disks

• Sizing rules

– It is easy to horizontally scale the number of control nodes

55

– The number of control nodes is determined by a minimum number needed for high availability (viz., 3
nodes) and the extra nodes needed to handle the transaction volumes, in particular, for Messaging service
(e.g., RabbitMQ) and Database (e.g., MySQL) to track state.

– The number of control nodes only needs to be increased in environments with a lot of changes, such as a
testing lab, or a very large cloud footprint (rule of thumb: number of control nodes = 3 + quotient (number
of compute nodes/1000)).

– The Services Placement Summary table [36] specifies the number of instances that are required based upon
the cloud size (number of nodes).

Network nodes

Networks nodes are mainly used for L3 traffic management for overlay tenant network (see more detail in Neutron
section).

• BIOS requirements

Table 4.2: BIOS requirements
BIOS/boot Parameter Value
Boot disks RAID 1

• How many nodes to meet SLA

– Minimum 2 nodes for high availability using VRRP.

• HW specifications

– 3 NICs card are needed if we want to isolate the different flows:

∗ 1 NIC for Tenant Network

∗ 1 NIC for External Network

∗ 1 NIC for Other Networks (PXE, Mngt . . .)

• Sizing rules

– Scale out of network node is not easy

– DVR can be an option for large deployment (see more detail in section Neutron)

Storage nodes

• BIOS requirements

Table 4.3: BIOS requirements
BIOS/boot Parameter Value
Boot disks RAID 1

• HW specifications: please see “Storage” in [1]

• How many nodes to meet SLA: Active-Passive is the default and recently OpenStack started to support Active-
Active

• Sizing rules: minimum 2 x 1 TB; recommended 2 x 10 TB

56

Compute Nodes

This section specifies the compute node configurations to support the Basic and High-Performance profiles; in Open-
Stack this would be accomplished by specifying the configurations when creating “flavors”. The cloud operator may
choose to implement certain profile-extensions (Profile Extensions (Specialisations) [1]) as a set of standard configu-
rations, of a given profile, capturing some of the variability through different values or extra specifications.

• The software and hardware configurations are as specified in the Cloud Infrastructure Hardware Profiles Features
and Requirements in [1].

• BIOS requirement

– The general BIOS requirements are described in the Cloud Infrastructure Hardware Profiles Features and
Requirements [1].

Example Profiles and their Extensions

The Reference Model specifies the Basic (B) and High-Performance (H) profile types. The Reference Model also
provides a choice of network acceleration capabilities utilising, for example, DPDK and SR-IOV technologies. The
table below lists a few simple examples of profile extensions and some of their capabilities.

Table 4.4: Profile Extensions and Capabilities
Pro-
file
Ex-
ten-
sions

Description CPU
Allo-
cation
Ratio

SMT CPU
Pinning

NUMA Huge
pages

Data Traf-
fic

B1 Basic Profile NoCPU over- sub-
scription profile extension

1:1 Y N N N OVS- ker-
nel

HV High Performance Profile 1:1 Y Y Y Y OVS- ker-
nel

HD High Performance Profile with
DPDK profile extension

1:1 Y Y Y Y OVS-
DPDK

HS High Performance Profile with
SR-IOV profile extension

1:1 Y Y Y Y SR-IOV

BIOS Settings

A number of capabilities need to be enabled in the BIOS (such as NUMA and SMT); the “Cloud Infrastructure Software
Profile Description” section in the Reference Model specifies the capabilities required to be configured. Please note
that capabilities may need to be configured in multiple systems. For OpenStack, we also need to set the following boot
parameters:

Table 4.5: BIOS requirements
BIOS/boot Parameter Basic High Performance
Boot disks RAID 1 RAID 1

• How many nodes to meet SLA

– minimum: two nodes per profile

• HW specifications

– Boot disks are dedicated with Flash technology disks

• In case of DPDK usage:

57

Table 4.6: DPDK usage
Layer Description
Cloud infrastructure Important is placement of NICs to get NUMA-balanced system (balancing the

I/O, memory, and storage across both sockets), and configuration of NIC fea-
tures. Server BIOS and Host OS kernel command line settings are described in
DPDK release notes [37] and DPDK performance reports [38]. Disabling power
settings (like Intel Turbo Boost Technology) brings stable performance results,
although understanding if and when they benefit workloads and enabling them
can achieve better performance results.

Workload DPDK uses core affinity along with 1G or 2M huge pages, NUMA settings
(to avoid crossing interconnect between CPUs), and DPDK Poll Mode Drivers
(PMD, on reserved cores) to get the best performance. DPDK versions xx.11
are Long-Term Support maintained stable release with back-ported bug fixes for
a two-year period.

• Sizing rules

Table 4.7: Mnemonic
Description Mnemonic
Number of CPU sockets s
Number of cores c
SMT t
RAM rt
Storage d
Overcommit o
Average vCPU per instance v
Average RAM per instance ri

Table 4.8: Sizing rules
Item Formula Basic High-Performance
of VMs per node (vCPU) (s*c*t*o)/v 4*(s*c*t)/v (s*c*t)/v
of VMs per node (RAM) rt/ri rt/ri rt/ri
Max # of VMs per node min(4*(s*c*t)/v,rt/ri) min((sc*t)/v,rt/ri)

Caveats:

• These are theoretical limits

• Affinity and anti-affinity rules, among other factors, affect the sizing

Compute Resource Pooling Considerations

• Multiple pools of hardware resources where each resource pool caters for workloads of a specific profile (for ex-
ample, High-Performance) leads to inefficient use of the hardware as the server resources are configured specifi-
cally for a profile. If not properly sized or when demand changes, this can lead to oversupply/starvation scenarios;
reconfiguration may not be possible because of the underlying hardware or inability to vacate servers for recon-
figuration to support another profile type.

• Single pool of hardware resources including for controllers have the same CPU configuration. This is opera-
tionally efficient as any server can be utilised to support any profile or controller. The single pool is valuable
with unpredictable workloads or when the demand of certain profiles is insufficient to justify individual hardware
selection.

58

Reservation of Compute Node Cores

The Infrastructure Requirements inf.com.08 requires the allocation of “certain number of host cores/threads to non-
tenant workloads such as for OpenStack services.” A number (“n”) of random cores can be reserved for host services
(including OpenStack services) by specifying the following in nova.conf:

reserved_host_cpus = n

where n is any positive integer.

If we wish to dedicate specific cores for host processing we need to consider two different usage scenarios:

1. Require dedicated cores for Guest resources

2. No dedicated cores are required for Guest resources

Scenario #1, results in compute nodes that host both pinned and unpinned workloads. In the OpenStack Wallaby release,
scenario #1 is not supported; it may also be something that operators may not allow. Scenario #2 is supported through
the specification of the cpu_shared_set configuration. The cores and their sibling threads dedicated to the host services
are those that do not exist in the cpu_shared_set configuration.

Let us consider a compute host with 20 cores with SMT enabled (let us disregard NUMA) and the following parameters
specified. The physical cores are numbered ‘0’ to ‘19’ while the sibling threads are numbered ‘20’ to ‘39’ where the
vCPUs numbered ‘0’ and ‘20’, ‘1’ and ‘21’, etc. are siblings:

cpu_shared_set = 1-7,9-19,21-27,29-39 (can also be specified as cpu_shared_set = 1-19,&8,21-39,&28)

This implies that the two physical cores ‘0’ and ‘8’ and their sibling threads ‘20’ and ‘28’ are dedicated to the host
services, and 19 cores and their sibling threads are available for Guest instances and can be over allocated as per the
specified cpu_allocation_ratio in nova.conf.

Pinned and Unpinned CPUs

When a server (viz., an instance) is created the vCPUs are, by default, not assigned to a particular host CPU. Certain
workloads require real-time or near real-time behavior viz., uninterrupted access to their cores. For such workloads,
CPU pinning allows us to bind an instance’s vCPUs to particular host cores or SMT threads. To configure a flavor to
use pinned vCPUs, we use a dedicated CPU policy.

openstack flavor set .xlarge -property hw:cpu_policy=dedicated

While an instance with pinned CPUs cannot use CPUs of another pinned instance, this does not apply to unpinned
instances; an unpinned instance can utilise the pinned CPUs of another instance. To prevent unpinned instances from
disrupting pinned instances, the hosts with CPU pinning enabled are pooled in their own host aggregate and hosts with
CPU pinning disabled are pooled in another non-overlapping host aggregate.

Compute node configurations for Profiles and OpenStack Flavors

This section specifies the compute node configurations to support profiles and flavors.

59

Cloud Infrastructure Hardware Profile

The Cloud Infrastructure Hardware (or simply “host”) profile and configuration parameters are utilised in the reference
architecture to define different hardware profiles; these are used to configure the BIOS settings on a physical server and
configure utility software (such as Operating System and Hypervisor).

An OpenStack flavor defines the characteristics (“capabilities”) of a server (viz., VMs or instances) that will be deployed
on hosts assigned a host-profile. A many-to-many relationship exists between flavors and host profiles. Multiple flavors
can be defined with overlapping capability specifications with only slight variations that servers of these flavor types
can be hosted on similarly configured (host profile) compute hosts. Similarly, a server can be specified with a flavor
that allows it to be hosted on, say, a host configured as per the Basic profile, or a host configured as per the High-
Performance profile. Please note that workloads that specify a server flavor so as to be hosted on a host configured as
per the High-Performance profile, may not be able to run (adequately with expected performance) on a host configured
as per the Basic profile.

A given host can only be assigned a single host profile; a host profile can be assigned to multiple hosts. Host profiles
are immutable and hence when a configuration needs to be changed, a new host profile is created.

CPU Allocation Ratio and CPU Pinning

A given host (compute node) can only support a single CPU Allocation Ratio. Thus, to support the B1 and B4 Basic
profile extensions (Section Compute Nodes) with CPU Allocation Ratios of 1.0 and 4.0 we will need to create 2 different
host profiles and separate host aggregates for each of the host profiles. The CPU Allocation Ratio is set in the hypervisor
on the host.

When the CPU Allocation Ratio exceeds 1.0 then CPU Pinning also needs to be disabled.

Server Configurations

The different networking choices - OVS-Kernel, OVS-DPDK, SR-IOV - result in different NIC port, LAG (Link Ag-
gregation Group), and other configurations. Some of these are shown diagrammatically in section Compute Nodes.

Leaf and Compute Ports for Server Flavors must align

Compute hosts have varying numbers of Ports/Bonds/LAGs/Trunks/VLANs connected with Leaf ports. Each Leaf port
(in A/B pair) must be configured to align with the interfaces required for the compute flavor.

Physical Connections/Cables are generally the same within a zone, regardless of these specific L2/L3/SR-IOV config-
urations for the compute.

Compute Bond Port: TOR port maps VLANs directly with IRBs on the TOR pair for tunnel packets and Control
Plane Control and Storage packets. These packets are then routed on the underlay network GRT.

Server Flavors: B1, B4, HV, HD

Compute SR-IOV Port: TOR port maps VLANs with bridge domains that extend to IRBs, using VXLAN VNI. The
TOR port associates each packet’s outer VLAN tag with a bridge domain to support VNF interface adjacencies over
the local EVPN/MAC bridge domain. This model also applies to direct physical connections with transport elements.

Server Flavors: HS

Notes on SR-IOV

SR-IOV, at the compute server, routes Guest traffic directly with a partitioned NIC card, bypassing the hypervisor and
vSwitch software, which provides higher bps/pps throughput for the Guest server. OpenStack and MANO manage
SR-IOV configurations for Tenant server interfaces.

60

• Server, Linux, and NIC card hardware standards include SR-IOV and VF requirements

• High Performance profile for SR-IOV (hs series) with specific NIC/Leaf port configurations

• OpenStack supports SR-IOV provisioning

• Implement Security Policy, Tap/Mirror, QoS, etc. functions in the NIC, Leaf, and other places

Because SR-IOV involves Guest VLANs between the compute server and the ToR/Leafs, Guest automation and server
placement necessarily involves the Leaf switches (e.g., access VLAN outer tag mapping with VXLAN EVPN).

• Local VXLAN tunneling over IP-switched fabric implemented between VTEPs on Leaf switches

• Leaf configuration controlled by SDN-Fabric/Global Controller

• Underlay uses VXLAN-enabled switches for EVPN support

SR-IOV-based networking for Tenant Use Cases is required where vSwitch-based networking throughput is inadequate.

Example Host Configurations

Host configurations for B1, B4 Profile Extensions

Figure 4.1: Basic Profile Host Configuration (example and simplified)

Let us refer to the data traffic networking configuration depicted in the figure above to be part of the hp-B1-a and
hp-B4-a host profiles and this requires the configurations as Table Configuration of Basic Flavor Capabilities.

Table 4.9: Configuration of Basic Flavor Capabilities
Capability Configured in Host profile: hp-

B1-a
Host profile: hp-
B4-a

CPU Allocation Ratio Hypervisor 1:1 4:1
CPU Pinning BIOS Enable Disable
SMT BIOS Enable Enable
NUMA BIOS Disable Disable
Huge pages BIOS No No
Profile Extensions B1 B4

61

The figure below shows the networking configuration where the storage and OAM share networking but are independent
of the PXE network.

Figure 4.2: Basic Profile Host Configuration with shared Storage and OAM networking (example and simplified)

Let us refer to the above networking set up to be part of the hp-B1-b and hp-B4-b host profiles but the basic configu-
rations as specified in Table Configuration of Basic Flavor Capabilities.

In our example, the Profile Extensions B1 and B4, are each mapped to two different host profiles hp-B1-a and hp-B1-b,
and hp-B4-a and hp-B4-b respectively. Different network configurations, reservation of CPU cores, Lag values, etc.
result in different host profiles.

To ensure Tenant CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack agents),
the following needs to be configured:

Table 4.10: GRUB Configuration of Basic Profile with shared Storage
GRUB Bootloader Parame-
ter

Description Values

isolcpus (Applicable only on
Compute Servers)

A set of cores isolated from the host pro-
cesses. Contains vCPUs reserved for Tenants
and DPDK

isolcpus=1-19, 21-39, 41-59,
61-79

Host configuration for HV Profile Extensions

The above examples of host networking configurations for the B1 and B4 Profile Extensions are also suitable for the
HV Profile Extensions; however, the hypervisor and BIOS settings will be different (see table below) and hence there
will be a need for different host profiles. Table Configuration of High Performance Flavor Capabilities gives examples
of three different host profiles; one each for HV, HD and HS Profile Extensions.

62

Table 4.11: Configuration of High Performance Flavor Capabilities
Capability Configured in Host profile:

hp-hv-a
Host profile:
hp-hd-a

Host profile:
hp-hs-a

Profile Exten-
sions

HV HD HS

CPU Allocation
Ratio

Hypervisor 1:1 1:1 1:1

NUMA BIOS, Operating System, Hypervisor
and OpenStack Nova Scheduler

Enable Enable Enable

CPU Pinning (re-
quires NUMA)

OpenStack Nova Scheduler Enable Enable Enable

SMT BIOS Enable Enable Enable
Huge pages BIOS Yes Yes Yes

Host Networking configuration for HD Profile Extensions

An example of the data traffic configuration for the HD (OVS-DPDK) Profile Extensions is shown in the figure below.

Figure 4.3: High Performance Profile Host Configuration with DPDK acceleration (example and simplified)

To ensure Tenant and DPDK CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack
agents), the following needs to be configured:

Table 4.12: GRUB Configuration of High Performance Flavor with
DPDK

GRUB Bootloader Parame-
ter

Description Values

isolcpus (Applicable only on
Compute Servers)

A set of cores isolated from the host pro-
cesses. Contains vCPUs reserved for Tenants
and DPDK

isolcpus=3-19, 23-39, 43-59,
63-79

Host Networking configuration for HS Profile Extensions

An example of the data traffic configuration for the HS (SR-IOV) Profile Extensions is shown in the figure below.

63

Figure 4.4: High Performance Profile Host Configuration with SR-IOV (example and simplified)

To ensure Tenant CPU isolation from the host services (Operating System (OS), hypervisor and OpenStack agents),
the following needs to be configured:

Table 4.13: GRUB Configuration of High Performance Flavor with SR-
IOV

GRUB Bootloader Parame-
ter

Description Values

isolcpus (Applicable only on
Compute Servers)

A set of cores isolated from the host processes.
Contains vCPUs reserved for Tenants

isolcpus=1-19, 21-39, 41-59,
61-79

Using Hosts of a Host Profile type

As we have seen, Profile Extensions are supported by configuring hosts in accordance with the Profile Extensions
specifications. For example, an instance of flavor type B1 can be hosted on a compute node that is configured as an
hp-B1-a or hp-B1-b host profile. All compute nodes configured with hp-B1-a or hp-B1-b host profile are made part of
a host aggregate, say, ha-B1 and, thus, during server instantiation of B1 flavor hosts from the ha-B1 host aggregate will
be selected.

4.1.3 Network Fabric

Networking Fabric consists of:

• Physical switches, routers. . .

• Switch OS

• Minimum number of switches

• Dimensioning for East/West and North/South

• Spine / Leaf topology - east - west

• Global Network parameters

64

• OpenStack control plane VLAN / VXLAN layout

• Provider VLANs

Physical Network Topology

High Level Logical Network Layout

Figure 4.5: Indicative OpenStack Network Layout

65

Table 4.14: OpenStack Network Characteristics
Network Description Characteristics
Provisioning &
Management

Initial OS bootstrapping of the servers via PXE,
deployment of software and thereafter for access
from within the control plane

• Security Domain: Management
• Externally Routable: No
• Connected to: All nodes

Internal API Intra-OpenStack service API communications,
messaging, and database replication • Security Domain: Management

• Externally Routable: No
• Connected to: All nodes except

foundation

Storage Manage-
ment

Backend connectivity between storage nodes for
heartbeats, data object replication and synchro-
nisation

• Security Domain: Storage
• Externally Routable: No
• Connected to: All nodes except

foundation

Storage Front-end Block/Object storage access via cinder/swift
• Security Domain: Storage
• Externally Routable: No
• Connected to: All nodes except

foundation

Tenant VXLAN / Geneve project overlay networks (OVS
kernel mode) - i.e., RFC1918 [39] re-usable pri-
vate networks as controlled by cloud administra-
tor

• Security Domain: Underlay
• Externally Routable: No
• Connected to: controllers and

computes

External API Hosts the public OpenStack API endpoints in-
cluding the dashboard (Horizon) • Security Domain: Public

• Externally routable: Yes
• Connected to: controllers

External Provider
(FIP)

Network with a pool of externally routable IP ad-
dresses used by neutron routers to NAT to/from
the tenant RFC1918 [39] private networks

• Security Domain: Data Centre
• Externally routable: Yes
• Connected to: controllers, OVS

computes

External Provider
(VLAN)

External Data Centre L2 networks (VLANs) that
are directly accessible to the project
Note: External IP address management is re-
quired

• Security Domain: Data Centre
• Externally routable: Yes
• Connected to: OVS DPDK com-

putes

IPMI / Out of Band The remote “lights-out” management port of the
servers e.g., iLO, IDRAC / IPMI / Redfish • Security Domain: Management

• Externally routable: No
• Connected to: IPMI port on all

servers

A VNF application network topology is expressed in terms of servers, vNIC interfaces with vNet access networks,

66

and WAN Networks while the VNF Application Servers require multiple vNICs, VLANs, and host routes configured
within the server’s Kernel.

Octavia v2 API conformant Load Balancing

Load balancing is needed for automatic scaling, managing availability and changes. Octavia [40] is an open-source load
balancer for OpenStack, based on HAProxy, and replaces the deprecated (as of OpenStack Queens release) Neutron
LBaaS. The Octavia v2 API is a superset of the deprecated Neutron LBaaS v2 API and has a similar CLI for seamless
transition.

As a default Octavia utilises Amphorae Load Balancer. Amphorae consists of a fleet of servers (VMs, containers or
bare metal servers) and delivers horizontal scaling by managing and spinning these resources on demand. The reference
implementation of the Amphorae image is an Ubuntu virtual machine running HAProxy.

Octavia depends upon a number of OpenStack services including Nova for spinning up compute resources on demand
and their life cycle management; Neutron for connectivity between the compute resources, project environment and
external networks; Keystone for authentication; and Glance for storing of the compute resource images.

Octavia supports provider drivers which allows third-party load balancing drivers (such as F5, AVI, etc.) to be utilised
instead of the default Amphorae load balancer. When creating a third-party load balancer, the provider attribute is
used to specify the backend to be used to create the load balancer. The list providers lists all enabled provider drivers.
Instead of using the provider parameter, an alternate is to specify the flavor_id in the create call where provider-specific
Octavia flavors have been created.

Neutron Extensions

OpenStack Neutron is an extensible framework that allows incorporation through plugins and API Extensions. API
Extensions provide a method for introducing new functionality and vendor specific capabilities. Neutron plugins sup-
port new or vendor-specific functionality. Extensions also allow specifying new resources or extensions to existing
resources and the actions on these resources. Plugins implement these resources and actions.

This Reference Architecture supports the ML2 plugin (see below) as well as the service plugins including for LBaaS
(Load Balancer as a Service) [41], and VPNaaS (VPN as a Service) [42]. The OpenStack wiki provides a list of Neutron
plugins [43].

Every Neutron plugin needs to implement a minimum set of common methods (actions for Wallaby release) [44].
Resources can inherit Standard Attributes and thereby have the extensions for these standard attributes automatically
incorporated. Additions to resources, such as additional attributes, must be accompanied by an extension.

The section Interfaces and APIs of this Reference Architecture provides a list of Neutron Extensions. The current
available extensions can be obtained using the List Extensions API [45] and details about an extension using the Show
extension details API [46].

Neutron ML2 integration The OpenStack Modular Layer 2 (ML2) plugin simplifies adding networking technologies
by utilising drivers that implement these network types and methods for accessing them. Each network type is managed
by an ML2 type driver and the mechanism driver exposes interfaces to support the actions that can be performed on
the network type resources. The OpenStack ML2 documentation [47] lists example mechanism drivers.

67

Network quality of service

For VNF workloads, the resource bottlenecks are not only the CPU and the memory but also the I/O bandwidth and
the forwarding capacity of virtual and non-virtual switches and routers within the infrastructure. Several techniques
(all complementary) can be used to improve QoS and try to avoid any issue due to a network bottleneck (mentioned
per order of importance):

• Nodes interfaces segmentation: Have separated NIC ports for Storage and Tenant networks. Actually, the storage
traffic is bursty, and especially in case of service restoration after some failure or new service implementation,
upgrades, etc. Control and management networks should rely on a separate interface from the interface used to
handle tenant networks.

• Capacity planning: FW, physical links, switches, routers, NIC interfaces and DCGW dimensioning (+ load
monitoring: each link within a LAG or a bond shouldn’t be loaded over 50% of its maximum capacity to guaranty
service continuity in case of individual failure).

• Hardware choice: e.g., ToR/fabric switches, DCGW and NIC cards should have appropriate buffering and queu-
ing capacity.

• High Performance compute node tuning (including OVS-DPDK).

Integration Interfaces

• DHCP:

When the Neutron-DHCP agent is hosted in controller nodes, then for the servers, on a Tenant network, that need
to acquire an IPv4 and/or IPv6 address, the VLAN for the Tenant must be extended to the control plane servers
so that the Neutron agent can receive the DHCP requests from the server and send the response to the server with
the IPv4 and/or IPv6 addresses and the lease time. Please see OpenStack provider Network.

• DNS

• LDAP

• IPAM

4.1.4 Storage Backend

Storage systems are available from multiple vendors and can also utilise commodity hardware from any number of open-
source based storage packages (such as LVM, Ceph, NFS, etc.). The proprietary and open-source storage systems are
supported in Cinder through specific plugin drivers. The OpenStack Cinder documentation [48] specifies the minimum
functionality that all storage drivers must support. The functions include:

• Volume: create, delete, attach, detach, extend, clone (volume from volume), migrate

• Snapshot: create, delete and create volume from snapshot

• Image: create from volume

The document also includes a matrix for a number of proprietary drivers and some of the optional functions that these
drivers support. This matrix is a handy tool to select storage backends that have the optional storage functions needed
by the cloud operator. The cloud workload storage requirements help determine the backends that should be deployed
by the cloud operator. The common storage backend attachment methods include iSCSI, NFS, local disk, etc. and
the matrix lists the supported methods for each of the vendor drivers. The OpenStack Cinder Available Drivers [49]
documentation provides a list of all OpenStack compatible drivers and their configuration options.

68

The Cinder Configuration [50] document provides information on how to configure Cinder including Anuket required
capabilities for volume encryption, Policy configuration, quotas, etc. The Cinder Administration [51] document pro-
vides information on the capabilities required by Anuket including managing volumes, snapshots, multi-storage back-
ends, migrate volumes, etc.

Ceph [52] is the default Anuket Reference Architecture storage backend and is discussed below.

Ceph Storage Cluster

The Ceph storage cluster is deployed on bare metal hardware. The minimal configuration is a cluster of three bare metal
servers to ensure High availability. The Ceph Storage cluster consists of the following components:

• CEPH-MON (Ceph Monitor)

• OSD (object storage daemon)

• RadosGW (Rados Gateway)

• Journal

• Manager

Ceph monitors maintain a master copy of the maps of the cluster state required by Ceph daemons to coordinate with
each other. Ceph OSD handles the data storage (read/write data on the physical disks), data replication, recovery,
rebalancing, and provides some monitoring information to Ceph Monitors. The RadosGW provides Object Storage
RESTful gateway with a Swift-compatible API for Object Storage.

Figure 4.6: Ceph Storage System

BIOS Requirement for Ceph servers

Table 4.15: BIOS Requirement for Ceph servers
BIOS/boot Parameter Value
Boot disks RAID 1

How many nodes to meet SLA:

69

• minimum: three bare metal servers where Monitors are collocated with OSD. Note: at least 3 Monitors and 3
OSDs are required for High Availability.

HW specifications:

• Boot disks are dedicated with Flash technology disks

• For an IOPS oriented cluster (Flash technology), the journal can be hosted on OSD disks

• For a capacity-oriented cluster (HDD), the journal must be hosted on dedicated Flash technology disks

Sizing rules:

• Minimum of 6 disks per server

• Replication factor : 3

• 1 Core-GHz per OSD

• 16GB RAM baseline + 2-3 GB per OSD

4.2 VIM OpenStack Services

This section covers:

• Detailed breakdown of OpenStack core services

• Specific build-time parameters

4.2.1 VIM Services

A high-level overview of the core OpenStack Services was provided in Virtualised Infrastructure Manager (VIM). In
this section we describe the core and other needed services in more detail.

Keystone

Keystone [53] is the authentication service, the foundation of identity management in OpenStack. Keystone needs to be
the first deployed service. Keystone has services running on the control nodes and no services running on the compute
nodes:

• Keystone admin API

• Keystone public API - in Keystone V3 this is the same as the admin API

Glance

Glance [54] is the image management service. Glance has only a dependency on the Keystone service therefore it is
the second one deployed. Glance has services running on the control nodes and no services running on the compute
nodes:

• Glance API

• Glance Registry

The Glance backends include Swift, Ceph RBD, and NFS.

70

Cinder

Cinder [55] is the block device management service, depends on Keystone and possibly Glance to be able to create
volumes from images. Cinder has services running on the control nodes and no services running on the compute nodes:
- Cinder API - Cinder Scheduler - Cinder Volume - the Cinder volume process needs to talk to its backends

The Cinder backends include SAN/NAS storage, iSCSI drives, Ceph RBD, and NFS.

Swift

Swift [56] is the object storage management service, Swift depends on Keystone and possibly Glance to be able to
create volumes from images. Swift has services running on the control nodes and the compute nodes:

• Proxy Services

• Object Services

• Container Services

• Account Services

The Swift backends include iSCSI drives, Ceph RBD, and NFS.

Neutron

Neutron [57] is the networking service, depends on Keystone and has services running on the control nodes and the
compute nodes. Depending upon the workloads to be hosted by the infrastructure, and the expected load on the con-
troller node, some of the Neutron services can run on separate network node(s). Factors affecting controller node load
include the number of compute nodes and the number of API calls being served for the various OpenStack services
(nova, neutron, cinder, glance etc.). To reduce controller node load, network nodes are widely added to manage L3
traffic for overlay tenant networks and interconnection with external networks. The Table below lists the networking
service components and their placement. Please note that while network nodes are listed in the table below, network
nodes only deal with tenant networks and not provider networks. Also, network nodes are not required when SDN is
utilised for networking.

71

Table 4.16: Neutron Services Placement
Networking Ser-
vice component

Description Required or Op-
tional Service

Placement

neutron server
(neutron-server
and neutron-*-
plugin)

Manages user requests and exposes the
Neutron APIs

Required Controller node

DHCP agent
(neutron-dhcp-
agent)

Provides DHCP services to tenant net-
works and is responsible for maintain-
ing DHCP configuration. For High avail-
ability, multiple DHCP agents can be as-
signed.

Optional depend-
ing upon plug-in

Network node (Controller
node if no network node
present)

L3 agent (neutron-
l3-agent)

Provides L3/NAT forwarding for exter-
nal network access of servers on tenant
networks and supports services such as
Firewall-as-a-service (FWaaS) and Load
Balancer-as-a-service (LBaaS)

Optional depend-
ing upon plug-in

Network node (Controller
node if no network node
present) NB in DVR based
OpenStack Networking,
also in all Compute nodes.

neutron metadata
agent (neutron-
metadata-agent)

The metadata service provides a way
for instances to retrieve instance-specific
data. The networking service, neutron,
is responsible for intercepting these re-
quests and adding HTTP headers which
uniquely identify the source of the request
before forwarding it to the metadata API
server. These functions are performed by
the neutron metadata agent.

Optional Network node (Controller
node if no network node
present)

neutron plugin
agent (neutron-*-
agent)

Runs on each compute node to con-
trol and manage the local virtual net-
work driver (such as the Open vSwitch
or Linux Bridge) configuration and lo-
cal networking configuration for servers
hosted on that node.

Required Every Compute Node

Issues with the standard networking (centralised routing) approach

The network node performs both routing and NAT functions and represents both a scaling bottleneck and a single point
of failure.

Consider two servers on different compute nodes and using different project networks (a.k.a. tenant networks) where
both of the project networks are connected by a project router. For communication between the two servers (instances
with a fixed or floating IP address), the network node routes East-West network traffic among project networks using
the same project router. Even though the instances are connected by a router, all routed traffic must flow through the
network node, and this becomes a bottleneck for the whole network.

While the separation of the routing function from the controller node to the network node provides a degree of scaling
it is not a truly scalable solution. We can either add additional cores/compute-power or network node to the network
node cluster, but, eventually, it runs out of processing power especially with high throughput requirement. Therefore,
for scaled deployments, there are multiple options including the use of Dynamic Virtual Routing (DVR) and Software
Defined Networking (SDN).

72

Distributed Virtual Routing (DVR)

With DVR, each compute node also hosts the L3-agent (provides the distributed router capability), and this then allows
direct instance to instance (East-West) communications.

The OpenStack “High Availability Using Distributed Virtual Routing (DVR) [58]” provides an in-depth view into how
DVR works and the traffic flow between the various nodes and interfaces for three different use cases. Please note that
DVR was introduced in the OpenStack Juno release and, thus, its detailed analysis in the Liberty release documentation
is not out of character for OpenStack documentation.

DVR addresses both scalability and high availability for some L3 functions but is not fully fault tolerant. For example,
North/South SNAT traffic is vulnerable to single node (network node) failures. DVR with VRRP [59] addresses this
vulnerability.

Software Defined Networking (SDN)

For the most reliable solution that addresses all the above issues and Telco workload requirements requires SDN to
offload Neutron calls.

SDN provides a truly scalable and preferred solution to support dynamic, very large-scale, high-density, telco cloud en-
vironments. OpenStack Neutron, with its plugin architecture, provides the ability to integrate SDN controllers (Virtual
Networking - 3rd party SDN solution). With SDN incorporated in OpenStack, changes to the network are triggered by
workloads (and users), translated into Neutron APIs and then handled through neutron plugins by the corresponding
SDN agents.

Nova

Nova [60] is the compute management service, depends on all above components and is deployed after their deployment.
Nova has services running on the control nodes and the compute nodes:

• nova-metadata-api

• nova-compute api

• nova-consoleauth

• nova-scheduler

• nova-conductor

• nova-novncproxy

• nova-compute-agent which runs on Compute node

Please note that the Placement-API must have been installed and configured prior to nova compute starts.

Ironic

Ironic [61] is the bare metal provisioning service. Ironic depends on all above components and is deployed after them.
Ironic has services running on the control nodes and the compute nodes:

• Ironic API

• ironic-conductor which executes operation on bare metal nodes

Note: This is an optional service. The Ironic APIs [62] are still under development.

73

Heat

Heat [63] is the orchestration service using templates to provision cloud resources, Heat integrates with all OpenStack
services. Heat has services running on the control nodes and no services running on the compute nodes:

• heat-api

• heat-cfn-api

• heat-engine

Horizon

Horizon [64] is the Web User Interface to all OpenStack services. Horizon has services running on the control nodes
and no services running on the compute nodes.

Placement

The OpenStack Placement service [65] enables tracking (or accounting) and scheduling of resources. It provides a
RESTful API and a data model for the managing of resource provider inventories and usage for different classes of
resources. In addition to standard resource classes, such as vCPU, MEMORY_MB and DISK_GB, the Placement
service supports custom resource classes (prefixed with “CUSTOM_”) provided by some external resource pools such
as a shared storage pool provided by, say, Ceph. The placement service is primarily utilised by nova-compute and
nova-scheduler. Other OpenStack services such as Neutron or Cyborg can also utilise placement and do so by creating
Provider Trees [66]. The following data objects are utilised in the placement service [67]:

• Resource Providers provide consumable inventory of one or more classes of resources (CPU, memory or disk).
A resource provider can be a compute host, for example.

• Resource Classes specify the type of resources (vCPU, MEMORY_MB and DISK_GB or CUSTOM_*)

• Inventory: Each resource provider maintains the total and reserved quantity of one or more classes of resources.
For example, RP_1 has an available inventory of 16 vCPU, 16384 MEMORY_MB and 1024 DISK_GB.

• Traits are qualitative characteristics of the resources from a resource provider. For example, the trait for RPA_1
“is_SSD” to indicate that the DISK_GB provided by RP_1 are solid state drives.

• Allocations represent resources that have been assigned/used by some consumer of that resource.

• Allocation candidates is the collection of resource providers that can satisfy an allocation request.

The Placement API is stateless and, thus, resiliency, availability, and scaling, it is possible to deploy as many servers
as needed. On start, the nova-compute service will attempt to make a connection to the Placement API and keep
attempting to connect to the Placement API, logging and warning periodically until successful. Thus, the Placement
API must be installed and enabled prior to Nova compute.

Placement has services running on the control node: - nova-placement-api

74

Barbican

Barbican [68] is the OpenStack Key Manager service. It is an optional service hosted on controller nodes. It provides
secure storage, provisioning, and management of secrets as passwords, encryption keys and X.509 Certificates. Bar-
bican API is used to centrally manage secrets used by OpenStack services, e.g., symmetric encryption keys used for
Block Storage encryption or Object Storage encryption, and asymmetric keys and certificates used for Glance image
signing and verification.

Barbican usage provides a means to fulfil security requirements such as sec.sys.012 “The Platform must protect all
secrets by using strong encryption techniques and storing the protected secrets externally from the component” and
sec.ci.001 “The Platform must support Confidentiality and Integrity of data at rest and in transit.”.

Cyborg

Cyborg [69] is the OpenStack project for the general purpose management framework for accelerators (including GPUs,
FPGAs, ASIC-based devices, etc.), and their lifecycle management.

Cyborg will support only a subset of the Nova operations [70]; the set of Nova operations supported in Cyborg depends
upon the merge of a set of Nova patches in Cyborg. In Wallaby, not all the required Nova patches have been merged.
The list of Cyborg operations with Nova dependencies supported in Wallaby are listed in [71]; the Nova operations
supported in Cyborg at any given time are also available in [72].

Cyborg supports:

• Acceleration Resource Discovery

• Accelerator Life Cycle Management

Accelerators can be of type:

• Software: dpdk/spdk, pmem, . . .

• Hardware (device types): FPGA, GPU, ARM SoC, NVMe SSD, CCIX based Caches, . . .

The Cyborg architecture [73] consists of the cyborg-api, cyborg-conductor, cyborg-db, cyborg-agent, and generic de-
vice type drivers. cyborg-api, cyborg-conductor and cyborg-db are hosted on control nodes. cyborg-agent, which runs
on compute nodes, interacts with generic device type drivers on those nodes. These generic device type drivers are an
abstraction of the vendor specific drivers; there is a generic device type driver for each device type (see above for list
of some of the device types). The current list of the supported vendor drivers is listed under “Driver Support [72]”.

4.2.2 Containerised OpenStack Services

Containers are lightweight compared to Virtual Machines, and lead to efficient resource utilisation. Kubernetes auto
manages scaling, recovery from failures, etc. Thus, it is recommended that the OpenStack services be containerised
for resiliency and resource efficiency.

The Chapter 3 shows a high level Virtualised OpenStack services topology. The containerised OpenStack services
topology version is shown in the figure below.

75

Figure 4.7: Containerised OpenStack Services Topology

76

4.3 Consumable Infrastructure Resources and Services

4.3.1 Support for Cloud Infrastructure Profiles and flavors

Chapters 4 and 5 in [1] provide information about the Cloud Infrastructure Profiles and their size information. Open-
Stack flavors with their set of properties describe the server capabilities and size required to determine the compute
host which will run this server. The set of properties must match compute profiles available in the infrastructure. To
implement these profiles and sizes, it is required to set up the flavors as specified in the tables below.

77

Table 4.17: Neutron Services Placement
Flavor
Capabilities

Reference
RM Chapter
4 and 5

Basic High-Performance

CPU allo-
cation ratio
(custom
extra_specs)

in-
fra.com.cfg.
001

In flavor create or flavor set -property
cpu_all ocation_ratio=4.0

In flavor create or flavor set -property
cpu_allocation_ratio=1.0

NUMA
Awareness

in-
fra.com.cfg.
002

In flavor create or flavor set spec-
ify -property hw:numa_nodes=<integer
range of 0 to #numa_nodes - 1>. To re-
strict an instance’s vCPUs to a single
host NUMA node, specify: -property
hw:numa_nodes=1. Some compute in-
tensive* workloads with highly sensi-
tive memory latency or bandwidth re-
quirements, the instance may benefit
from spreading across multiple NUMA
nodes: -property hw:numa_nodes=2

CPU Pinning in-
fra.com.cfg.
003

In flavor create or flavor set specify -
property hw: cpu_policy=shared (de-
fault)

In flavor create or flavor set specify -
property hw:cpu_policy=dedicated
and -property
hw:cpu_thread_policy=<prefer, re-
quire, isolate>. Use “isolate” thread
policy for very high compute intensive
workloads that require that each vCPU
be placed on a different physical core

Huge pages in-
fra.com.cfg.
004

-property hw:mem_page_size=<small
|large | size>

SMT in-
fra.com.cfg.
005

In flavor create or fla-
vor set specify -property
hw:cpu_threads=<integer#threads
(usually 1 or 2)>

OVS-DPDK infra.net.acc.
cfg.001

ml2.conf.ini configured to support
[OVS] datapath_type=netdev
Note: huge pages should be configured
to large

Local Stor-
age SSD

infra.hw.stg.
ssd.cfg.002

trait:STORAGEDISK_SSD=required trait:STORAGE_DISK_SSD=required

Port speed infra.hw.nic.
cfg.002

-property quota
vif_inbound_average=1310720 and
vif_outbound_average=1310720.
Note:10 Gbps = 1250000 kilobytes per
second

-property quota
vif_inboundaverage=3125000 and
vif_outbound_average=3125000
Note: 25 Gbps = 3125000 kilobytes per
second

• To configure profile-extensions, for example, the “Storage Intensive High Performance” profile, as defined in
Profile Extensions (Specialisations) [1], in addition to the above, need to configure the storage IOPS: the following
two parameters need to be specified in the flavor create: -property quota:disk_write_iops_sec=<IOPS#> and -
property quota:disk_read_iops_sec=<IOPS#>.

The flavor create command and the mandatory and optional configuration parameters is documented in OpenStack
Flavors [74].

78

4.3.2 Logical segregation and high availability

To ensure logical segregation and high availability, the architecture will rely on the following principles:

• Availability zone: provide resiliency and fault tolerance for VNF deployments, by means of physical hosting
distribution of compute nodes in separate racks with separate power supply, in the same or different DC room

• Affinity-groups: allow tenants to make sure that VNFC instances are on the same compute node or are on different
compute nodes.

Note: The Cloud Infrastructure doesn’t provide any resiliency mechanisms at the service level. Any server restart shall
be triggered by the VNF Manager instead of OpenStack:

• It doesn’t implement Instance High Availability which could allow OpenStack Platform to automatically re-spawn
instances on a different compute node when their host compute node breaks.

• Physical host reboot does not trigger automatic server recovery.

• Physical host reboot does not trigger the automatic start of a server.

Limitations and constraints

• NUMA Overhead: isolated core will be used for overhead tasks from the hypervisor.

4.3.3 Transaction Volume Considerations

Storage transaction volumes impose a requirement on North-South network traffic in and out of the storage backend.
Data availability requires that the data be replicated on multiple storage nodes and each new write imposes East-West
network traffic requirements.

4.4 Cloud Topology and Control Plane Scenarios

Typically, Clouds have been implemented in large (central) data centres with hundreds to tens of thousands of servers.
Telco Operators have also been creating intermediate data centres in central office locations, colocation centres, and
now edge centres at the physical edge of their networks because of the demand for low latency and high throughput for
5G, IoT and connected devices (including autonomous driverless vehicles and connected vehicles). Cloud Topology
discusses and lists 3 types of data centres: Large, Intermediate and Edge.

For ease of convenience, unless specifically required, in this section we will use Central Cloud Centre, Edge Cloud Cen-
tre and Intermediate Cloud Centre as representative terms for cloud services hosted at centralised large data centres,
Telco edge locations and for locations with capacity somewhere in between the large data centres and edge locations,
respectively. The mapping of various terms, including the Reference Model terminology specified in the chapter “Com-
parison of Deployment Topologies and Edge Terms” and Open Glossary of Edge Computing [75], is as follows:

• Central Cloud Centre: Large Centralised Data Centre, Regional Data Centre

• Intermediate Cloud Centre: Metro Data Centre, Regional Edge, Aggregation Edge

• Edge Cloud Centre: Edge, Mini-/Micro-Edge, Micro Modular Data Centre, Service Provider Edge, Access Edge,
Aggregation Edge

In the Intermediate and Edge cloud centres, there may be limitations on the resource capacity, as in the number of
servers, and the capacity of these servers in terms of # of cores, RAM, etc. restricting the set of services that can be
deployed and, thus, creating a dependency between other data centres. “Telco Edge Cloud” chapter in [1] specifies the
physical and environmental characteristics, infrastructure capabilities and deployment scenarios of different locations.

OpenStack Services Topology of this document, specifies the differences between the Control Plane and Data Plane,
and specifies which of the control nodes, compute nodes, storage nodes (optional) and network nodes (optional) are
components of these planes. The previous sections of this Chapter 4 include a description of the OpenStack services

79

and their deployment in control nodes, compute nodes, and optionally storage nodes and network nodes (rarely). The
Control Plane deployment scenarios determine the distribution of OpenStack and other needed services among the
different node types. This section considers the Centralised Control Plane (CCP) and Distributed Control Plane (DCP)
scenarios. The choice of control plane and the cloud centre resource capacity and capabilities determine the deployment
of OpenStack services in the different node types.

The Central Cloud Centres are organised around a Centralised Control Plane. With the introduction of Intermediate
and Edge Cloud Centres, the Distributed Control Plane deployment becomes a possibility. A number of independent
control planes (sometimes referred to as Local Control Planes (LCP)) exist in the Distributed Control Plane scenario,
compared with a single control plane in the Centralised Control Plane scenario. Thus, in addition to the control plane
and controller services deployed at the Central Cloud Centre, Local Control Planes hosting a full-set or subset of
the controller services are also deployed on the Intermediate and Edge Cloud Centres. The following table presents
examples of such deployment choices.

80

Table 4.18: Distribution of OpenStack services on different nodes de-
pending upon Control Plane Scenario

Control
Plane

Deployed
in

Orches-
tration

Identity
Manage-
ment

Image
Manage-
ment

Compute Network
Manage-
ment

Storage
Manage-
ment

CCP Centralised
DC -
control
nodes

heat-api,
heat-
engine,
nova-
placement-
api

Identity
Provider
(IdP),
Keystone
API

Glance
API,
Glance
Registry

nova-
compute
api, nova-
scheduler,
nova-
conductor

neutron-
server,
neutron-
dhcp-
agent,
neutron-
L2-agent,
neutron-
L3-agent
(optional),
neutron-
metadata
-agent

Cinder
API,
Cinder
Scheduler,
Cinder
Volume

DCP: com-
bination
of services
depend-
ing upon
Center size

Any DC
- Control
nodes
Option 1

heat-api,
heat-
engine,
nova-
placement-
api

Identity
Provider
(IdP),
Keystone
API

Glance
API,
Glance
Registry

nova-
compute
api, nova-
scheduler,
nova-
conductor

neutron-
server,
neutron-
dhcp-
agent,
neutron-
L2-agent,
neutron-
L3-agent
(optional),
neutron-
metadata
-agent

Cinder
API,
Cinder
Scheduler,
Cinder
Volume

Any DC
- Control
nodes Op-
tion 2: split
services
between
two or
more DCs

in one of
the DC

in the Large
DC

in the Large
DC

in one of
the DC

in one of
ther DC

in one of
the DC

CCP or
DCP

Compute
nodes

nova-
compute
-agent

neutron-
L2- agent,
neutron-
L3-agent
(optional)

CCP Compute
nodes

nova-
placement-
api

nova-
compute-
agent,
nova-
conductor

neutron
-server,
neutron-
dhcp-
agent,
neutron-
L2-agent,
neutron-
L3-agent
(optional)

81

4.4.1 Edge Cloud Topology

The Reference Model “Telco Edge Cloud” chapter [1] presents the deployment environment characteristics, infrastruc-
ture characteristics and new values for the Infrastructure Profiles at the Edge.

The Edge computing whitepaper [76] includes information such as the services that run on various nodes. The infor-
mation from the whitepaper coupled with that from the OpenStack Reference Architecture [77] for 100, 300 and 500
nodes will help in deciding which OpenStack and other services (such as database, messaging) run on which nodes in
what Cloud Centre and the number of copies that should be deployed. These references also present the pros and cons
of DCP and CCP and designs to address some of the challenges of each of the models.

“Telco Edge Cloud: Platform Services Deployment” [1] lists the Platform Services that may be placed in the different
node types (control, compute, and storage). Depending upon the capacity and resources available only the compute
nodes may exist at the Edge thereby impacting operations.

“Telco Edge Cloud: Infrastructure Profiles” [1] lists a number of Infrastructure Profile characteristics and the changes
that may need to be made for certain Edge clouds depending upon their resource capabilities. It should be noted that
none of these changes affect the definition of OpenStack flavors.

The previous section listed the OpenStack services deployed on the controller nodes depending upon the control plane
distribution. As specified earlier in this chapter, at least 3 controller nodes should be deployed for HA. Compute nodes
may also exist at the sites where controller nodes are deployed.

Control plane services are not hosted at edge sites. Each edge site can be treated as its own OpenStack AZ. The compute
nodes will host nova-compute, a component of the Compute Service (Nova), and neutron-L2-agent, a component of
the Network Service (Neutron).

The Edge sites may or may not contain local storage. If the edge sites contain storage, then the Block Storage service
(Cinder) is usually deployed to run in an active/active mode with the centrally deployed Block Storage service. Instance
images are downloaded and stored locally; they can be downloaded even prior to use.

If the edge site doesn’t contain storage, then the images would need to be cached from the central site. Two options
exist:

• The instance images would be downloaded and cached in the Nova cache on first use; they will then be available
for subsequent use.

• Pre-caching the instance images for low time-to-boot latency. This has been supported in Nova since the Open-
Stack Ussuri release.

Image caching and considerations for its use are discussed in the OpenStack document Image Caching [78].

Edge Cloud Deployment Tools

Deployment at the Edge requires support for large scale deployment. A number of open-source tools are available for
this purpose including:

• Airship [79]: declaratively configure, deploy and maintain an integrated virtualisation and containerisation plat-
form

• Starling-X [80]: cloud infrastructure software stack for the edge

• Triple-O [81]: for installing, upgrading and operating OpenStack clouds

These installers are described in more details in Operations and Life Cycle Management.

82

5 Interfaces and APIs

This chapter presents a consolidated set of OpenStack Service APIs corresponding to the ETSI NFV Nf-Vi, Vi-Vnfm
and Or-Vi interfaces. The OpenStack Wallaby version is used as the baseline for these APIs and CLIs in this Reference
Architecture (RA-1) version. Any Cloud Infrastructure + VIM reference implementations that get certified by RC
(Reference Conformance) can be considered as Anuket RA Conformant.

The Chapter presents the APIs for the core OpenStack services defined in Chapter 3 and a consolidated view of these
and other APIs that are of interest.

OpenStack is a multi-project framework composed of independently evolving services. It is not enough to rely only
on the OpenStack release to characterise the capabilities supported by these services. Regarding OpenStack services
APIs, an “API version” is associated with each OpenStack service. In addition to major API versions, some Open-
Stack services (Nova, Glance, Keystone, Cinder. . .) support microversions. The microversions allow new features to
be introduced over time. In this chapter, the major version and microversion are specified per service. The specified
microversion is the minimal microversion that supports the features requested for this RA. For the purpose of confor-
mance tests, this chapter also identifies the set of features, offered by a service, that are mandatory for Anuket compliant
implementation.

5.1 Core OpenStack Services APIs

Please note that OpenStack provides a maximum microversion to be used with an OpenStack release. In the follow-
ing sections the “Maximal API Version” refers to this maximum microversion specified for the OpenStack Wallaby
release. Please note that in Reference Conformance (RC-1) testing, the System Under Test (SUT) can utilise newer
microversions because of the OpenStack microversion policies. As per multiple OpenStack services documentation,
for example the Compute Service [82], “A cloud that is upgraded to support newer microversions will still support all
older microversions to maintain the backward compatibility for those users who depend on older microversions.”

5.1.1 Keystone API

Table 5.1: Keystone
OpenStack Service API Version Maximal API Microversion
Identity: Keystone v3 3.14

Table 5.2: Keystone Features
Keystone Features Mandatory
access_rules
application_credentials X
external_idp
federation
oauth1
project_tags X
security_compliance X
trust X

Identity API v3: [83]

Identity API v3 extensions: [84]

Security compliance and PCI-DSS: [85]

83

5.1.2 Glance API

Table 5.3: Glance
OpenStack Service API Version Maximal API Microversion
Image: Glance v2 2.9

Table 5.4: Glance Features
Glance Features Mandatory
import_image
os_glance_reserved
web-download import

Image Service API: [86]

Image Service Versions: [87]

5.1.3 Cinder API

Table 5.5: Cinder
OpenStack Service API Version Maximal API Microversion
Block Storage: Cinder v3 3.64

Table 5.6: Cinder Features
Cinder Features Mandatory
backup X
clone X
consistency_group
extend_attached_volume
extend_attached_encrypted_volume
manage_snapshot X
manage_volume X
multi_backend
snapshot X
volume_revert X

Block Storage API: [88]

Cinder REST API Version History: [89]

84

5.1.4 Swift API

Table 5.7: Swift
OpenStack Service API Version
Object Storage: Swift v1

Table 5.8: Swift Features
Swift Features Mandatory
account_quotas X
bulk_delete X
bulk_upload X
container_quotas X
container_sync
crossdomain X
discoverability X
form_post X
ratelimit X
s3api
slo X
staticweb X
symlink X
temp_url X
tempauth X
versioned_writes X

Object Storage API: [90]

Discoverability: [91]

5.1.5 Neutron API

Table 5.9: Neutron
OpenStack Service API Version
Networking: Neutron v2.0

Table 5.10: Neutron Extensions
Neutron Extensions Mandatory
address-scope X
agent X
allowed-address-pairs X
auto-allocated-topology X
availability_zone X
availability_zone_filter X
binding X
binding-extended X
default-subnetpools X
dhcp_agent_scheduler

continues on next page

85

Table 5.10 – continued from previous page
Neutron Extensions Mandatory
dns-domain-ports
dns-integration
dvr
empty-string-filtering X
ext-gw-mode X
external-net X
extra_dhcp_opt X
extraroute X
extraroute-atomic
flavors X
filter-validation
fip-port-details
floating-ip-port-forwarding
floatingip-pools
ip-substring-filtering X
l3_agent_scheduler
l3-flavors
l3-ha
logging
metering
multi-provider X
net-mtu X
net-mtu-writable X
network_availability_zone X
network-ip-availability X
network-segment-range
pagination X
port-mac-address-regenerate
port-resource-request
port-security X
port-security-groups-filtering X
project-id X
provider X
rbac-policies X
router X
router_availability_zone X
qos X
qos-bw-limit-direction X
qos-bw-minimum-ingress X
qos-default X
qos-fip X
qos-gateway-ip X
qos-rule-type-details X
qos-rules-alias X
quotas X
quota_details X
revision-if-match X
rbac-address-scope
rbac-security-groups

continues on next page

86

Table 5.10 – continued from previous page
Neutron Extensions Mandatory
rbac-subnetpool
router-interface-fip
security-group X
service-type X
sorting X
standard-attr-description X
standard-attr-revisions X
standard-attr-tag X
standard-attr-timestamp X
subnet_allocation X
subnet-service-types X
subnetpool-prefix-ops
tag-ext
tag-ports-during-bulk-creation
trunk X
trunk-details X
uplink-status-propagation

Table 5.11: Neutron Type Drivers
Neutron Type Drivers Mandatory
geneve
gre
vlan X
vxlan

Networking Service APIs: [92]

The exhaustive list of extensions is available at [93]

5.1.6 Nova API

Table 5.12: Nova
OpenStack Service API Version Maximal API Microversion
Compute: Nova v2.1 2.88

87

Table 5.13: Nova Features
Nova Features Mandatory
attach_encrypted_volume
cert
change_password
cold_migration X
console_output X
disk_config X
instance_password X
interface_attach X
live_migration X
metadata_service X
pause X
personality
rdp_console
rescue X
resize X
serial_console
shelve X
shelve_migrate
snapshot X
stable_rescue
spice_console
suspend X
swap_volume
vnc_console
volume_multiattach
xenapi_apis

Compute API: [94]

Compute REST API Version History: [95]

5.1.7 Placement API

Table 5.14: Placement
OpenStack Service API Version Maximal API Microversion
Placement v1 1.36

Placement API: [96]

Placement REST API Version History: [97]

88

5.1.8 Heat API

Table 5.15: Heat
OpenStack Service API Version Maximal Template Version
Orchestration: Heat v1 2021-04-16

Orchestration Service API: [98]

Template version history: [99]

Heat Orchestration Template (HOT) specification: [100]

5.2 Consolidated Set of APIs

5.2.1 OpenStack Interfaces

This section illustrates some of the Interfaces provided by OpenStack; the exhaustive list of APIs is available at [101].

OpenStack REST APIs are simple to interact with using either of two options. Clients can either call the APIs directly
using the HTTP or REST library, or they can use one of the many cloud specific programming language libraries.

APIs

Table 5.16: APIs
OpenStack Ser-
vice

Link for API list API Version Maximal API
Microversion

Identity: Keystone [83] v3 3.14
Compute: Nova [94] v2.1 2.88
Networking: Neu-
tron

[93] v2.0

Image: Glance [86] v2 2.9
Block Storage: Cin-
der

[88] v3 3.64

Placement [96] v1 1.36
Orchestration: Heat [98] v1 2021-04-06

(template)

5.2.2 Kubernetes Interfaces

The Kubernetes APIs are available at [102].

5.2.3 KVM Interfaces

The KVM APIs are documented in Section 4 of the document [103].

89

5.2.4 Libvirt Interfaces

The Libvirt APIs are documented in [104].

5.2.5 Barbican API

Table 5.17: Barbican
OpenStack Service API Version
Key Manager: Barbican v1

Barbican API: [105]

6 Security

This guide is intended to provide basic security requirements to architects who are implementing Cloud Infrastructure
using OpenStack [2] technology. This is a minimal set of high-level general security practices, not intended to cover
all implementation scenarios. Please ensure to also reference your enterprise security and compliance requirements in
addition to this guide.

6.1 Security Requirements

The sections Cloud Infrastructure Security Requirements and Security Recommendations gather all the requirements
and recommendations regarding security topics developed in this chapter.

6.2 Cloud Infrastructure and VIM Security

In the “Security boundaries and threats” section [106] of the OpenStack security guide [107], there is extensive de-
scription on security domains, threat classifications, and attack vectors. The following only touches on some of the
topics and at a high level.

6.2.1 System Hardening

All infrastructure components should undergo system hardening, establish processes to govern the hardening, and
documents to cover at a minimal for the following areas.

Server boot hardening

Server boot process must be trusted. For this purpose, the integrity and authenticity of all BIOS firmware components
must be verified at boot. Per sec.gen.003 requirement, Secure Boot based on UEFI must be used. By verifying the
signatures of all BIOS components, Secure Boot will ensure that servers start with the firmware expected and without
malware insertion into the system. Secure Boot checks the digital signatures locally. To implement a chain of trust,
Secure Boot must be complemented by the use of a hardware based Root of Trust provided by a TPM (Trusted Platform
Module).

90

System Access

Access to all the platform’s components must be restricted (sec.gen.013) applying the following rules:

• Remove, or at a minimum disable all unnecessary user accounts

• Change all default user accounts where technically feasible

• Change all default credentials

• Prohibit logging with root account when root privileges are not required (sec.gen.006)

• Restrict access according to only those protocols/service/address adhering to the Principle of Least Privilege

• The same authentication credentials must not be reused on different components (sec.sys.011)

• Restrict access to Operating System (sec.gen.005)

Password policy

For all infrastructure components, passwords must be hardened, and a strict password policy must be applied
(sec.gen.002).

Passwords must be strengthened:

• All vendors’ default passwords must be changed

• Passwords must contain at least 8 characters as a minimal value, 14 characters length passwords are recommended

• Passwords must contain at least one upper case letter, one lower case letter and one non-alphabetic character

• For administration privileges accounts, passwords must contain at least one upper case letter, one lower case
letter, one numeral and one special (non-alphanumeric) character

For passwords updates, the identity of users must be verified before permitting a password change.

Passwords must be encrypted at rest and in-transit. Password files must be stored separately from application system
data.

Password’s composition, complexity and policy should follow the recommendations consolidated within the CIS Pass-
word Policy guide [8] such as:

• Check the password for known bad passwords (repetitive or sequential characters, dictionary words, context-
specific words, previously used passwords, etc.)

• Limit number of failed login attempts

• Implement Multi-factor Authentication

• Periodic (for example, Yearly, Quarterly, etc.) password change or on key events such as indication of compro-
mise, change of user roles, a defined period of inactivity, when a user leaves the organisation, etc.

91

Function and Software

Infrastructure must be implemented to perform the minimal functions needed to operate the Cloud Infrastructure.

Regarding software (sec.gen.004):

• Install only software which is required to support the functions

• Remove any unnecessary software or packages

• Where software cannot be removed, disable all services to it

Patches

All deployed Cloud Infrastructure software must be audited and must be implemented to allow installation of the latest
patches to address security vulnerabilities in the following timescale from discovery (sec.gen.008, sec.lcm.011):

Table 6.1: Time to Remediate
Severity Time to Remediate
Zero-Day Immediately or as soon as practically possible
Critical 30 days
High 60 days
Medium 90 days
Low 180 days

See Common Vulnerability Scoring System [108] and NIST Vulnerability Metrics [109].

Network Protocols

• Only allow protocols that are required by the system functions (sec.sys.002)

• Tighten all required TCP/IP (Transmission Control Protocol/Internet Protocol) services

Anti-Virus and Firewall

• Install and run your Enterprise approved anti-virus software/ intrusion protection/ malware/ spyware endpoint
security software with up-to-date profiles; minimal daily refresh

• Install and run firewall software where applicable

Vulnerability Detection and Prevention

• Implement DoS (Denial of Service) protection where applicable

• Ensure logging and alerting is actively running

• Run host-based scanning and fix all findings per vulnerability severity

• Run network-based scanning and fix all findings per vulnerability severity

92

6.2.2 Platform Access

Identity Security

The OpenStack Identity service (Keystone) [110] provides identity, token, catalog, and policy services for use specifi-
cally by services in the OpenStack family. Identity service is organised as a group of internal services exposed on one
or many endpoints. Many of these services are used in a combined fashion by the front end (sec.sys.006).

OpenStack Keystone can work with an Identity service that your enterprise may already have, such as LDAP with Active
Directory. In those cases, the recommendation is to integrate Keystone with the cloud provider’s Identity Services.

Authentication

Authentication is the first line of defence for any real-world implementation of OpenStack. At its core, authentication
is the process of confirming the user logging in is who they claim to be. OpenStack Keystone supports multiple
methods of authentication, such as username/password, LDAP, and others. For more details, please refer to OpenStack
Authentication Methods [111].

Limiting the number of repeated failed login attempts (configurable) reduces the risk of unauthorised access via pass-
word guessing (Bruce force attack) - sec.mon.006. The restriction on the number of consecutive failed login attempts
(“lockout_failure_attempts”) and any actions post such access attempts (such as locking the account where the “lock-
out_duration” is left unspecified) should abide by the operator’s policies. For example, an operator may restrict the
number of consecutive failed login attempts to 3 (“lockout_failure_attempts = 3”) and lock the account preventing any
further access and where the account is unlocked by getting necessary approvals.

Keystone Tokens

Once a user is authenticated, a token is generated for authorisation and access to an OpenStack environment and re-
sources. By default, the token is set to expire in one hour. This setting can be changed based on the business and
operational needs, but it’s highly recommended to set the expiration to the shortest possible value without dramatically
impacting your operations.

Special Note on Logging Tokens: since the token would allow access to the OpenStack services, it MUST be masked
before outputting to any logs.

Authorisation

Authorisation serves as the next level of defence. At its core, it checks if the authenticated users have permission to
execute an action. Most Identity Services support the notion of groups and roles. A user belongs to groups and each
group has a list of roles that permits certain actions on certain resources. OpenStack services reference the roles of the
user attempting to access the service. OpenStack policy enforcer middleware takes into consideration the policy rules
associated with each resource and the user’s group/roles and association to determine if access will be permitted for
the requested resource. For more details on policies, please refer to the OpenStack Policies [112].

93

RBAC

In order to properly manage user access to OpenStack services, service providers must utilise the Role Based Access
Control (RBAC) system (sec.sys.001, sec.sys.007). Based on the OpenStack Identify Service (Keystone v3) Group and
Domain component, the RBAC system implements a set of access roles that accommodate most use cases. Operations
staff can create users and assign them to roles using standard OpenStack commands for users, groups, and roles.

Keystone provides three default roles [113] admin, member, and reader. As of Train release, Keystone applies the
following personas consistently across its API.

• The reader role provides read-only access to resources within the system, a domain, or a project.

• The member role, same as reader in Keystone, introduces granularity between admin and reader to other Open-
Stack services.

• The admin role is reserved for the most privileged operations within a given scope for managing resources.

For specific use-case, policies can be overridden, and new roles can be created for each OpenStack service by editing
the policy.json file.

Rules

The following rules govern create, read, update, and delete (CRUD) level access.

• member can create, read, update, and delete the resources defined at the tenant level.

• support_member can create and read the resources defined at the tenant level.

• viewer can read the resources defined at the tenant level.

• admin can create, read, update, and delete all resources.

Recommended Default Roles to Start

site_admin (HIGHLY RESTRICTED)

• Site Level Super Admin - usually assign to Operation Staffs who already have root level access to hosts

• Permission to create/read/update/delete all tenants and resources at the site, including creating snapshot and
upload public images

• Limited ability to create/read/update/delete tenant projects

site_admin_support

• Site Level Admin - usually assign to Operation Staffs who need to manage resource except delete

• Permission to create/read/update all tenants and resources at the site

• Cannot create snapshots

site_admin_viewer

• Site Level Admin Read Only - usually assigned to groups who need to view all resources, such as Capacity
Planners

• Permission to read all tenants and resources at the site

• Cannot create/update/delete

site_image_manager

• Site wide admin level privileges to Glance API (via CLI)

94

• Restricted to Image team

tenant_member

• Tenant Level Admin - typically assigned to majority of tenant users to manage their resources

• Permission to create/read/update/delete to all resources at the tenant project level

• Cannot upload image or create snapshot

• Cannot touch any other tenant except the one the role is located

tenant_snapshot_member

• Tenant Level Admin with Snapshot - typically assigned to tenant users who need to create snapshot via special
request to Operations Staff

• Permission is same as tenant_member except the user can also create snapshots

tenant_support_member

• Tenant Level Support - typically assigned to tenant users who need to create resource in the project space

• Permission to create/read all resources at the tenant project level

• Cannot update/delete or create snapshots

tenant_viewer

• Tenant Level Read Only - typically assigned to tenant users who need to read all resources in the project space

• Permission to read all resources at the tenant level

• Cannot create/update/delete

6.2.3 Confidentiality and Integrity

Confidentiality implies that data and resources must be protected against unauthorised introspection/exfiltration. In-
tegrity implies that the data must be protected from unauthorised modifications or deletions.

Regarding confidentiality and integrity in Cloud Infrastructure, 2 main concerns are raised:

• confidentiality and integrity of the Cloud Infrastructure components (networks, hypervisor, OpenStack services)

• confidentiality and integrity of the tenant’s data

The Cloud Infrastructure must also provide the mechanism to identify corrupted data.

Confidentiality and Integrity of communications (sec.ci.001)

It is essential to secure the infrastructure from external attacks. To counter this threat, API endpoints exposed to external
networks must be protected by either a rate-limiting proxy or web application firewall (WAF), and must be placed behind
a reverse HTTPS proxy (sec.mon.008). Attacks can also be generated by corrupted internal components, and for this
reason, it is security best practice to ensure integrity and confidentiality of all network communications (internal and
external) by using Transport Layer Security (TLS) protocol (sec.sys.003, sec.sys.004). When using TLS, according to
the OpenStack security guide [114] recommendation, the minimum version to be used is TLS 1.2.

3 categories of traffic will be protected using TLS:

• traffic from and to external domains

• communications between OpenStack components (OpenStack services, Bus message, Data Base)

• management traffic

95

Certificates used for TLS encryption must be compliant with X.509 standards and be signed by a trusted authority
(sec.sys.017). To issue certificates for internal OpenStack users or services, the cloud provider can use a Public Key
Infrastructure (PKI) with its own internal Certification Authority (CA), certificate policies, and management.

Integrity of OpenStack components configuration

The cloud deployment components/tools store all the information required to install the infrastructure including sen-
sitive information such as credentials. It is recommended to turn off deployment components after deployment to
minimise the attack surface area, limit the risk of compromise, and to deploy and provision the infrastructure through
a dedicated network (VLAN).

Configuration files contain sensitive information. These files must be protected from malicious or accidental modifi-
cations or deletions by configuring strict access permissions for such files. All access failed attempts to change and all
changes (pre-change, post-change and by who) must be securely logged, and all failed access and failed changes must
be alerted on (sec.mon.005).

The Cloud Infrastructure must provide the mechanisms to identify corrupted data (sec.gen.009):

• the integrity of configuration files and binaries must be checked by using cryptographic hash

• it is recommended to run scripts (such as checksec.sh) to verify the properties of the QEMU/KVM

• it is recommended to use tools such as CIS-CAT (Center for Internet security- Configuration Assessment Tool
[115]) to check the compliance of systems configuration against respective CIS benchmarks [116].

It is strongly recommended to protect all repositories, such as Linux repositories and Docker registries, against the
corruption of their data and unauthorised access, by adopting protection measures such as hosting a local repos-
itory/registry with restricted and controlled access, and using TLS (sec.img.004, sec.img.005, sec.img.006). This
repository/registry must contain only signed images or packages.

Confidentiality and Integrity of tenant data (sec.ci.001)

Tenant data are forwarded unencrypted over the network. Since the VNF is responsible for its security, it is up to the
VMs to establish secure data plane, e.g., using IPsec over its tenant network.

A Cloud actor must not be able to retrieve secrets used by VNF managers. All communications between the VNFM or
orchestrator, and the infrastructure must be protected in integrity and confidentiality (e.g., by using TLS) and controlled
via appropriate IP filtering rules (sec.lcm.006).

The Cloud Infrastructure must onboard only trusted and verified VM images, implying that VNF vendors provide signed
images (sec.img.001); images from non-trusted sources may contain security breaches or unsolicited malicious code
(spoofing, information disclosure). It is recommended to scan all VM images with a vulnerability scanner(sec.img.002).
The scan is mandatory for images from unknown or untrusted sources.

To mitigate tampering attacks, it is recommended to use the Glance image signing feature [117] to validate an image
when uploading. In this case, Barbican service must be installed.

In order to protect data, VNFs must encrypt the volumes they use. In this case, the encryption key must not be stored
on the infrastructure. When a key management service is provided by the infrastructure, OpenStack can encrypt data
on behalf of tenants (sec.gen.010). It is recommended to rely on Barbican, as the key manager service of OpenStack.

96

6.2.4 Workload Security

OpenStack segregates its infrastructure (sec.ci.008) (for example, hosts) by Regions, Host Aggregates and Availability
Zones (AZ). Workloads can also be segregated by server groups (affinity and non-affinity groups) (sec.sys.008). These
options support the workloads placement requirement (sec.wl.001, sec.wl.004).

Separation of non-production and production workloads, or by workload category (for example, payment card infor-
mation, healthcare, etc.) requires separation through server groups (for example, Regions, AZs), but also requires
network and storage segregation as in Regions. Thus, the separation of these workloads is handled through placement
of workloads in separate AZs and/or Regions (sec.wl.005 and sec.wl.006).

Regions also support the sec.wl.004 requirement for separation by Location (for example, country).

Operational security is handled through a combination of mechanisms including the above and security groups
(sec.sys.002). Security groups limit the types of traffic that have access to instances. One or more security groups
can be automatically assigned to an instance at launch. The rules associated with a security group control the incoming
traffic. Any incoming traffic not matched by a rule is denied access. The security group rules govern access through the
setting of different parameters: traffic source, protocols and destination port on a VM. Errors in provisioning/managing
OpenStack Security Groups can lead to non-functioning applications, and it can take a long time to identify faults and
correct them. Thus, the use of tools for auto provisioning and continued inspection of security groups and network
policies is required.

Given the rate of change in the workload development and deployment, and the cloud environment itself, sec.wl.003
requires that the workloads must be assessed during the CI/CD process as the images are created and then whenever
they are deployed. In addition, the infrastructure must be configured for security as discussed elsewhere in this chapter
including secure boot.

6.2.5 SR-IOV and DPDK Considerations

The SR-IOV agent only works with NoopFirewallDriver when Security Groups are enabled, but can still use other fire-
wall_driver for other Agents by updating their conf with the requested firewall driver. Please see SR-IOV Passthrough
for Networking [118].

Operators typically do not implement Security Groups when using SR-IOV or DPDK networking technologies.

6.2.6 Image Security

Images from untrusted sources must not be used (sec.img.001). Valuable guidance on trusted image creation pro-
cess and image signature verification is provided in the “Trusted Images” section of the OpenStack Security Guide
[119]. The OpenStack Security Guide includes reference to the “OpenStack Virtual Machine Image Guide [120]” that
describes how to obtain, create, and modify OpenStack compatible virtual machine images.

Images to be ingested, including signed images from trusted sources, need to be verified prior to ingestion into the Image
Service (Glance) (sec.gen.009). The operator will need toolsets for scanning images, including for virus and malware
detection (sec.img.002). Adding Signed Images to the Image Service (Glance) is specified in OpenStack Operations
Guide [121]. Image signing and verification protects image integrity and authenticity by enabling deployers to sign
images and save the signatures and public key certificates as image properties. The creation of signature per individual
artifact in the VNF package is required by ETSI NFV SOL004 [122].

The chain of trust requires that all images are verified again in the Compute service (Nova) prior to use. Integrity
verification at the time of instantiation is required by ETSI NFV SEC021 [123].

Images must be also updated to benefit from the latest security patches (sec.gen.008, sec.img.007).

97

6.2.7 Security LCM

Cloud Infrastructure LCM encompasses provisioning, deployment, configuration and management (resources scaling,
services upgrades, etc.) as described in Operations and Life Cycle Management. These operations must be securely
performed in order to keep the infrastructure safe and operational (sec.lcm.003).

Provisioning/Deployment

Regarding the provisioning of servers, switches, routers and networking, tools must be used to automate the provision-
ing eliminating human error. For Infrastructure hardware resources, a set of recommendations is detailed in Underlying
resources provisioning to automate and secure their provisioning (sec.lcm.001).

For OpenStack services and software components, deployment tools or components must be used to automate the
deployment and avoid errors. The deployment tool is a sensitive component storing critical information (deployment
scripts, credentials, etc.). The following rules must be applied:

• The boot of the server or the VM hosting the deployment tool must be protected

• Integrity of the deployment images must be checked, before starting deployment

• Deployment must be done through a dedicated network (e.g., VLAN)

• When the deployment is finished, the deployment tool must be turned-off, if the tool is only dedicated to deploy-
ment. Otherwise, any access to the deployment tool must be restricted.

• Strict access permissions must be set on OpenStack configuration files.

Configuration and management

Configuration operations must be tracked (sec.gen.015, sec.mon.006, sec.mon.007). Events such as system access
attempts, actions with high privileges, modification of configuration, must be logged and exported on the fly to a non-
local storage. The communication channel used for log collection must be protected for integrity and confidentiality,
and the logs protected against unauthorised modification (sec.mon.004).

Per sec.sys.0016 and sec.lcm.002 requirements, management protocols limiting security risks must be used such as
SNMPv3, SSH v2, ICMP, NTP, syslog and TLS. How to secure logging is described in the following section.

Platform backup

The storage for backup must be independent of storage offered to tenants.

Security upgrades

To defend against virus or other attacks, security patches must be installed for firmware, OS, Hypervisor and OpenStack
services according to their criticality.

6.2.8 Monitoring and Security Audit

The intent of this section is to provide a key baseline and minimum requirements to implement logging that can meet
the basic monitoring and security auditing needs. This should provide sufficient preliminary guidance, but is not
intended to provide a comprehensive solution. Regular review of security logs that record user access, as well as
session (sec.mon.010) and network activity (sec.mon.012), is critical in preventing and detecting intrusions that could
disrupt business operations. This monitoring process also allows administrators to retrace an intruder’s activity and
may help correct any damage caused by the intrusion (sec.mon.011).

The logs have to be continuously monitored and analysed with alerts created for anomalies (sec.lcm.005). The resources
for logging, monitoring and alerting also need to be logged and monitored, and corrective actions taken so that they
are never short of the needed resources (sec.mon.015).

98

Creating Logs

• All resources to which access is controlled, including but not limited to applications and operating systems, must
have the capability of generating security audit logs (sec.mon.001).

• Logs must be generated for all components (e.g., Nova in OpenStack) that form the Cloud Infrastructure
(sec.mon.001).

• All security logging mechanisms must be active from system initialisation (sec.mon.018):

– These mechanisms include any automatic routines necessary to maintain the activity records and clean-up
programs to ensure the integrity of the security audit/logging systems.

• Logs must be time synchronised (sec.mon.002).

What to Log / What NOT to Log

What to log

Where technically feasible the following system events must be recorded (sec.mon.005):

• Successful and unsuccessful login attempts including:

– Command line authentication (i.e., when initially getting token from keystone)

– Horizon authentication

– SSH authentication and sudo on the computes, controllers, network and storage nodes

• Logoffs

• Successful and unsuccessful changes to a privilege level (sec.lcm.012)

• Successful and unsuccessful configuration changes

• Successful and unsuccessful security policy changes

• Starting and stopping of security logging

• Creating, removing, or changing the inherent privilege level of users (sec.lcm.012)

• Connections to a network listener of the resource

• Starting and stopping of processes including attempts to start unauthorised processes

• All command line activity performed by the following innate OS programs known to otherwise leave no evidence
upon command completion including PowerShell on Windows systems (e.g., Servers, Desktops, and Laptops)

• Where technically feasible, any other security events should be recorded

What NOT to log

Security audit logs must NOT contain:

• Authentication credentials, even if encrypted (e.g., password) (sec.mon.019);

• Keystone Token;

• Proprietary or Sensitive Personal Information.

99

Where to Log

• The logs must be stored in an external system (sec.mon.018), in a manner where the event can be linked to the
resource on which it occurred.

• Where technically feasible, events must be recorded on the device (e.g., VM, physical node, etc.) where the event
occurs, if the external logging system is not available (sec.mon.021).

• Security audit logs must be protected in transit and at rest (sec.mon.004).

Required Fields

The security audit log must contain at minimum the following fields (sec.mon.001) where applicable and technically
feasible:

• Event type

• Date/time

• Protocol

• Service or program used for access

• Success/failure

• Login ID — Where the Login ID is defined on the system/application/authentication server; otherwise, the field
should contain ‘unknown’, in order to protect authentication credentials accidentally entered at the Login ID
prompt from appearing in the security audit log.

• Source and destination IP Addresses and ports

Data Retention

• Log files must be retained for 180 days, or the relevant regulator mandate, or your customer mandate, whichever
is higher (sec.mon.020).

• Implementation and monitoring: after 180 days or your mandated retention period, security audit logs must be
destroyed.

Security Logs Time Synchronisation

The host and various system clocks must be synchronised with an authenticated time service/NTP server (sec.gen.007).

For time synchronisation, we need to specify the synchronisation interval and the tolerance where the latter specifies
the permissible difference the local time can be out of synchronisation. Whenever the time synchronisation forces the
local time to change or the use of another NTP server, the change details must be logged including time server source,
time, date and time zones (sec.mon.003).

100

7 Operations and Life Cycle Management

To create an Infrastructure as a Service (IaaS) cloud requires the provisioning and deployment of the underlying infras-
tructure (compute, networking and storage) and deployment, configuration and management of the necessary software
on the infrastructure; in the process of deploying the software, configuration of the infrastructure may also need to be
performed.

Instead of deploying the infrastructure components and services manually, the current best practice is to write code
(Infrastructure as Code, IaC) to define, provision, deploy, configure and manage the IaaS cloud infrastructure and
services. IaC tools allow the entire provisioning, configuration and management processes to be automated. The
desired state of the infrastructure and services is represented in a set of human readable, machine executable, and
version-controlled files. With version control, it is easy to roll back to an older version and have access to the history
of all committed changes.

The provisioning of the infrastructure is typically performed by provisioning tools while the deployment of the soft-
ware and the configuration of the software, and where needed the infrastructure, falls in the domain of configuration
management tools. A single tool may support both provisioning and configuration management.

Operators may choose certain paradigms with respect to how they provision and configure their IaaS cloud. These
paradigms will drive the selection of the provisioning and configuration tools. In this chapter we will discuss the
capabilities of provisioning and configuration management systems; some open-source tools may be mentioned but
their capabilities are beyond the scope of this chapter.

7.1 Procedural versus Declarative code

The procedural style IaC tools require code that specifies how to achieve the desired state. Whilst the declarative style
IaC tools require code that specifies the desired state (what not how). The major difference between the two styles
emerges when changes to the desired state are required. In the procedural style, the change is coded in terms of the
difference between the desired and current states while in the declarative style the new desired state is specified. In
the procedural style since the state difference has to be coded, a new code file has to be created for each change; in the
declarative style the existing code file is updated with the new state information. In the declarative style knowledge of
the current state is not required. In the procedural style, knowledge of the current state has to be manually figured by
tracing the created code files and the order in which they were applied.

7.2 Mutable versus Immutable infrastructure

In the mutable infrastructure paradigm, software updates are made in place. Over time this can lead to configuration
drift where each server becomes slightly different from all other servers. In the immutable infrastructure paradigm,
new servers are deployed with the new software version and then the old servers are undeployed.

7.3 Cloud Infrastructure provisioning and configuration management

In the Reference Model [1], the “Configuration and Lifecycle Management” chapter defines the functions of Configu-
ration and Life Cycle Management (LCM). To operate and manage a scalable cloud, that minimises operational costs,
requires tools that incorporates systems for automated provisioning and deployment, and managing configurations that
ensures the correctness and integrity of the deployed and configured systems.

101

7.3.1 Underlying resources provisioning

This section deals with automated provisioning of the Cloud Infrastructure; for example, provisioning the servers,
switches, routers, networking (e.g., subnets, routing tables, load balancers, etc.), databases and all required operating
systems (Servers, switches, etc.).

The following are the minimum tasks that need to be performed by automation:

• Pre-boot configuration such as BIOS/RAID/IPMI settings: Hardware manufacturers typically have their pro-
prietary interface for these tasks but standards such as Redfish are being increasingly utilised. Consider using
tooling to ensure consistency across all infrastructure components.

• Bootloader installation of base Network Operating System (NOS) on networking equipment or the Operating
System (OS) should be performed using PXE; again consider tooling to ensure consistency across all infrastruc-
ture components.

To ensure operational efficiency and save cost and time, the lifecycle management for physical and virtual servers must
be automated using tools which will handle the repetitive tasks like provisioning, configuration, and monitoring. Fore-
man [124] is commonly used to automate the provisioning and management of bare metal infrastructure. Foreman is
an open-source project, base of several commercial products. Foreman provides the full management of PXE configu-
ration and the installation for many Operating Systems (CentOS, Fedora, Ubuntu, Debian, Red Hat Enterprise Linux,
OpenSUSE, etc.). Foreman service can be installed by Ansible playbooks [125]. Ansible playbooks are basic tools for
the automation of the infrastructure virtualisation layer deployments.

7.3.2 VIM deployment

When the underlying resources are installed and configured, the VIM software is deployed. Automated deployment is
highly recommended for the same reasons of efficiency. Open-source installers are available to perform the deployments
of the OpenStack services. A subset of these tools is described below.

• OpenStack TripleO [81], “OpenStack on OpenStack”

TripleO is an official OpenStack project which allows to deploy and manage a production cloud onto bare metal
hardware using a subset of existing OpenStack components. The first step of deployment is the creation of an
“undercloud” or deployment cloud. The undercloud contains the necessary OpenStack components to deploy
and manage an “overcloud”, representing the deployed cloud. The architecture document [126] describes the
solution. Nova and Ironic are used in the undercloud to manage the servers in bare metal environment. TripleO
leverages on Heat tempates.

• Airship v2 [79]

Airship is supported by the OpenStack Foundation. It is a collection of interopable open-source components for
declarative automation of cloud provisioning. The configurations are defined by YAML documents. All services
run on containers. Airship v2 is aligned with maturing CNCF projects such as Kubernetes, Kubectl, Kubeadmin,
Argo, Cluster API, Kustomize, and Metal3. Airship v2.1, released in November 2021, leverages on Kubernetes
1.21. It includes cloud provisioning at edge and for 3rd party cloud. The use of the OpenStack-Helm project
allows the deployment of OpenStack on top of Kubernetes. Airship is not only a provisioning tool, but also a
also a configuration management system.

• StarlingX [80]

StarlingX is dedicated to cloud infrastructure deployment at the edge, taking into account the specific edge use
cases requirements for low latency and precision clock synchronisation. It aims to install a containerised version
of OpenStack services, leveraging on Kubernetes, Docker registry, Airship Armada, and Helm.

OpenStack-Helm is used as a starting point. OpenStack is installed and managed as an Armada application.
Armada Applications are a set of one or more interdependent Application Helm charts. In the case of StarlingX,
there is generally a Helm chart for every OpenStack service.

102

7.3.3 Configuration Management

The configuration management system ensures the correctness and integrity of the deployed and configured systems.
The tools provide the assurance that the expected software is running with the expected configurations on correctly
configured nodes that continue to be configured correctly.

Configuration Management is composed of the following activities:

• Desired (Target) State: a version of the software and hardware and their configurations. Depending upon the con-
figuration management system these configurations are specified in cookbooks, playbooks, manifests, etc. The
configuration specifications in these artefacts are used to configure the different types of nodes, BIOS, operating
systems, hypervisor and OpenStack services (through settings within their config files such as nova.conf, etc.).

• Current State: the current configuration of software and hardware as provided by monitoring systems

• State variance mitigation: The CM system, on discovering a variance between the desired and current states, acts
to drive the state to the desired state. Each CM system accomplishes the task in different ways.

7.4 Cloud Infrastructure and VIM Maintenance

Cloud Infrastructure and VIM Maintenance activities can be classified as

1. Deployment of additional infrastructure components (or removal of infrastructure components)

2. Cloud Infrastructure Configuration changes

3. VIM Configuration changes

4. Version changes (upgrade) of Cloud Infrastructure software (for example, Host Operating System, Hypervisor,
etc.)

5. Version changes of VIM Software (or component services)

Deployment (or removal) of infrastructure components

In declarative tools, the code with the specified desired state (for example, number of compute servers) is modified to
the new desired state. The IaC tool then ensures that the desired state is achieved. In procedural tools, the step-by-step
code to deploy (remove) infrastructure components needs to be specified. Existing code can be cloned, and appropriate
changes made to get to the desired state.

Configuration and Version Changes

Configuration and Version Changes are made in a similar fashion to the “Deployment of infrastructure components”
except that the IaC tools used may be different.

7.5 Logging, Monitoring and Analytics

• Logging

• Monitoring

• Alerting

• Logging, Monitoring, and Analytics (LMA) Framework

103

7.5.1 Logging

A log, in the context of computing, is the automatically produced and time-stamped documentation of events relevant
to a particular system. All software, including operating systems, middleware and applications produce log files. En-
terprises and vendors may have custom monitoring and logging solutions. The intent of logging and monitoring is to
capture events and data of interest to the Cloud Infrastructure and workloads so that appropriate actions can be taken.
For example,

• Operating systems and web servers maintain an access log of all access requests, session details and file access.

• Databases maintain a transaction log of all transaction executed including added, changed and deleted data.

• Audit logs record chronological documentation of any activities that could have affected a particular operation or
event. Data typically includes resources accessed, destination and source addresses, and a timestamp and login
information for the person who accessed the resources.

Some of the data is to support the metrics collection specified in the Reference Model [1].

Logs have multiple operational uses including for:

1. Regulatory Compliance and Security Information and Event Management (SIEM) featuring the automated gath-
ering, analysis and correlation of log data across all systems and devices across an operator to provide real-time
analysis, event prioritisation, reporting, notification and alerting.

2. Monitoring across systems in real-time to detect particular log events, patterns, anomalies or inactivity to gauge
system and application health

3. Identify system and application performance and configuration issues

4. Root cause analysis for system and application failures and errors

5. Ensuring that operational objectives and SLAs are met

7.5.2 Monitoring

Monitoring is the process of collecting, aggregating, and analysing values that improve awareness of the components’
characteristics and behavior. The data from various parts of the environment are collected into a monitoring system that
is responsible for storage, aggregation, visualisation, and initiating automated responses when the values meet specific
threshold.

Monitoring systems fulfil many related functions. Their first responsibility is to accept and store incoming and historical
data. While values representing the current point in time are useful, it is almost always more helpful to view those
numbers in relation to past values to provide context around changes and trends.

7.5.3 Alerting

Alerting is the responsive component of a monitoring system that performs actions based on changes in metric values.
Alert definitions are composed of two components: a metrics-based condition or threshold, and an action to perform
when the values fall outside of the acceptable conditions.

While monitoring systems are incredibly useful for active interpretation and investigation, one of the primary benefits
of a complete monitoring system is letting administrators disengage from the system. Alerts allow the specification
of situations that make sense to actively manage, while relying on the passive monitoring of the software to watch for
changing conditions.

104

7.5.4 Logging, Monitoring, and Analytics (LMA) Framework

In this section, a possible framework utilising Prometheus, Fluentd, Elasticsearch and Kibana is given as an example
only.

Figure 7.1: Monitoring and Logging Framework

The monitoring and logging framework (figure above) leverages Prometheus as the monitoring engine and Fluentd
for logging. In addition, the framework uses Elasticsearch to store and organise logs for easy access. Prometheus
agents pull information from individual components on every host. Fluentd, an Open Source data collector, unifies
data collection and consumption for better use and understanding of data. Fluentd captures the access, application and
system logs.

8 Conformance

The objective of this chapter is to provide an automated mechanism to validate OpenStack based cloud infrastructure
against the standard set of requirements defined in Architecture Requirements. Through this validation mechanism,
a provider of cloud infrastructure will be able to test their cloud infrastructure’s conformance to this reference archi-
tecture. This will ease the integration of network functions into operator environments that host compatible cloud
infrastructures, thereby reducing cost, complexity, and time of integration.

The overall workstream requires the close coordination of the following:

• Requirements - The agreed upon capabilities and conditions that a compliant cloud infrastructure must provide
or satisfy.

• Tests - The verification mechanism that determines that a given cloud infrastructure complies with one or more
requirements.

• Conformance Specifications - The definition of the requirements, tests, and circumstances (test case integration,
etc.) that must be met to be deemed conformant.

105

8.1 Requirements and Testing Principles

If there is no clear traceability and strong links between Requirements, Tests, and Conformance Specifications,
then it becomes difficult to determine if a cloud infrastructure is compliant. With this in mind, below are the set of
recommended principles for each of the three components to follow. Adherence to these principles will provide the
following:

• Enable clear progress tracking and linkage between independent projects (i.e. know what has and has not been
covered, and track changes over time)

• Help users better understand if they meet requirements

• Provide a stable set of point-in-time requirements and tests to achieve conformance

• Reduce ambiguity in testing, requirements, and conformance

Testing Principles:

• There must be traceability between test cases and requirement being validated

• Failures should provide additional content to inform the user where or how the requirement was violated (e.g.
which file or resource violated the requirement). Put another way, do not require the user to read the test to
understand what went wrong

• Testing tools should support selection of tests based on category or profile.

• Tests must be available to run locally by both VNF and cloud infrastructure providers

• Testing tools must produce machine-readable result formats that can be used as input into any badging program

Conformance Specifications:

• Conformance specifications must refer to or define the versioned requirements that must be satisfied

• Conformance specifications must refer to the versioned test implementations that must be used to validate the
requirements

• Conformance specifications must define the expected preconditions and environment requirements for any test
tooling

• Conformance specifications must define which tests must be executed in the given testing tools to achieve con-
formance

• The conformance specifications must provide the mapping between tests and requirements to demonstrate trace-
ability and coverage.

8.2 Test Case Integration and Tooling

The OpenStack based cloud infrastructure suite must utilise the Anuket test case integration toolchain to deliver overall
integration, the same end user actions, and a unique test result format (e.g. Anuket test result database) needed by the
end users and any test case result verification program (e.g. OVP [127]).

106

8.2.1 Anuket Toolchains

Anuket, previously named OPNFV, has built a complete CI/CD toolchain for continuously deploying and testing cloud
infrastructure.

As for all installer projects, Jenkins [128] triggers scenario deployments, runs the Anuket gating test cases and then
publishes all test results in the centralised test database [129] and all artifacts (reports, logs, etc.) to an S3 compatible
storage service [130].

The verification, validation, and conformance processes leverage existing Anuket testing knowledge (projects) and
experience (history) by utilising the toolchain design already in-place. The conformance toolchain only requires for
the local deployment of the components instead of leveraging the common Anuket centralised services. However, the
interfaces remain unchanged for leveraging test jobs, the common test case execution, the test result database and the
S3 protocol to publish the artifacts. It’s worth mentioning that dumping all results and logs required for conformance
is already in place in Functest daily jobs (see functest-wallaby-zip [131].

It should be noted that Xtesting CI [132] supports both centralised and distributed deployment models as described
before. It has deployed the full toolchain in one small virtual machine to verify ONAP Openlab via Functest.

8.2.2 Test Case Integration

To reach all goals in terms of verification, validation, compliance, and conformance, all test cases must be delivered as
Docker containers [133] to simplify the CI toolchain setup including:

• the common test case execution

• the unified way to manage all the interactions with the CI/CD components and with third-parties (e.g. dump all
test case logs and results for conformance)

For their part, the Docker containers simply enforce that the test cases are delivered with all runtime dependencies. This
prevents lots of manual operations when configuring the servers running the test cases and prevents conflicts between
the test cases due to any dependencies.

It’s worth mentioning that all the conformance test cases already leverage Xtesting [134] which is a simple framework
to assemble sparse test cases and to accelerate the adoption of CI/CD best practices. By managing all the interactions
with the CI/CD components (test scheduler, test results database, artifact repository), it allows the developer to work
only on the test suites without diving into CI/CD integration. Even more, it brings the capability to run heterogeneous
test cases in the same CI toolchains thanks to a few, quickly achievable constraints [135].

The Docker containers proposed by the test projects must also embed the Xtesting Python package [136] and the related
test case execution description files [137] as required by Xtesting.

8.2.3 Testing Cookbooks

Xtesting CI [132] leverages the common test case execution proposed by Xtesting. Thanks to a simple test case list, this
tool deploys plug-and-play CI/CD toolchains in a few commands [138]. In addition, it supports multiple components
such as Jenkins and Gitlab CI (test schedulers) and multiple deployment models [139] such as all-in-one or centralised
services.

Xtesting [134] and Xtesting CI [132] combined meet the requirements about verification, validation, compliance, and
conformance:

• smoothly assemble multiple heterogeneous test cases

• generate the Jenkins jobs in Anuket Releng [140] to verify conformance with Anuket specifications

• deploy local CI/CD toolchains everywhere to check conformance with Anuket specifications

• dump all test case results and logs [141] for third-party conformance review

107

Here are a couple of publicly available playbooks :

• Xtesting samples [142]

• OpenStack verification [143]

• Anuket RC1 [144]

• Kubernetes verification [145] (it can be used prior to the deployment of OpenStack services when OpenStack
services are containerised)

8.3 Conformance Test Suite

8.3.1 Functest in a nutshell

Functest [146] was initially created to verify OPNFV Installers and Scenarios and then to publish fair, trustable, and
public results regarding the status of the different open-source technologies, especially for Neutron backends (e.g.,
Neutron agents, OpenDaylight, OVN, etc.). It has been continuously updated to offer the best testing coverage for any
kind of OpenStack and Kubernetes deployments including production environments. It also ensures that the platforms
meet Network Functions Virtualisation requirements by running and testing VNFs amongst all tests available.

Functest is driven by a true verification of the platform under test as opposed to the interoperability programs such as
RefStack [147] or OPNFV Verification Program [127] which select a small subset of Functional tests passing in many
different open-source software combinations:

• tests are skipped if an optional support is missing (e.g. Barbican [68] or networking features such as such as
BGPVPN interconnection [148] or Service Function Chaining [149])

• tests are parameterised (e.g., shared vs non-shared live migration)

• blacklist mechanisms are available if needed

It should be noted that the RefStack lists [147] are included as they are in Functest in the next 3 dedicated testcases:

• refstack_compute (OpenStack Powered Compute)

• refstack_object (OpenStack Powered Object Storage)

• refstack_platform (OpenStack Powered Platform)

Then Functest conforms with the upstream rules (versions, code quality, etc.) and especially their gates [150] (a.k.a.
the automatic verification prior to any code review) to preserve the quality between code and deployment. In that case,
Functest can be considered as a smooth and lightweight integration of tests developed upstream (and the Functest team
directly contributes in these projects: Rally [151], Tempest [152], etc.). It is worth mentioning that, as opposed to the
OpenStack Gates leveraging on DevStack [153], it can check the same already deployed SUT over and over even from
a Raspberry PI [154]. Here the testcases can be executed in parallel vs the same deployment instead of being executed
vs different pools of virtual machines.

Here are the functional tests (>2000) running in OpenStack gates integrated in Functest Smoke (see Functest daily jobs
[155] for more details):

108

Table 8.1: Functional tests
Testcases Gates
tempest_neutron Neutron
tempest_cinder Cinder
tempest_keystone Keystone
rally_sanity General
refstack_defcore General
tempest_full General
tempest_slow General
tempest_scenario General
patrole Patrole
tempest_barbican Barbican
networking-bgpvpn Networking BGP VPN
networking-sfc Networking SFC

To complete functional testing, Functest also integrates a few performance tools [156] (2-3 hours) as proposed by
OpenStack:

Table 8.2: Performance tools
Testcases Benchmarking
rally_full Control Plane (API) testing
rally_jobs Control Plane (API) testing
vmtp Data Plane testing
shaker Data Plane testing

And VNFs automatically deployed and tested:

Table 8.3: VNFs
Testcases Benchmarking
cloudify Cloudify deployment
cloudify_ims Clearwater IMS deployed via Cloudify
heat_ims Clearwater IMS deployed via Heat
vyos_vrouter VyOS deployed via Cloudify
juju_epc OAI deployed via Juju

Functest should be considered as a whole as it meets multiple objectives about the reference implementation:

• verify all APIs (services, advances, features, etc.) exposed by the reference implementation

• compare the reference implementation and local deployments from a functional standpoint and from OpenStack
control plane and data plane capabilities

Additional links:

• Homepage [146]

• Run Alpine Functest containers (Wallaby) [157]

• Deploy your own Functest CI/CD toolchains [138]

• Functest gates [158]

109

8.3.2 Test Case traceability

Interfaces & APIs

The OpenStack Gates [150] verify all changes proposed mostly by running thousands of Tempest tests completed by
Rally scenarios in a few cases. Skipping tests is allowed in all OpenStack Gates and only failures rate the review -1
because of the multiple capabilities and backends selected in the different Gate jobs. The classical Functest containers
[157] conform to this model which also fits the heterogeneous user deployments.

From an OpenStack based cloud infrastructure conformance state point, the capabilities are well described in Interfaces
and APIs which allows tuning the test configurations and the test lists to avoid skipping any test. It results that all tests
covering optional capabilities and all upstream skipped tests due to known bugs are not executed. All remaining tests
must be executed and must pass successfully.

New Functest containers [159] have been proposed for Anuket Compliance which simply override the default test
configurations and the default test lists. Any optional capability or services (e.g., Barbican) can be still verified by the
classical Functest containers.

The next subsections detail the Tempest tests which must not be executed from a compliance state point. The remaining
tests have to pass successfully. They cover all together the API testing requirements as asked by Interfaces and APIs

The following software versions are considered here to verify OpenStack Wallaby:

Table 8.4: Software versions
Software Version
Functest wallaby
Cinder Tempest plugin 1.4.0
Keystone Tempest plugin 0.7.0
Heat Tempest plugin 1.2.0
Neutron Tempest plugin 1.4.0
Rally OpenStack 2.2.1.dev11
Tempest 27.0.0

Identity - Keystone API testing

Keystone API is covered in the OpenStack Gates via Tempest [152] and keystone-tempest-plugin [160] as integrated
in Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.5: Keystone API testing
Test rejection regular expressions Reasons
.*api.identity.v3.test_oauth1_tokens oauth1
.*scenario.test_federated_authentication federation
.*identity.admin.v2 API v2
.*identity.v2 API v2
.*identity.v3.test_access_rules access_rules
.*identity.v3.test_application_credentials.\
ApplicationCredentialsV3Test.\
test_create_application_credential_access_rules

access_rules

Keystone API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

110

• Authenticate.keystone

• KeystoneBasic.add_and_remove_user_role

• KeystoneBasic.create_add_and_list_user_roles

• KeystoneBasic.create_and_list_tenants

• KeystoneBasic.create_and_delete_role

• KeystoneBasic.create_and_delete_service

• KeystoneBasic.get_entities

• KeystoneBasic.create_update_and_delete_tenant

• KeystoneBasic.create_user

• KeystoneBasic.create_tenant

• KeystoneBasic.create_and_list_users

• KeystoneBasic.create_tenant_with_users

Image - Glance API testing

Glance API is covered in the OpenStack Gates via [152] as integrated in Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.6: Glance API testing
Test rejection regular expressions Reasons
.*image.v1 API v1
.*image.v2.admin.test_images.ImportCopyImagesTest import_image
.*image.v2.test_images_negative.ImagesNegativeTest.\
test_create_image_reserved_property

os_glance_reserved

.*image.v2.test_images_negative.ImagesNegativeTest.\
test_update_image_reserved_property

os_glance_reserved

.*image.v2.test_images_negative.ImportImagesNegativeTest.\
test_image_web_download_import_with_bad_url

web-downloadimport

.*image.v2.test_images.ImportImagesTest import_image

.*image.v2.test_images.MultiStoresImportImages import_image

Glance API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• Authenticate.validate_glance

• GlanceImages.create_and_delete_image

• GlanceImages.create_and_list_image

• GlanceImages.list_images

• GlanceImages.create_image_and_boot_instances

111

Block Storage - Cinder API testing

Cinder API is covered in the OpenStack Gates via Tempest [152] and cinder-tempest-plugin [162] as integrated in
Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.7: Cinder API testing
Test rejection regular expressions Reasons
.*test_incremental_backup Functest review 68881 [163]
.*test_consistencygroups consistency_group
.*test_backup_crossproject_admin_negative Functest review 71011 [164]
.*test_backup_crossproject_user_negative Functest review 71011 [164]
.*test_volume_encrypted.TestEncryptedCinderVolumes attach_encrypted_volume
.*test_encrypted_volumes_extend extend_attached_encrypted_volume
.*test_group_snapshots.GroupSnapshotsV319Test.\
test_reset_group_snapshot_status

OpenStack bug 1770179 [165]

.*test_multi_backend multi-backend

.*test_volume_retype.VolumeRetypeWithMigrationTest multi-backend

.*test_volume_delete_cascade.VolumesDeleteCascade.\
test_volume_from_snapshot_cascade_delete

OpenStack bug 1677525 [166]

.*test_volumes_backup.VolumesBackupsTest.\
test_volume_backup_create_get_detailed_list_restore_delete

ceph

.*test_volumes_extend.VolumesExtendAttachedTest.\
test_extend_attached_volume

extend_attached_volume

.*tempest.scenario.test_volume_migrate_attached multi-backend

Cinder API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• Authenticate.validate_cinder

• CinderVolumes.create_and_delete_snapshot

• CinderVolumes.create_and_delete_volume

• CinderVolumes.create_and_extend_volume

• CinderVolumes.create_from_volume_and_delete_volume

• CinderQos.create_and_list_qos

• CinderQos.create_and_set_qos

• CinderVolumeTypes.create_and_list_volume_types

• CinderVolumeTypes.create_volume_type_and_encryption_type

• Quotas.cinder_update_and_delete

• Quotas.cinder_update

112

Object Storage - Swift API testing

Swift API is covered in the OpenStack Gates via Tempest [152] as integrated in Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.8: Swift API testing
Test rejection regular expressions Reasons
.*test_container_sync.ContainerSyncTest.\
test_container_synchronization

OpenStack bug 1317133 [167]

.*test_container_sync_middleware.ContainerSyncMiddlewareTest.\
test_container_synchronization

container_sync

.*test_object_services.ObjectTest.\
test_create_object_with_transfer_encoding

OpenStack bug 1905432 [168]

Swift API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• SwiftObjects.create_container_and_object_then_list_objects

• SwiftObjects.list_objects_in_containers

• SwiftObjects.create_container_and_object_then_download_object

• SwiftObjects.create_container_and_object_then_delete_all

• SwiftObjects.list_and_download_objects_in_containers

Networking - Neutron API testing

Neutron API is covered in the OpenStack Gates via Tempest [152] and neutron-tempest-plugin [169] as integrated in
Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.9: Neutron API testing
Test rejection regular expressions Reasons
.*admin.test_agent_availability_zone DHCP agent and L3 agent
.*admin.test_dhcp_agent_scheduler dhcp_agent_scheduler
.*admin.test_l3_agent_scheduler l3_agent_scheduler
.*admin.test_logging logging
.*admin.test_logging_negative logging
.*admin.test_network_segment_range network-segment-range
.*admin.test_ports.PortTestCasesAdmin.\
test_regenerate_mac_address

port-mac-address-regenerate

.*admin.test_ports.PortTestCasesResourceRequest port-resource-request

.*admin.test_routers_dvr dvr

.*admin.test_routers_flavors l3-flavors

.*admin.test_routers_ha l3-ha

.*test_floating_ips.FloatingIPPoolTestJSON floatingip-pools

.*test_floating_ips.FloatingIPTestJSON.\
test_create_update_floatingip_port_details

fip-port-details

.*test_metering_extensions metering
continues on next page

113

Table 8.9 – continued from previous page
Test rejection regular expressions Reasons
.*test_metering_negative metering
.*test_networks.NetworksSearchCriteriaTest.\
test_list_validation_filters

filter-validation

.*test_networks.NetworksTestAdmin.\
test_create_tenant_network_vxlan

vxlan

.*test_networks.NetworksTestJSON.\
test_create_update_network_dns_domain

dns-integration

.*test_port_forwardings floating-ip-port-forwarding

.*test_port_forwarding_negative floating-ip-port-forwarding

.*test_ports.PortsTaggingOnCreation tag-ports-during-bulk-creation

.*test_ports.PortsTestJSON.\
test_create_port_with_propagate_uplink_status

uplink-status-propagation

.*test_ports.PortsTestJSON.\
test_create_port_without_propagate_uplink_status

uplink-status-propagation

.*test_ports.PortsTestJSON.\
test_create_update_port_with_dns_domain

dns-domain-ports

.*test_ports.PortsTestJSON.\
test_create_update_port_with_dns_name

dns-integration

.*test_ports.PortsTestJSON.\
test_create_update_port_with_no_dns_name

dns-integration

.*test_revisions.TestRevisions.\
test_update_dns_domain_bumps_revision

dns-integration

.*test_revisions.TestRevisions.\
test_update_router_extra_attributes_\
bumps_revision

l3-ha

.*test_router_interface_fip router-interface-fip

.*test_routers.DvrRoutersTest dvr

.*test_routers.HaRoutersTest l3-ha

.*test_routers.RoutersIpV6Test.\
test_extra_routes_atomic

extraroute-atomic

.*test_routers.RoutersTest.\
test_extra_routes_atomic

extraroute-atomic

.*test_routers_negative.DvrRoutersNegativeTest dvr

.*test_routers_negative.\
DvrRoutersNegativeTestExtended

dvr

.*test_routers_negative.HaRoutersNegativeTest l3-ha

.*test_security_groups.RbacSharedSecurityGroupTest rbac-security-groups

.*test_subnetpool_prefix_ops subnetpool-prefix-ops

.*test_subnetpools.RbacSubnetPoolTest rbac-subnetpool

.*test_subnetpools_negative.SubnetPoolsNegativeTestJSON.\
test_tenant_create_subnetpool_associate_shared_address_scope

rbac-subnetpool

.*test_subnetpools.SubnetPoolsSearchCriteriaTest.\
test_list_validation_filters

filter-validation

.*test_subnets.SubnetsSearchCriteriaTest.\
test_list_validation_filters

filter-validation

.*test_timestamp.TestTimeStamp.\
test_segment_with_timestamp

standard-attr-segment

.*test_trunk.TrunkTestInheritJSONBase.\
test_add_subport

OpenStack bug 1863707 [170]

.*test_trunk.TrunkTestMtusJSON vxlan
continues on next page

114

Table 8.9 – continued from previous page
Test rejection regular expressions Reasons
.*test_trunk_negative.TrunkTestJSON.\
test_create_subport_invalid_inherit_network_\
segmentation_type

vxlan

.*test_trunk_negative.TrunkTestMtusJSON vxlan

.*test_qos.QosMinimumBandwidthRuleTestJSON Functest review 69105 [171]

.*network.test_tags tag-ext

.*test_routers.RoutersIpV6Test.\
test_create_router_set_gateway_with_fixed_ip

OpenStack bug 1863707 [172]

.*test_routers.RoutersTest.\
test_create_router_set_gateway_with_fixed_ip

OpenStack bug 1863707 [172]

.*test_network_basic_ops.\
TestNetworkBasicOps.test_router_rescheduling

l3_agent_scheduler

.*test_network_advanced_server_ops.\
TestNetworkAdvancedServerOps.\
test_server_connectivity_cold_migration_revert

OpenStack bug 1836595 [173]

Neutron API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• Authenticate.validate_neutron

• NeutronNetworks.create_and_delete_networks

• NeutronNetworks.create_and_delete_ports

• NeutronNetworks.create_and_delete_routers

• NeutronNetworks.create_and_delete_subnets

• NeutronNetworks.create_and_list_networks

• NeutronNetworks.create_and_list_ports

• NeutronNetworks.create_and_list_routers

• NeutronNetworks.create_and_list_subnets

• NeutronSecurityGroup.create_and_delete_security_groups

• NeutronSecurityGroup.create_and_delete_security_group_rule

• NeutronNetworks.set_and_clear_router_gateway

• Quotas.neutron_update

Compute - Nova API testing

Nova API is covered in the OpenStack Gates via Tempest [152] as integrated in Functest Smoke CNTT [161].

According to Interfaces and APIs the following test names must not be executed:

Table 8.10: Nova API testing
Test rejection regular expressions Reasons
.*admin.test_agents xenapi_apis
.*test_fixed_ips neutron

continues on next page

115

Table 8.10 – continued from previous page
Test rejection regular expressions Reasons
.*test_fixed_ips_negative neutron
.*test_auto_allocate_network shared networks
.*test_flavors_microversions.FlavorsV255TestJSON max_microversion: 2.53
.*test_flavors_microversions.FlavorsV261TestJSON max_microversion: 2.53
.*test_floating_ips_bulk nova-network
.*test_live_migration.\
LiveAutoBlockMigrationV225Test.test_iscsi_volume

block live migration

.*test_live_migration.\
LiveAutoBlockMigrationV225Test.\
test_live_block_migration

block live migration

.*test_live_migration.\
LiveAutoBlockMigrationV225Test.\
test_live_block_migration_paused

block live migration

.*test_live_migration.\
LiveAutoBlockMigrationV225Test.\
test_volume_backed_live_migration

volume-backed live migration

.*test_live_migration.LiveMigrationTest.\
test_iscsi_volume

block live migration

.*test_live_migration.LiveMigrationTest.\
test_live_block_migration

block live migration

.*test_live_migration.LiveMigrationTest.\
test_live_block_migration_paused

block live migration

.*test_live_migration.LiveMigrationTest.\
test_volume_backed_live_migration

volume-backed live migration

.*test_live_migration.\
LiveMigrationRemoteConsolesV26Test

serial_console

.*test_quotas.QuotasAdminTestV257 max_microversion: 2.53

.*test_servers.ServersAdminTestJSON.\
test_reset_network_inject_network_info

xenapi_apis

.*certificates.test_certificates cert

.*test_quotas_negative.\
QuotasSecurityGroupAdminNegativeTest

OpenStack bug 1186354 [174]

.*test_novnc vnc_console

.*test_server_personality personality

.*test_servers.ServerShowV263Test.\
test_show_update_rebuild_list_server

certified_image_ref

.*test_servers_microversions.ServerShowV254Test max_microversion: 2.53

.*test_servers_microversions.ServerShowV257Test max_microversion: 2.53

.*test_servers_negative.ServersNegativeTestJSON.\
test_personality_file_contents_not_encoded

personality

.*test_server_actions.ServerActionsTestJSON.\
test_change_server_password

change_password

.*test_server_actions.ServerActionsTestJSON.\
test_get_vnc_console

vnc_console

.*test_server_actions.ServerActionsTestJSON.\
test_reboot_server_soft

OpenStack bug 1014647 [175]

.*test_server_rescue.\
ServerBootFromVolumeStableRescueTest

stable_rescue

.*test_server_rescue.ServerStableDeviceRescueTest stable_rescue

.*test_security_group_default_rules OpenStack bug 1311500 [176]
continues on next page

116

Table 8.10 – continued from previous page
Test rejection regular expressions Reasons
.*test_security_groups_negative.\

SecurityGroupsNegativeTestJSON.\
test_security_group_create_with_duplicate_name

neutron

.*test_security_groups_negative.\
SecurityGroupsNegativeTestJSON.\
test_security_group_create_with_\
invalid_group_description

OpenStack bug 1161411 [177]

.*test_security_groups_negative.\
SecurityGroupsNegativeTestJSON.\
test_security_group_create_with_invalid_group_name

OpenStack bug 1161411 [177]

.*test_security_groups_negative.\
SecurityGroupsNegativeTestJSON.\
test_update_security_group_with_invalid_sg_desc

neutron

.*test_security_groups_negative.\
SecurityGroupsNegativeTestJSON.\
test_update_security_group_with_invalid_sg_id

neutron

.*test_security_groups_negative.\
SecurityGroupsNegativeTestJSON.\
test_update_security_group_with_invalid_sg_name

neutron

.*test_server_metadata.ServerMetadataTestJSON xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_delete_metadata_non_existent_server

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_metadata_items_limit

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_set_metadata_invalid_key

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_set_metadata_non_existent_server

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_set_server_metadata_blank_key

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_set_server_metadata_missing_metadata

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_update_metadata_non_existent_server

xenapi_apis

.*test_server_metadata_negative.\
ServerMetadataNegativeTestJSON.\
test_update_metadata_with_blank_key

xenapi_apis

.*test_list_server_filters.\
ListServerFiltersTestJSON.\
test_list_servers_filtered_by_ip_regex

OpenStack bug 1540645 [178]

.*servers.test_virtual_interfaces nova-network

.*compute.test_virtual_interfaces_negative nova-network
continues on next page

117

Table 8.10 – continued from previous page
Test rejection regular expressions Reasons
.*compute.test_networks nova-network
.*test_attach_volume.AttachVolumeMultiAttach volume_multiattach
.*test_volume_boot_pattern.\
TestVolumeBootPattern.\
test_boot_server_from_encrypted_volume_luks

attach_encrypted_volume

.*test_volume_swap swap_volume

.*test_encrypted_cinder_volumes attach_encrypted_volume

.*test_minbw_allocation_placement microversion

.*test_volumes_negative.\
UpdateMultiattachVolumeNegativeTest.\
test_multiattach_rw_volume_update_failure

volume_multiattach

.*test_shelve_instance.TestShelveInstance.\
test_cold_migrate_unshelved_instance

shelve_migrate

Nova API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• Authenticate.validate_nova

• NovaServers.boot_and_live_migrate_server

• NovaServers.boot_server_attach_created_volume_and_live_migrate

• NovaServers.boot_server_from_volume_and_live_migrate

• NovaKeypair.boot_and_delete_server_with_keypair

• NovaServers.boot_server_from_volume_and_delete

• NovaServers.pause_and_unpause_server

• NovaServers.boot_and_migrate_server

• NovaServers.boot_server_and_list_interfaces

• NovaServers.boot_server_associate_and_dissociate_floating_ip

• NovaServerGroups.create_and_delete_server_group

• Quotas.nova_update

Orchestration - Heat API testing

Heat API is covered in the OpenStack Gates via heat-tempest-plugin [179] as integrated in Functest Smoke CNTT
[161].

According to Interfaces and APIs the following test names must not be executed:

118

Table 8.11: Heat API testing
Test rejection regular expressions Reasons
.*functional.test_lbaasv2 lbaasv2
.*functional.test_encryption_vol_type OpenStack story 2007804 [180]
.*RemoteStackTest.\
test_stack_create_with_cloud_credential

Functest review 69926 [181]

.*scenario.test_aodh_alarm aodh

.*tests.scenario.test_autoscaling_lb lbaas

.*scenario.test_autoscaling_lbv2 lbaasv2

.*scenario.test_server_software_config Functest review 69926 [181]

.*test_volumes.\
VolumeBackupRestoreIntegrationTest

Functest review 69931 [182]

.*scenario.test_octavia_lbaas octavia

.*scenario.test_server_cfn_init Functest review 70004 [183]

Heat API is also covered by Rally [151].

Here are the mainline tasks integrated in Functest Smoke CNTT [161]:

• Authenticate.validate_heat

• HeatStacks.create_update_delete_stack

• HeatStacks.create_check_delete_stack

• HeatStacks.create_suspend_resume_delete_stack

• HeatStacks.list_stacks_and_resources

Dashboard

Horizon is covered in the OpenStack Gates via tempest-horizon [184] as integrated in Functest Healthcheck [185].

OpenStack API benchmarking

Rally [151] is tool and framework that allows to perform OpenStack API benchmarking.

Here are the Rally-based test cases proposed by Functest Benchmarking CNTT [186]:

• rally_full [187]: Functest scenarios iterating 10 times the mainline Rally scenarios

• rally_jobs [188]: Neutron scenarios executed in the OpenStack gates

The default SLA proposed in Functest Benchmarking CNTT [186] is a maximum failure rate of 0%.

119

Identity - Keystone API benchmarking

Functest rally_full_cntt [187]:

Table 8.12: Keystone API benchmarking
Scenarios Iterations
Authenticate.keystone 10
KeystoneBasic.add_and_remove_user_role 10
KeystoneBasic.create_add_and_list_user_roles 10
KeystoneBasic.create_and_list_tenants 10
KeystoneBasic.create_and_delete_role 10
KeystoneBasic.create_and_delete_service 10
KeystoneBasic.get_entities 10
KeystoneBasic.create_update_and_delete_tenant 10
KeystoneBasic.create_user 10
KeystoneBasic.create_tenant 10
KeystoneBasic.create_and_list_users 10
KeystoneBasic.create_tenant_with_users 10

Image - Glance API benchmarking

Functest rally_full_cntt [187]:

Table 8.13: Glance API benchmarking
Scenarios Iterations
Authenticate.validate_glance 10
GlanceImages.create_and_delete_image 10
GlanceImages.create_and_list_image 10
GlanceImages.list_images 10
GlanceImages.create_image_and_boot_instances 10
GlanceImages.create_and_deactivate_image 10
GlanceImages.create_and_download_image 10
GlanceImages.create_and_get_image 10
GlanceImages.create_and_update_image 10

120

Block Storage - Cinder API benchmarking

Functest rally_full_cntt [187]:

Table 8.14: Cinder API benchmarking
Scenarios Iterations
Authenticate.validate_glance 10
CinderVolumes.create_and_attach_volume 10
CinderVolumes.create_and_list_snapshots 10
CinderVolumes.create_and_list_volume 10
CinderVolumes.create_and_upload_volume_to_image 10
CinderVolumes.create_nested_snapshots_and_attach_volume 10
CinderVolumes.create_snapshot_and_attach_volume 10
CinderVolumes.create_volume 10
CinderVolumes.list_volumes 10
CinderVolumes.create_and_delete_snapshot 10
CinderVolumes.create_and_delete_volume 10
CinderVolumes.create_and_extend_volume 10
CinderVolumes.create_from_volume_and_delete_volume 10
CinderQos.create_and_get_qos 10
CinderQos.create_and_list_qos 10
CinderQos.create_and_set_qos 10
CinderVolumeTypes.create_and_get_volume_type 10
CinderVolumeTypes.create_and_list_volume_types 10
CinderVolumeTypes.create_and_update_volume_type 10
CinderVolumeTypes.create_volume_type_and_encryption_type 10
CinderVolumeTypes.create_volume_type_add_and_list_type_access 10
Quotas.cinder_update_and_delete 10
Quotas.cinder_update 10

Object Storage - Swift API benchmarking

Functest rally_full_cntt [187]:

Table 8.15: Swift API benchmarking
Scenarios Iterations
SwiftObjects.create_container_and_object_then_list_objects 10
SwiftObjects.list_objects_in_containers 10
SwiftObjects.create_container_and_object_then_download_object 10
SwiftObjects.create_container_and_object_then_delete_all 10
SwiftObjects.list_and_download_objects_in_containers 10

121

Networking - Neutron API benchmarking

Functest rally_full_cntt [187]:

Table 8.16: Neutron API benchmarking
Scenarios Iterations
Authenticate.validate_neutron 10
NeutronNetworks.create_and_update_networks 10
NeutronNetworks.create_and_update_ports 10
NeutronNetworks.create_and_update_routers 10
NeutronNetworks.create_and_update_subnets 10
NeutronNetworks.create_and_delete_networks 10
NeutronNetworks.create_and_delete_ports 10
NeutronNetworks.create_and_delete_routers 10
NeutronNetworks.create_and_delete_subnets 10
NeutronNetworks.create_and_list_networks 10
NeutronNetworks.create_and_list_ports 10
NeutronNetworks.create_and_list_routers 10
NeutronNetworks.create_and_list_subnets 10
NeutronSecurityGroup.create_and_delete_security_groups 10
NeutronSecurityGroup.create_and_delete_security_group_rule 10
NeutronSecurityGroup.create_and_list_security_group_rules 10
NeutronSecurityGroup.create_and_show_security_group 10
NeutronNetworks.set_and_clear_router_gateway 10
NeutronNetworks.create_and_show_ports 10
NeutronNetworks.create_and_show_routers 10
NeutronNetworks.create_and_show_subnets 10
Quotas.neutron_update 10

Functest rally_jobs_cntt [188]:

Table 8.17: Neutron API benchmarking
Scenarios Iterations
NeutronNetworks.create_and_delete_networks 40
NeutronNetworks.create_and_delete_ports 40
NeutronNetworks.create_and_delete_routers 40
NeutronNetworks.create_and_delete_subnets 40
NeutronNetworks.create_and_list_networks 100
NeutronNetworks.create_and_list_ports 8
NeutronNetworks.create_and_list_routers 40
NeutronNetworks.create_and_list_subnets 40
NeutronNetworks.create_and_update_networks 40
NeutronNetworks.create_and_update_ports 40
NeutronNetworks.create_and_update_routers 40
NeutronNetworks.create_and_update_subnets 100
NeutronTrunks.create_and_list_trunks 4
Quotas.neutron_update 40

122

Compute - Nova API benchmarking

Functest rally_full_cntt [187]:

Table 8.18: Nova API benchmarking
Scenarios Iterations
Authenticate.validate_nova 10
NovaKeypair.create_and_delete_keypair 10
NovaKeypair.create_and_list_keypairs 10
NovaServers.boot_and_bounce_server 10
NovaServers.boot_and_delete_server 10
NovaServers.boot_and_list_server 10
NovaServers.boot_and_rebuild_server 10
NovaServers.snapshot_server 10
NovaServers.boot_server_from_volume 10
NovaServers.boot_server 10
NovaServers.list_servers 10
NovaServers.resize_server 10
NovaServers.boot_and_live_migrate_server 10
NovaServers.boot_server_attach_created_volume_and_live_migrate 10
NovaServers.boot_server_from_volume_and_live_migrate 10
NovaKeypair.boot_and_delete_server_with_keypair 10
NovaServers.boot_server_from_volume_and_delete 10
NovaServers.pause_and_unpause_server 10
NovaServers.boot_and_migrate_server 10
NovaServers.boot_server_and_list_interfaces 10
NovaServers.boot_and_get_console_url 10
NovaServers.boot_server_and_attach_interface 10
NovaServers.boot_server_attach_volume_and_list_attachments 10
NovaServers.boot_server_associate_and_dissociate_floating_ip 10
NovaServers.boot_and_associate_floating_ip 10
NovaServerGroups.create_and_delete_server_group 10
NovaServerGroups.create_and_get_server_group 10
NovaServerGroups.create_and_list_server_groups 10
Quotas.nova_update 10

Orchestration - Heat API benchmarking

Functest rally_full_cntt [187]:

Table 8.19: Heat API benchmarking
Scenarios Iterations
Authenticate.validate_heat 10
HeatStacks.create_and_delete_stack 10
HeatStacks.create_and_list_stack 10
HeatStacks.create_update_delete_stack 10
HeatStacks.create_check_delete_stack 10
HeatStacks.create_suspend_resume_delete_stack 10
HeatStacks.list_stacks_and_resources 10

123

Dataplane benchmarking

Functest Benchmarking CNTT [186] offers two benchmarking dataplane test cases leveraging on:

• VMTP [189]

• Shaker [190]

VMTP [189] is a small python application that will automatically perform ping connectivity, round trip time measure-
ment (latency) and TCP/UDP throughput measurement on any OpenStack deployment.

[190] wraps around popular system network testing tools like iperf, iperf3 and netperf (with help of flent). [190] is able
to deploy OpenStack instances and networks in different topologies. [190] scenario specifies the deployment and list
of tests to execute.

The SLA is the default SLA proposed in Functest Benchmarking CNTT [186].

VMTP

Here are the scenarios [191] executed by Functest [192]: - VM to VM same network fixed IP (intra-node) - VM to
VM different network fixed IP (intra-node) - VM to VM different network floating IP (intra-node) - VM to VM same
network fixed IP (inter-node) - VM to VM different network fixed IP (inter-node) - VM to VM different network floating
IP (inter-node)

Here are all results per scenario:

Table 8.20: All results per scenario
protocol pkt_size results
ICMP 64 rtt_avg_ms
ICMP 64 rtt_max_ms
ICMP 64 rtt_min_ms
ICMP 64 rtt_stddev
ICMP 391 rtt_avg_ms
ICMP 391 rtt_max_ms
ICMP 391 rtt_min_ms
ICMP 391 rtt_stddev
ICMP 1500 rtt_avg_ms
ICMP 1500 rtt_max_ms
ICMP 1500 rtt_min_ms
ICMP 1500 rtt_stddev
UDP 128 loss_rate
UDP 128 throughput_kbps
UDP 1024 loss_rate
UDP 1024 throughput_kbps
UDP 8192 loss_rate
UDP 8192 throughput_kbps
TCP 65536 rtt_ms
TCP 65536 throughput_kbps

124

Shaker

Here are the scenarios [193] executed by Shaker:

• OpenStack L2

• OpenStack L3 East-West

• OpenStack L3 North-South

• OpenStack L3 North-South Performance

Here are all samples:

Table 8.21: All samples
test samples
Bi-directional ping_icmp (ms)
Bi-directional tcp_download (Mbits/s)
Bi-directional tcp_upload (Mbits/s)
Download ping_icmp (ms)
Download tcp_download (Mbits/s)
Upload ping_icmp (ms)
Upload tcp_upload (Mbits/s)
Ping ping_icmp (ms)
Ping ping_udp (ms)
TCP bandwidth (bit/s)
TCP retransmits
UDP packets (pps)

Open-source VNF onboarding and testing

Running open-source VNFs is a key technical solution to ensure that the platforms meet Network Functions Virtu-
alisation requirements. Functest VNF [194] offers 5 test cases which automatically onboard and test the following 3
open-source VNFs:

• Clearwater IMS [195]

• VyOS vRouter [196]

• OpenAirInterface vEPC [197]

Here is the full list of orchestrators used for all these deployments:

• Cloudify [198]

• Heat [63]

• Juju [199]

The VNF are covered by upstream tests when possible (see clearwater-live-test [200]) and by Functest VNF tests in the
other cases.

125

8.4 Test Cases Traceability to Requirements

8.4.1 RM/RA-1 Requirements

The following test cases must pass as they are for OpenStack based cloud infrastructure Conformance:

Table 8.22: OpenStack based cloud infrastructure Conformance
container test case criteria
opnfv/functest-healthcheck:wallaby tempest_horizon PASS
opnfv/functest-smoke-cntt:wallaby tempest_neutron_cntt PASS
opnfv/functest-smoke-cntt:wallaby tempest_cinder_cntt PASS
opnfv/functest-smoke-cntt:wallaby tempest_keystone_cntt PASS
opnfv/functest-smoke-cntt:wallaby rally_sanity_cntt PASS
opnfv/functest-smoke-cntt:wallaby tempest_full_cntt PASS
opnfv/functest-smoke-cntt:wallaby tempest_scenario_cntt PASS
opnfv/functest-smoke-cntt:wallaby tempest_slow_cntt PASS
opnfv/functest-benchmarking-cntt:wallaby rally_full_cntt PASS
opnfv/functest-benchmarking-cntt:wallaby rally_jobs_cntt PASS
opnfv/functest-benchmarking-cntt:wallaby vmtp PASS
opnfv/functest-benchmarking-cntt:wallaby shaker PASS
opnfv/functest-vnf:wallaby cloudify PASS
opnfv/functest-vnf:wallaby cloudify_ims PASS
opnfv/functest-vnf:wallaby heat_ims PASS
opnfv/functest-vnf:wallaby vyos_vrouter PASS
opnfv/functest-vnf:wallaby juju_epc PASS

126

8.4.2 TC Mapping to Requirements

Table 8.23: Test Case Mapping to Requirements
test case requirements
tempest_horizon Horizon testing (int.api.07 in Interfaces & APIs Requirements)
tempest_neutron_cntt Neutron API testing (int.api.05 in Interfaces & APIs Requirements)
tempest_cinder_cntt Cinder API testing (int.api.03 in Interfaces & APIs Requirements)
tempest_keystone_cntt Keystone API testing (int.api.01 in Interfaces & APIs Requirements)
rally_sanity_cntt Keystone, Glance, Cinder, Swift, Neutron, Nova and Heat API testing (int.api.*

in Interfaces & APIs Requirements)
tempest_full_cntt Keystone, Glance, Cinder, Swift, Neutron and Nova API testing (int.api.* in

Interfaces & APIs Requirements)
tempest_scenario_cntt Keystone, Glance, Cinder, Swift, Neutron and Nova API testing (int.api.* in

Interfaces & APIs Requirements)
tempest_slow_cntt Keystone, Glance, Cinder, Swift, Neutron and Nova API testing (int.api.* in

Interfaces & APIs Requirements)
rally_full_cntt Keystone, Glance, Cinder, Swift, Neutron, Nova and Heat API benchmarking

(int.api.* in Interfaces & APIs Requirements)
rally_jobs_cntt Neutron API benchmarking
vmtp Dataplane benchmarking
shaker Dataplane benchmarking
cloudify open-source VNF onboarding and testing
cloudify_ims open-source VNF onboarding and testing
heat_ims open-source VNF onboarding and testing
vyos_vrouter open-source VNF onboarding and testing
juju_epc open-source VNF onboarding and Testing

8.5 OpenStack Testing Cookbook

Please note the next two points depending on the GNU/Linux distributions and the network settings:

• SELinux: you may have to add –system-site-packages when creating the virtualenv (“Aborting, target uses
selinux but python bindings (libselinux-python) aren’t installed!”)

• Proxy: you may set your proxy in env for Ansible and in systemd for Docker [201]

To deploy your own CI toolchain running OpenStack based cloud infrastructure Conformance:

virtualenv functest --system-site-packages
. functest/bin/activate
pip install ansible
ansible-galaxy install collivier.xtesting
ansible-galaxy collection install ansible.posix community.general community.grafana␣
→˓kubernetes.core community.docker community.postgresql
git clone https://gerrit.opnfv.org/gerrit/functest functest-src
(cd functest-src && git checkout -b stable/wallaby origin/stable/wallaby)
ansible-playbook functest-src/ansible/site.cntt.yml

127

8.5.1 OpenStack API testing configuration

Here is the default Functest tree as proposed in Functest Wallaby [157]:

• /home/opnfv/functest/openstack.creds

• /home/opnfv/functest/images

Download the images and fill /home/opnfv/functest/openstack.creds as proposed in Functest Wallaby [157].

You may have to modify a few Functest env vars according to the SUT (see env in Functest Wallaby [157]). Be free to
modify functest-src/ansible/host_vars/127.0.0.1 at your convenience and then to reconfigure the toolchain:

ansible-playbook functest-src/ansible/site.cntt.yml

8.5.2 Run OpenStack based cloud infrastructure Conformance

Open http://127.0.0.1:8080/job/functest-wallaby-daily/ in a web browser, login as admin/admin and click on “Build
with Parameters” (keep the default build_tag value).

If the System under test (SUT) is compliant, a link to the full archive containing all test results and artifacts will be
printed in functest-wallaby-zip’s console. Be free to download it and then to send it to any reviewer committee.

To clean your working directory:

deactivate
rm -rf functest-src functest

9 Gaps, Innovation, and Development

The purpose of this chapter is to identify the gaps between what is required for automated deployment of VNFs on
Cloud Infrastructure frameworks and the framework offered by OpenStack. Once gaps are identified, the next step will
be to propose a plan to address these gaps. The most obvious way to address the gaps will be to propose a set of APIs
in the upstream OpenStack community

9.1 The Gap

9.1.1 Autoscaling

With regards to resource autoscaling (gen.scl.01 General Recommendations) it is recommended that the NFVO/VNFM
manages the policy and triggers a scale-up or scale-down action based on application telemetry, event, AI, or ML
etc. While the use of telemetry and alarming system can trigger a scaling operation based on resource utilisation,
without application context this may not provide the granularity or reaction time required by the application. It is
therefore suggested that an OpenStack scaling operation is called using an appropriate autoscaling web-hook by the
NFVO/VNFM.

For more information on auto-scaling with Heat please see the OpenStack document “Autoscaling with heat [202]”.
Please note that the OpenStack Senlin service is still under development with major architectural changes made in the
OpenStack Ussuri release.

Please note: physical compute node autoscaling is out of scope.

128

http://127.0.0.1:8080/job/functest-wallaby-daily/

References

[1] Cloud infrastructure reference model. GSMA PRD NG.126 v3.0, 2022.

[2] Openstack documentation. URL: https://docs.openstack.org/.

[3] Network functions virtualisation (nfv); infrastructure overview. ETSI GS NFV-INF 001 V1.1.1, January 2015.
URL: https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.
pdf.

[4] Openstack use cases. URL: https://docs.openstack.org/arch-design/use-cases.html.

[5] Open vswitch. URL: https://www.openvswitch.org/.

[6] OpenStack Community. Openstack wallaby projects. URL: https://docs.openstack.org/wallaby/projects.html.

[7] Scott O. Bradner. Key words for use in rfcs to indicate requirement levels. RFC 2119, March 1997. URL: https:
//www.rfc-editor.org/info/rfc2119, doi:10.17487/RFC2119.

[8] H. Philip White. Center for internet security - password policy guide. 2020. URL: https://www.cisecurity.org/
insights/white-papers/cis-password-policy-guide.

[9] Center for internet security - controls v7.1. URL: https://www.cisecurity.org/controls/cis-controls-list.

[10] Openstack - cpu dedicated set. URL: https://docs.openstack.org/nova/latest/configuration/config.html#compute.
cpu_dedicated_set.

[11] Openstack - cpu topologies. URL: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html.

[12] Openstack - neutron plugins and drivers. URL: https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers.

[13] Openstack - tags. URL: https://specs.openstack.org/openstack/api-wg/guidelines/tags.html.

[14] Openstack - configuring the stateful services. URL: https://docs.openstack.org/ha-guide/control-plane-stateful.
html.

[15] Openstack - senlin documentation. URL: https://docs.openstack.org/senlin/wallaby/.

[16] Openstack - neutron ovs agent support for baremetal with smart nic. URL: https://specs.openstack.org/openstack/
neutron-specs/specs/stein/neutron-ovs-agent-support-baremetal-with-smart-nic.html.

[17] National telecommunications and information administration - software bill of materials. URL: https://www.
ntia.gov/SBOM.

[18] Center for internet security. URL: https://www.cisecurity.org/.

[19] Cloud security alliance. URL: https://cloudsecurityalliance.org/.

[20] Open web application security project - cheat sheet series. URL: https://github.com/OWASP/CheatSheetSeries.

[21] Open web application security project. URL: https://www.owasp.org.

[22] Open web application security project - top ten security risks. URL: https://owasp.org/www-project-top-ten/.

[23] Open web application security project - software maturity model (samm). URL: https://owaspsamm.org/blog/
2019/12/20/version2-community-release/.

[24] Open web application security project - web security testing guide. URL: https://github.com/OWASP/wstg/tree/
master/document.

[25] Iso (international organization for standardization) and iec (international electrotechnical commission) iso/iec
27001:2013. 2013. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en.

[26] Iso (international organization for standardization) and iec (international electrotechnical commission) iso/iec
27002:2013. 2013. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:v1:en.

129

https://docs.openstack.org/
https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf
https://docs.openstack.org/arch-design/use-cases.html
https://www.openvswitch.org/
https://docs.openstack.org/wallaby/projects.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.17487/RFC2119
https://www.cisecurity.org/insights/white-papers/cis-password-policy-guide
https://www.cisecurity.org/insights/white-papers/cis-password-policy-guide
https://www.cisecurity.org/controls/cis-controls-list
https://docs.openstack.org/nova/latest/configuration/config.html#compute.cpu_dedicated_set
https://docs.openstack.org/nova/latest/configuration/config.html#compute.cpu_dedicated_set
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html
https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers
https://specs.openstack.org/openstack/api-wg/guidelines/tags.html
https://docs.openstack.org/ha-guide/control-plane-stateful.html
https://docs.openstack.org/ha-guide/control-plane-stateful.html
https://docs.openstack.org/senlin/wallaby/
https://specs.openstack.org/openstack/neutron-specs/specs/stein/neutron-ovs-agent-support-baremetal-with-smart-nic.html
https://specs.openstack.org/openstack/neutron-specs/specs/stein/neutron-ovs-agent-support-baremetal-with-smart-nic.html
https://www.ntia.gov/SBOM
https://www.ntia.gov/SBOM
https://www.cisecurity.org/
https://cloudsecurityalliance.org/
https://github.com/OWASP/CheatSheetSeries
https://www.owasp.org
https://owasp.org/www-project-top-ten/
https://owaspsamm.org/blog/2019/12/20/version2-community-release/
https://owaspsamm.org/blog/2019/12/20/version2-community-release/
https://github.com/OWASP/wstg/tree/master/document
https://github.com/OWASP/wstg/tree/master/document
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27002:ed-2:v1:en

[27] Iso (international organization for standardization) and iec (international electrotechnical commission) iso/iec
7032:2012. 2012. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:27032:ed-1:v1:en.

[28] Openstack storage. URL: https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.
html#table-openstack-storage.

[29] Openstack cinder driver support matrix. URL: https://docs.openstack.org/cinder/latest/reference/
support-matrix.html.

[30] Tungsten fabric - multicloud multistack sdn. URL: https://tungsten.io.

[31] Openstack glossary. URL: https://docs.openstack.org/doc-contrib-guide/common/glossary.html.

[32] Openstack feature support matrix. URL: https://docs.openstack.org/nova/latest/user/support-matrix.html.

[33] Openstack storage architecture design. URL: https://docs.openstack.org/arch-design/design-storage.html.

[34] Openstack nova: kvm. URL: https://docs.openstack.org/nova/wallaby/admin/configuration/hypervisor-kvm.
html.

[35] Openstack - hardening the virtualization layers. URL: https://docs.openstack.org/security-guide/compute/
hardening-the-virtualization-layers.html.

[36] Openstack reference architecture for 100, 300 and 500 nodes. URL: https://fuel-ccp.readthedocs.io/en/latest/
design/ref_arch_100_nodes.html.

[37] (dpdk) release notes. URL: http://doc.dpdk.org/guides/rel_notes.

[38] (dpdk) performance reports. URL: http://core.dpdk.org/perf-reports/.

[39] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter, Eliot Lear, and Geert Jan de Groot. Address al-
location for private internets. RFC 1918, February 1996. URL: https://www.rfc-editor.org/info/rfc1918,
doi:10.17487/RFC1918.

[40] Openstack - introducing octavia. URL: https://docs.openstack.org/octavia/latest/reference/introduction.html.

[41] Openstack octavia (load-balancer service). URL: https://governance.openstack.org/tc/reference/projects/
octavia.html.

[42] Openstack/neutron-vpnaas. URL: https://opendev.org/openstack/neutron-vpnaas.

[43] Openstack neutron: plugins. URL: https://wiki.openstack.org/wiki/Neutron#Plugins.

[44] Openstack neutron: api extensions. URL: https://docs.openstack.org/neutron/latest/contributor/internals/api_
extensions.html.

[45] Openstack networking api v2.0: list extensions. URL: https://docs.openstack.org/api-ref/network/v2/
#list-extensions.

[46] Openstack networking api v2.0: show extension details. URL: https://docs.openstack.org/api-ref/network/v2/
#show-extension-details.

[47] Openstack neutron/ml2. URL: https://wiki.openstack.org/wiki/Neutron/ML2.

[48] Openstack cinder driver support matrix. URL: https://docs.openstack.org/cinder/latest/reference/
support-matrix.html.

[49] Openstack (cinder) available drivers. URL: https://docs.openstack.org/cinder/latest/drivers.html.

[50] Openstack cinder service configuration. URL: https://docs.openstack.org/cinder/latest/configuration/index.
html.

[51] Openstack cinder administration. URL: https://docs.openstack.org/cinder/latest/admin/index.html.

[52] Ceph - the future of storage. URL: https://ceph.io/en.

[53] Keystone, the openstack identity service. URL: https://docs.openstack.org/keystone/wallaby/.

130

https://www.iso.org/obp/ui/#iso:std:iso-iec:27032:ed-1:v1:en
https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.html#table-openstack-storage
https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.html#table-openstack-storage
https://docs.openstack.org/cinder/latest/reference/support-matrix.html
https://docs.openstack.org/cinder/latest/reference/support-matrix.html
https://tungsten.io
https://docs.openstack.org/doc-contrib-guide/common/glossary.html
https://docs.openstack.org/nova/latest/user/support-matrix.html
https://docs.openstack.org/arch-design/design-storage.html
https://docs.openstack.org/nova/wallaby/admin/configuration/hypervisor-kvm.html
https://docs.openstack.org/nova/wallaby/admin/configuration/hypervisor-kvm.html
https://docs.openstack.org/security-guide/compute/hardening-the-virtualization-layers.html
https://docs.openstack.org/security-guide/compute/hardening-the-virtualization-layers.html
https://fuel-ccp.readthedocs.io/en/latest/design/ref_arch_100_nodes.html
https://fuel-ccp.readthedocs.io/en/latest/design/ref_arch_100_nodes.html
http://doc.dpdk.org/guides/rel_notes
http://core.dpdk.org/perf-reports/
https://www.rfc-editor.org/info/rfc1918
https://doi.org/10.17487/RFC1918
https://docs.openstack.org/octavia/latest/reference/introduction.html
https://governance.openstack.org/tc/reference/projects/octavia.html
https://governance.openstack.org/tc/reference/projects/octavia.html
https://opendev.org/openstack/neutron-vpnaas
https://wiki.openstack.org/wiki/Neutron#Plugins
https://docs.openstack.org/neutron/latest/contributor/internals/api_extensions.html
https://docs.openstack.org/neutron/latest/contributor/internals/api_extensions.html
https://docs.openstack.org/api-ref/network/v2/#list-extensions
https://docs.openstack.org/api-ref/network/v2/#list-extensions
https://docs.openstack.org/api-ref/network/v2/#show-extension-details
https://docs.openstack.org/api-ref/network/v2/#show-extension-details
https://wiki.openstack.org/wiki/Neutron/ML2
https://docs.openstack.org/cinder/latest/reference/support-matrix.html
https://docs.openstack.org/cinder/latest/reference/support-matrix.html
https://docs.openstack.org/cinder/latest/drivers.html
https://docs.openstack.org/cinder/latest/configuration/index.html
https://docs.openstack.org/cinder/latest/configuration/index.html
https://docs.openstack.org/cinder/latest/admin/index.html
https://ceph.io/en
https://docs.openstack.org/keystone/wallaby/

[54] Openstack - welcome to glance's documentation! URL: https://docs.openstack.org/glance/wallaby/.

[55] Openstack block storage (cinder) documentation. URL: https://docs.openstack.org/cinder/wallaby/.

[56] Openstack - welcome to swift's documentation! URL: https://docs.openstack.org/swift/wallaby/.

[57] Openstack - welcome to neutron's documentation! URL: https://docs.openstack.org/neutron/wallaby/.

[58] Openstack - scenario: high availability using distributed virtual routing (dvr). URL: https://docs.openstack.org/
liberty/networking-guide/scenario-dvr-ovs.html.

[59] Openstack neutron: distributed virtual routing with vrrp. URL: https://docs.openstack.org/neutron/wallaby/
admin/config-dvr-ha-snat.html.

[60] Openstack compute (nova). URL: https://docs.openstack.org/nova/wallaby/.

[61] Openstack - welcome to ironic's documentation! URL: https://docs.openstack.org/ironic/wallaby/.

[62] Openstack ironic api reference: bare metal api. URL: https://docs.openstack.org/api-ref/baremetal/.

[63] Openstack - welcome to the heat documentation! URL: https://docs.openstack.org/heat/wallaby/.

[64] Horizon: the openstack dashboard project. URL: https://docs.openstack.org/horizon/wallaby/.

[65] Openstack - placement. URL: https://docs.openstack.org/placement/wallaby/index.html.

[66] Openstack - placement: modeling with provider trees. URL: https://docs.openstack.org/placement/latest/user/
provider-tree.html.

[67] Openstack - placement usage. URL: https://docs.openstack.org/placement/latest/user/index.html.

[68] Openstack key manager (barbican). URL: https://docs.openstack.org/barbican/wallaby/.

[69] Openstack accelerator (cyborg). URL: https://docs.openstack.org/cyborg/wallaby/.

[70] Openstack compute api guide 2.1.0: server concepts. URL: https://docs.openstack.org/api-guide/compute/
server_concepts.html.

[71] Openstack cyborg support matrix (wallaby). URL: https://docs.openstack.org/cyborg/wallaby/reference/
support-matrix.html.

[72] Openstack cyborg support matrix. URL: https://docs.openstack.org/cyborg/latest/reference/support-matrix.
html.

[73] Openstack cyborg architecture. URL: https://docs.openstack.org/cyborg/latest/user/architecture.html.

[74] Openstack nova: flavors. URL: https://docs.openstack.org/nova/latest/user/flavors.html.

[75] Open glossary of edge computing. URL: https://github.com/State-of-the-Edge/glossary/blob/master/
edge-glossary.md.

[76] Openstack - edge computing: next steps in architecture, design and testing. URL: https://www.openstack.org/
use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing.

[77] Openstack reference architecture for 100, 300 and 500 nodes: services placement summary. URL: https:
//fuel-ccp.readthedocs.io/en/latest/design/ref_arch_100_nodes.html#services-placement-summary.

[78] Openstack nova: image pre-caching. URL: https://docs.openstack.org/nova/latest/admin/image-caching.html#
image-pre-caching.

[79] Airship v2. URL: https://www.airshipit.org/.

[80] Starlingx - deploy your edge cloud now. URL: https://www.starlingx.io/.

[81] Openstack tripleo. URL: http://opendev.org/openstack/tripleo-common.

[82] Openstack compute microversions. URL: https://docs.openstack.org/api-guide/compute/microversions.html.

131

https://docs.openstack.org/glance/wallaby/
https://docs.openstack.org/cinder/wallaby/
https://docs.openstack.org/swift/wallaby/
https://docs.openstack.org/neutron/wallaby/
https://docs.openstack.org/liberty/networking-guide/scenario-dvr-ovs.html
https://docs.openstack.org/liberty/networking-guide/scenario-dvr-ovs.html
https://docs.openstack.org/neutron/wallaby/admin/config-dvr-ha-snat.html
https://docs.openstack.org/neutron/wallaby/admin/config-dvr-ha-snat.html
https://docs.openstack.org/nova/wallaby/
https://docs.openstack.org/ironic/wallaby/
https://docs.openstack.org/api-ref/baremetal/
https://docs.openstack.org/heat/wallaby/
https://docs.openstack.org/horizon/wallaby/
https://docs.openstack.org/placement/wallaby/index.html
https://docs.openstack.org/placement/latest/user/provider-tree.html
https://docs.openstack.org/placement/latest/user/provider-tree.html
https://docs.openstack.org/placement/latest/user/index.html
https://docs.openstack.org/barbican/wallaby/
https://docs.openstack.org/cyborg/wallaby/
https://docs.openstack.org/api-guide/compute/server_concepts.html
https://docs.openstack.org/api-guide/compute/server_concepts.html
https://docs.openstack.org/cyborg/wallaby/reference/support-matrix.html
https://docs.openstack.org/cyborg/wallaby/reference/support-matrix.html
https://docs.openstack.org/cyborg/latest/reference/support-matrix.html
https://docs.openstack.org/cyborg/latest/reference/support-matrix.html
https://docs.openstack.org/cyborg/latest/user/architecture.html
https://docs.openstack.org/nova/latest/user/flavors.html
https://github.com/State-of-the-Edge/glossary/blob/master/edge-glossary.md
https://github.com/State-of-the-Edge/glossary/blob/master/edge-glossary.md
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing
https://fuel-ccp.readthedocs.io/en/latest/design/ref_arch_100_nodes.html#services-placement-summary
https://fuel-ccp.readthedocs.io/en/latest/design/ref_arch_100_nodes.html#services-placement-summary
https://docs.openstack.org/nova/latest/admin/image-caching.html#image-pre-caching
https://docs.openstack.org/nova/latest/admin/image-caching.html#image-pre-caching
https://www.airshipit.org/
https://www.starlingx.io/
http://opendev.org/openstack/tripleo-common
https://docs.openstack.org/api-guide/compute/microversions.html

[83] Identity api v3. URL: https://docs.openstack.org/api-ref/identity/v3/index.html.

[84] Identity api v3 extensions. URL: https://docs.openstack.org/api-ref/identity/v3-ext/.

[85] Security compliance and pci-dss. URL: https://docs.openstack.org/keystone/wallaby/admin/configuration.
html#security-compliance-and-pci-dss.

[86] Image service api. URL: https://docs.openstack.org/api-ref/image/v2/.

[87] Image service versions. URL: https://docs.openstack.org/api-ref/image/versions/index.html#version-history.

[88] Block storage api. URL: https://docs.openstack.org/api-ref/block-storage/.

[89] Cinder rest api version history. URL: https://docs.openstack.org/cinder/latest/contributor/api_microversion_
history.html.

[90] Object storage api. URL: https://docs.openstack.org/api-ref/object-store/index.html.

[91] Discoverability. URL: https://docs.openstack.org/swift/latest/api/discoverability.html.

[92] Networking service apis. URL: https://docs.openstack.org/api-ref/network/.

[93] Networking api v2.0. URL: https://docs.openstack.org/api-ref/network/v2/.

[94] Compute api. URL: https://docs.openstack.org/api-ref/compute/.

[95] Compute rest api version history. URL: https://docs.openstack.org/nova/latest/reference/
api-microversion-history.html.

[96] Placement api. URL: https://docs.openstack.org/api-ref/placement/.

[97] Placement rest api version history. URL: https://docs.openstack.org/placement/latest/
placement-api-microversion-history.html.

[98] Orchestration service api. URL: https://docs.openstack.org/api-ref/orchestration/.

[99] Template version history. URL: https://docs.openstack.org/heat/latest/template_guide/hot_spec.html.

[100] Heat orchestration template (hot) specification. URL: https://docs.openstack.org/heat/latest/template_guide/
hot_spec.html#rocky.

[101] Openstack apis. URL: https://docs.openstack.org/api-ref/.

[102] Kubernetes apis. URL: https://kubernetes.io/docs/concepts/overview/kubernetes-api/.

[103] Kvm apis. URL: https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt.

[104] Libvirt apis. URL: https://libvirt.org/html/index.html.

[105] Barbican api. URL: https://docs.openstack.org/barbican/latest/api/.

[106] Openstack - security boundaries and threats. URL: https://docs.openstack.org/security-guide/introduction/
security-boundaries-and-threats.html.

[107] Openstack security guide. URL: https://docs.openstack.org/security-guide/introduction/
introduction-to-openstack.html.

[108] Mitre - common vulnerabilities and exposures. URL: https://cve.mitre.org/.

[109] National institute of standards and technology vulnerabilities metrics. URL: https://nvd.nist.gov/vuln-metrics/
cvss.

[110] Openstack security guide - identity. URL: https://docs.openstack.org/security-guide/identity.html.

[111] Openstack security guide - authentication methods. URL: https://docs.openstack.org/security-guide/identity/
authentication-methods.html.

132

https://docs.openstack.org/api-ref/identity/v3/index.html
https://docs.openstack.org/api-ref/identity/v3-ext/
https://docs.openstack.org/keystone/wallaby/admin/configuration.html#security-compliance-and-pci-dss
https://docs.openstack.org/keystone/wallaby/admin/configuration.html#security-compliance-and-pci-dss
https://docs.openstack.org/api-ref/image/v2/
https://docs.openstack.org/api-ref/image/versions/index.html#version-history
https://docs.openstack.org/api-ref/block-storage/
https://docs.openstack.org/cinder/latest/contributor/api_microversion_history.html
https://docs.openstack.org/cinder/latest/contributor/api_microversion_history.html
https://docs.openstack.org/api-ref/object-store/index.html
https://docs.openstack.org/swift/latest/api/discoverability.html
https://docs.openstack.org/api-ref/network/
https://docs.openstack.org/api-ref/network/v2/
https://docs.openstack.org/api-ref/compute/
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html
https://docs.openstack.org/api-ref/placement/
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html
https://docs.openstack.org/api-ref/orchestration/
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html#rocky
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html#rocky
https://docs.openstack.org/api-ref/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://libvirt.org/html/index.html
https://docs.openstack.org/barbican/latest/api/
https://docs.openstack.org/security-guide/introduction/security-boundaries-and-threats.html
https://docs.openstack.org/security-guide/introduction/security-boundaries-and-threats.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://cve.mitre.org/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://docs.openstack.org/security-guide/identity.html
https://docs.openstack.org/security-guide/identity/authentication-methods.html
https://docs.openstack.org/security-guide/identity/authentication-methods.html

[112] Openstack security guide - policies. URL: https://docs.openstack.org/security-guide/identity/policies.html#
policy-section.

[113] Openstack keystone default roles. URL: https://docs.openstack.org/keystone/latest/admin/
service-api-protection.html.

[114] Openstack - introduction to tls and ssl. URL: https://docs.openstack.org/security-guide/secure-communication/
introduction-to-ssl-and-tls.html.

[115] Center for internet security cis-cat pro. URL: https://www.cisecurity.org/cybersecurity-tools/cis-cat-pro/.

[116] Center for internet security benchmarks. URL: https://www.cisecurity.org/cis-benchmarks/.

[117] Openstack image signature verification. URL: https://docs.openstack.org/glance/wallaby/user/signature.html.

[118] Openstack - sr-iov passthrough for networking. URL: https://wiki.openstack.org/wiki/
SR-IOV-Passthrough-For-Networking.

[119] Openstack trusted images. URL: https://docs.openstack.org/security-guide/instance-management/
security-services-for-instances.html#trusted-images.

[120] Openstack virtual machine image guide. URL: https://docs.openstack.org/image-guide/.

[121] Adding signed images. URL: https://docs.openstack.org/operations-guide/ops-user-facing-operations.html#
adding-signed-images.

[122] Network functions virtualisation (nfv) release 4; protocols and data models; vnf package and pnfd archive speci-
fication. ETSI GS NFV-SOL 004 V4.3.1, July 2022. URL: https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_
099/004/04.03.01_60/gs_NFV-SOL004v040301p.pdf.

[123] Network functions virtualisation (nfv) release 2; security; vnf package security specification. ETSI GS NFV-
SEC 021 V2.6.1, June 2019. URL: https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/021/02.06.01_60/
gs_nfv-sec021v020601p.pdf.

[124] Foreman. URL: https://www.theforeman.org/.

[125] Ansible documentation. URL: https://docs.ansible.com/.

[126] Openstack tripleo architecture. URL: https://docs.openstack.org/tripleo-docs/latest/install/introduction/
architecture.html#project-architecture.

[127] Ovp. URL: https://www.opnfv.org/verification.

[128] Jenkins. URL: https://build.opnfv.org/.

[129] Test dabase. URL: https://docs.opnfv.org/en/stable-hunter/_images/OPNFV_testing_working_group.png.

[130] S3 compatible storage service. URL: http://artifacts.opnfv.org/.

[131] Functest-wallaby-zip. URL: https://build.opnfv.org/ci/job/functest-wallaby-zip/4/console.

[132] Xtesting ci. URL: https://galaxy.ansible.com/collivier/xtesting.

[133] Docker. URL: https://www.docker.com/.

[134] Xtesting. URL: https://xtesting.readthedocs.io/en/latest/.

[135] Opnfv fraser. URL: https://www.sdxcentral.com/articles/news/opnfvs-6th-release-brings-testing-capabilities-that-orange-is-already-using/
2018/05/.

[136] Xtesting python package. URL: https://pypi.org/project/xtesting/.

[137] Test case execution description. URL: https://git.opnfv.org/functest-xtesting/tree/docker/core/testcases.yaml.

[138] Ci/cd toolchains in a few commands. URL: https://github.com/collivier/ansible-role-xtesting#readme.

[139] Ci/cd deployment models. URL: https://lists.opnfv.org/g/opnfv-tsc/message/5702.

133

https://docs.openstack.org/security-guide/identity/policies.html#policy-section
https://docs.openstack.org/security-guide/identity/policies.html#policy-section
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html
https://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html
https://www.cisecurity.org/cybersecurity-tools/cis-cat-pro/
https://www.cisecurity.org/cis-benchmarks/
https://docs.openstack.org/glance/wallaby/user/signature.html
https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking
https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking
https://docs.openstack.org/security-guide/instance-management/security-services-for-instances.html#trusted-images
https://docs.openstack.org/security-guide/instance-management/security-services-for-instances.html#trusted-images
https://docs.openstack.org/image-guide/
https://docs.openstack.org/operations-guide/ops-user-facing-operations.html#adding-signed-images
https://docs.openstack.org/operations-guide/ops-user-facing-operations.html#adding-signed-images
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/04.03.01_60/gs_NFV-SOL004v040301p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/04.03.01_60/gs_NFV-SOL004v040301p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/021/02.06.01_60/gs_nfv-sec021v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/021/02.06.01_60/gs_nfv-sec021v020601p.pdf
https://www.theforeman.org/
https://docs.ansible.com/
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html#project-architecture
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html#project-architecture
https://www.opnfv.org/verification
https://build.opnfv.org/
https://docs.opnfv.org/en/stable-hunter/_images/OPNFV_testing_working_group.png
http://artifacts.opnfv.org/
https://build.opnfv.org/ci/job/functest-wallaby-zip/4/console
https://galaxy.ansible.com/collivier/xtesting
https://www.docker.com/
https://xtesting.readthedocs.io/en/latest/
https://www.sdxcentral.com/articles/news/opnfvs-6th-release-brings-testing-capabilities-that-orange-is-already-using/2018/05/
https://www.sdxcentral.com/articles/news/opnfvs-6th-release-brings-testing-capabilities-that-orange-is-already-using/2018/05/
https://pypi.org/project/xtesting/
https://git.opnfv.org/functest-xtesting/tree/docker/core/testcases.yaml
https://github.com/collivier/ansible-role-xtesting#readme
https://lists.opnfv.org/g/opnfv-tsc/message/5702

[140] Anuket releng. URL: https://git.opnfv.org/releng/tree/jjb/functest.

[141] Test case result dump. URL: http://artifacts.opnfv.org/functest/9ID39XK47PMZ.zip.

[142] Xtesting samples. URL: https://git.opnfv.org/functest-xtesting/plain/ansible/site.yml?h=stable/wallaby.

[143] Openstack verification. URL: https://git.opnfv.org/functest/plain/ansible/site.yml?h=stable/wallaby.

[144] Anuket rc1. URL: https://git.opnfv.org/functest/plain/ansible/site.cntt.yml?h=stable/wallaby.

[145] Kubernetes verification. URL: https://git.opnfv.org/functest-kubernetes/plain/ansible/site.yml?h=stable/v1.22.

[146] Functest. URL: https://functest.readthedocs.io/en/stable-wallaby/.

[147] Refstack. URL: https://refstack.openstack.org/.

[148] Networking bgpvpn. URL: https://docs.openstack.org/networking-bgpvpn/latest/.

[149] Networking sfc. URL: https://docs.openstack.org/networking-sfc/latest/.

[150] Devstack gates. URL: https://docs.opendev.org/opendev/system-config/latest/devstack-gate.html.

[151] Rally. URL: https://github.com/openstack/rally-openstack.

[152] Temptest. URL: https://github.com/openstack/tempest.

[153] Temptest. URL: https://docs.openstack.org/devstack/latest/.

[154] Raspberry pi. URL: https://www.raspberrypi.org/.

[155] Functest daily jobs. URL: https://build.opnfv.org/ci/view/functest/job/functest-wallaby-daily/17/.

[156] Openstack performance tools. URL: https://docs.openstack.org/developer/performance-docs/methodologies/
tools.html.

[157] Run alpine functest containers (wallaby). URL: https://wiki.anuket.io/display/HOME/Functest+Wallaby.

[158] Functest gates. URL: https://build.opnfv.org/ci/view/functest.

[159] New functest cntt containers. URL: https://lists.opnfv.org/g/opnfv-tsc/message/5717.

[160] Keystone-tempest-plugin. URL: https://opendev.org/openstack/keystone-tempest-plugin.

[161] Functest smoke cntt. URL: https://git.opnfv.org/functest/tree/docker/smoke-cntt/testcases.yaml?h=stable%
2Fwallaby.

[162] Cinder-tempest-plugin. URL: https://opendev.org/openstack/cinder-tempest-plugin.

[163] Functest review 68881. URL: https://gerrit.opnfv.org/gerrit/68881.

[164] Functest review 71011. URL: https://gerrit.opnfv.org/gerrit/71011.

[165] Openstack bug 1770179. URL: https://launchpad.net/bugs/1770179.

[166] Openstack bug 1677525. URL: https://launchpad.net/bugs/1677525.

[167] Openstack bug 1317133. URL: https://launchpad.net/bugs/1317133.

[168] Openstack bug 1905432. URL: https://launchpad.net/bugs/1905432.

[169] Neutron-tempest-plugin. URL: https://opendev.org/openstack/neutron-tempest-plugin.

[170] Openstack bug 1863707. URL: https://launchpad.net/bugs/1863707.

[171] Functest review 69105. URL: https://gerrit.opnfv.org/gerrit/69105.

[172] Openstack bug 1676207. URL: https://launchpad.net/bugs/1676207.

[173] Openstack bug 1836595. URL: https://launchpad.net/bugs/1836595.

[174] Openstack bug 1186354. URL: https://launchpad.net/bugs/1186354.

134

https://git.opnfv.org/releng/tree/jjb/functest
http://artifacts.opnfv.org/functest/9ID39XK47PMZ.zip
https://git.opnfv.org/functest-xtesting/plain/ansible/site.yml?h=stable/wallaby
https://git.opnfv.org/functest/plain/ansible/site.yml?h=stable/wallaby
https://git.opnfv.org/functest/plain/ansible/site.cntt.yml?h=stable/wallaby
https://git.opnfv.org/functest-kubernetes/plain/ansible/site.yml?h=stable/v1.22
https://functest.readthedocs.io/en/stable-wallaby/
https://refstack.openstack.org/
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/networking-sfc/latest/
https://docs.opendev.org/opendev/system-config/latest/devstack-gate.html
https://github.com/openstack/rally-openstack
https://github.com/openstack/tempest
https://docs.openstack.org/devstack/latest/
https://www.raspberrypi.org/
https://build.opnfv.org/ci/view/functest/job/functest-wallaby-daily/17/
https://docs.openstack.org/developer/performance-docs/methodologies/tools.html
https://docs.openstack.org/developer/performance-docs/methodologies/tools.html
https://wiki.anuket.io/display/HOME/Functest+Wallaby
https://build.opnfv.org/ci/view/functest
https://lists.opnfv.org/g/opnfv-tsc/message/5717
https://opendev.org/openstack/keystone-tempest-plugin
https://git.opnfv.org/functest/tree/docker/smoke-cntt/testcases.yaml?h=stable%2Fwallaby
https://git.opnfv.org/functest/tree/docker/smoke-cntt/testcases.yaml?h=stable%2Fwallaby
https://opendev.org/openstack/cinder-tempest-plugin
https://gerrit.opnfv.org/gerrit/68881
https://gerrit.opnfv.org/gerrit/71011
https://launchpad.net/bugs/1770179
https://launchpad.net/bugs/1677525
https://launchpad.net/bugs/1317133
https://launchpad.net/bugs/1905432
https://opendev.org/openstack/neutron-tempest-plugin
https://launchpad.net/bugs/1863707
https://gerrit.opnfv.org/gerrit/69105
https://launchpad.net/bugs/1676207
https://launchpad.net/bugs/1836595
https://launchpad.net/bugs/1186354

[175] Openstack bug 1014647. URL: https://launchpad.net/bugs/1014647.

[176] Openstack bug 1311500. URL: https://launchpad.net/bugs/1311500.

[177] Openstack bug 1161411. URL: https://launchpad.net/bugs/1161411.

[178] Openstack bug 1540645. URL: https://launchpad.net/bugs/1540645.

[179] Heat-tempest-plugin. URL: https://opendev.org/openstack/heat-tempest-plugin.

[180] Openstack story 2007804. URL: https://storyboard.openstack.org/#!/story/2007804.

[181] Functest review 69926. URL: https://gerrit.opnfv.org/gerrit/69926.

[182] Functest review 69931. URL: https://gerrit.opnfv.org/gerrit/69931.

[183] Functest review 70004. URL: https://gerrit.opnfv.org/gerrit/70004.

[184] Tempest-horizon. URL: https://github.com/openstack/tempest-horizon.

[185] Functest healthcheck. URL: https://git.opnfv.org/functest/tree/docker/healthcheck/testcases.yaml?h=stable%
2Fwallaby.

[186] Functest benchmarking cntt. URL: https://git.opnfv.org/functest/tree/docker/benchmarking-cntt/testcases.
yaml?h=stable%2Fwallaby.

[187] Rally_full_cntt. URL: http://artifacts.opnfv.org/functest/KDBNITEN317M/
functest-opnfv-functest-benchmarking-cntt-wallaby-rally_full_cntt-run-5/rally_full_cntt/rally_full_cntt.html.

[188] Rally_jobs_cntt. URL: http://artifacts.opnfv.org/functest/KDBNITEN317M/
functest-opnfv-functest-benchmarking-cntt-wallaby-rally_jobs_cntt-run-5/rally_jobs_cntt/rally_jobs_cntt.
html.

[189] Vmtp. URL: http://vmtp.readthedocs.io/en/latest.

[190] Shaker. URL: https://pyshaker.readthedocs.io/en/latest/.

[191] Vmtp scenarios. URL: http://artifacts.opnfv.org/functest/KDBNITEN317M/
functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.json.

[192] Functest vmtp. URL: http://artifacts.opnfv.org/functest/KDBNITEN317M/
functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.html.

[193] Shaker scenarios. URL: http://artifacts.opnfv.org/functest/KDBNITEN317M/
functest-opnfv-functest-benchmarking-wallaby-shaker-run-8/shaker/report.json.

[194] Functest vnf. URL: https://git.opnfv.org/functest/tree/docker/vnf/testcases.yaml?h=stable%2Fwallaby.

[195] Clearwater ims. URL: https://clearwater.readthedocs.io/en/stable/.

[196] Vyos vrouter. URL: https://www.vyos.io/.

[197] Openairinterface vepc. URL: https://www.openairinterface.org/.

[198] Cloudify. URL: https://cloudify.co.

[199] Juju. URL: https://jaas.ai/.

[200] Clearwater-live-test. URL: https://github.com/Metaswitch/clearwater-live-test.

[201] Docker http/https proxy. URL: https://docs.docker.com/config/daemon/systemd/#httphttps-proxy.

[202] Openstack autoscaling with heat. URL: https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.
html.

135

https://launchpad.net/bugs/1014647
https://launchpad.net/bugs/1311500
https://launchpad.net/bugs/1161411
https://launchpad.net/bugs/1540645
https://opendev.org/openstack/heat-tempest-plugin
https://storyboard.openstack.org/#!/story/2007804
https://gerrit.opnfv.org/gerrit/69926
https://gerrit.opnfv.org/gerrit/69931
https://gerrit.opnfv.org/gerrit/70004
https://github.com/openstack/tempest-horizon
https://git.opnfv.org/functest/tree/docker/healthcheck/testcases.yaml?h=stable%2Fwallaby
https://git.opnfv.org/functest/tree/docker/healthcheck/testcases.yaml?h=stable%2Fwallaby
https://git.opnfv.org/functest/tree/docker/benchmarking-cntt/testcases.yaml?h=stable%2Fwallaby
https://git.opnfv.org/functest/tree/docker/benchmarking-cntt/testcases.yaml?h=stable%2Fwallaby
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-cntt-wallaby-rally_full_cntt-run-5/rally_full_cntt/rally_full_cntt.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-cntt-wallaby-rally_full_cntt-run-5/rally_full_cntt/rally_full_cntt.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-cntt-wallaby-rally_jobs_cntt-run-5/rally_jobs_cntt/rally_jobs_cntt.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-cntt-wallaby-rally_jobs_cntt-run-5/rally_jobs_cntt/rally_jobs_cntt.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-cntt-wallaby-rally_jobs_cntt-run-5/rally_jobs_cntt/rally_jobs_cntt.html
http://vmtp.readthedocs.io/en/latest
https://pyshaker.readthedocs.io/en/latest/
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.json
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.json
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-vmtp-run-8/vmtp/vmtp.html
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-shaker-run-8/shaker/report.json
http://artifacts.opnfv.org/functest/KDBNITEN317M/functest-opnfv-functest-benchmarking-wallaby-shaker-run-8/shaker/report.json
https://git.opnfv.org/functest/tree/docker/vnf/testcases.yaml?h=stable%2Fwallaby
https://clearwater.readthedocs.io/en/stable/
https://www.vyos.io/
https://www.openairinterface.org/
https://cloudify.co
https://jaas.ai/
https://github.com/Metaswitch/clearwater-live-test
https://docs.docker.com/config/daemon/systemd/#httphttps-proxy
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html

	Introduction
	Overview
	Vision

	Use Cases
	OpenStack Reference Release
	Principles
	Architectural principles
	OpenStack specific principles

	Document Organisation
	Terminology
	Abbreviations
	Conventions

	Architecture Requirements
	Reference Model Requirements
	Cloud Infrastructure Software Profile Requirements for Compute
	Cloud Infrastructure Software Profile Extensions Requirements for Compute
	Cloud Infrastructure Software Profile Requirements for Networking
	Cloud Infrastructure Software Profile Extensions Requirements for Networking
	Cloud Infrastructure Software Profile Requirements for Storage
	Cloud Infrastructure Software Profile Extensions Requirements for Storage
	Cloud Infrastructure Hardware Profile Requirements
	Cloud Infrastructure Hardware Profile Extensions Requirements
	Cloud Infrastructure Management Requirements
	Cloud Infrastructure Security Requirements
	System Hardening Requirements
	Platform and Access Requirements
	Confidentiality and Integrity Requirements
	Workload Security Requirements
	Image Security Requirements
	Security LCM Requirements
	Monitoring and Security Audit Requirements
	Open-Source Software Security Requirements
	IaaC security Requirements
	Compliance with Standards Requirements

	Architecture and OpenStack Requirements
	General Requirements
	Infrastructure Requirements
	VIM Requirements
	Interfaces & APIs Requirements
	Tenant Requirements
	Operations and LCM
	Assurance Requirements

	Architecture and OpenStack Recommendations
	General Recommendations
	Infrastructure Recommendations
	VIM Recommendations
	Interfaces and APIs Recommendations
	Tenant Recommendations
	Operations and LCM Recommendations
	Assurance Recommendations
	Security Recommendations
	System Hardening Recommendations
	Platform and Access Recommendations
	Confidentiality and Integrity Recommendations
	Workload Security Recommendations
	Image Security Recommendations
	Security LCM Recommendations
	Monitoring and Security Audit Recommendations
	Open-Source Software Security Recommendations
	IaaC security Recommendations
	Compliance with Standards Recommendations

	Cloud Infrastructure Architecture - OpenStack
	Resources and Services exposed to VNFs
	Multi-Tenancy (execution environment)
	Virtual Compute (vCPU and vRAM)
	Virtual Storage
	Virtual Networking Neutron standalone
	Virtual Networking - 3rd party SDN solution
	Tungsten Fabric (SDN Controller)

	Acceleration

	Virtualised Infrastructure Manager (VIM)
	VIM Core services
	OpenStack Services Topology
	Foundation Services
	Cloud Controller Services
	Cloud Workload Services

	Tenant Isolation
	Cloud partitioning: Host Aggregates, Availability Zones
	Flavor management

	Underlying Resources
	Virtualisation and hypervisors
	Physical Infrastructure
	Physical nodes
	Network
	Storage

	Cloud Topology
	Topology Overview

	Cloud Infrastructure & VIM Component Level Architecture
	Underlying Resources Configuration and Dimensioning
	Virtualisation layer
	Compute
	Cloud Deployment (Foundation/management) Node
	OpenStack Control Plane Servers (Control Nodes)
	Network nodes
	Storage nodes
	Compute Nodes
	Compute Resource Pooling Considerations
	Reservation of Compute Node Cores
	Pinned and Unpinned CPUs
	Compute node configurations for Profiles and OpenStack Flavors
	Cloud Infrastructure Hardware Profile
	CPU Allocation Ratio and CPU Pinning
	Server Configurations
	Leaf and Compute Ports for Server Flavors must align
	Example Host Configurations
	Using Hosts of a Host Profile type

	Network Fabric
	Physical Network Topology
	High Level Logical Network Layout
	Octavia v2 API conformant Load Balancing
	Neutron Extensions
	Network quality of service
	Integration Interfaces

	Storage Backend
	Ceph Storage Cluster

	VIM OpenStack Services
	VIM Services
	Keystone
	Glance
	Cinder
	Swift
	Neutron
	Issues with the standard networking (centralised routing) approach
	Distributed Virtual Routing (DVR)
	Software Defined Networking (SDN)

	Nova
	Ironic
	Heat
	Horizon
	Placement
	Barbican
	Cyborg

	Containerised OpenStack Services

	Consumable Infrastructure Resources and Services
	Support for Cloud Infrastructure Profiles and flavors
	Logical segregation and high availability
	Transaction Volume Considerations

	Cloud Topology and Control Plane Scenarios
	Edge Cloud Topology
	Edge Cloud Deployment Tools

	Interfaces and APIs
	Core OpenStack Services APIs
	Keystone API
	Glance API
	Cinder API
	Swift API
	Neutron API
	Nova API
	Placement API
	Heat API

	Consolidated Set of APIs
	OpenStack Interfaces
	Kubernetes Interfaces
	KVM Interfaces
	Libvirt Interfaces
	Barbican API

	Security
	Security Requirements
	Cloud Infrastructure and VIM Security
	System Hardening
	Server boot hardening
	System Access
	Password policy
	Function and Software
	Patches
	Network Protocols
	Anti-Virus and Firewall
	Vulnerability Detection and Prevention

	Platform Access
	Identity Security
	Authentication
	Keystone Tokens

	Authorisation
	RBAC
	Rules
	Recommended Default Roles to Start

	Confidentiality and Integrity
	Confidentiality and Integrity of communications (sec.ci.001)
	Integrity of OpenStack components configuration
	Confidentiality and Integrity of tenant data (sec.ci.001)

	Workload Security
	SR-IOV and DPDK Considerations
	Image Security
	Security LCM
	Monitoring and Security Audit
	Creating Logs
	What to Log / What NOT to Log
	What to log
	What NOT to log

	Where to Log
	Required Fields
	Data Retention
	Security Logs Time Synchronisation

	Operations and Life Cycle Management
	Procedural versus Declarative code
	Mutable versus Immutable infrastructure
	Cloud Infrastructure provisioning and configuration management
	Underlying resources provisioning
	VIM deployment
	Configuration Management

	Cloud Infrastructure and VIM Maintenance
	Logging, Monitoring and Analytics
	Logging
	Monitoring
	Alerting
	Logging, Monitoring, and Analytics (LMA) Framework

	Conformance
	Requirements and Testing Principles
	Test Case Integration and Tooling
	Anuket Toolchains
	Test Case Integration
	Testing Cookbooks

	Conformance Test Suite
	Functest in a nutshell
	Test Case traceability
	Interfaces & APIs
	Identity - Keystone API testing
	Image - Glance API testing
	Block Storage - Cinder API testing
	Object Storage - Swift API testing
	Networking - Neutron API testing
	Compute - Nova API testing
	Orchestration - Heat API testing

	Dashboard
	OpenStack API benchmarking
	Identity - Keystone API benchmarking
	Image - Glance API benchmarking
	Block Storage - Cinder API benchmarking
	Object Storage - Swift API benchmarking
	Networking - Neutron API benchmarking
	Compute - Nova API benchmarking
	Orchestration - Heat API benchmarking

	Dataplane benchmarking
	VMTP
	Shaker

	Open-source VNF onboarding and testing

	Test Cases Traceability to Requirements
	RM/RA-1 Requirements
	TC Mapping to Requirements

	OpenStack Testing Cookbook
	OpenStack API testing configuration
	Run OpenStack based cloud infrastructure Conformance

	Gaps, Innovation, and Development
	The Gap
	Autoscaling

	References

