> 0PNFV

OPNFV User Guide
Release arno.2015.1.0 (2e05184)

OPNFV

February 07, 2016

Abstract

Overview

2.1 OPNFV Scenarios v v v i,
2.2 General usage guidelines

Using common platform components

3.1 Brahmaputra OpenStack User Guide
3.2 OpenDaylight UserGuide
33 ONOSUserGuide
Using the test frameworks in OPNFV

4.1 Description of thetestcases
4.2 Executing the functestsuites

Getting Started with ‘vsperf’

Using Brahmaputra Features

6.1 Copper capabilitiesandusage
6.2 Doctor capabilities andusage

Using IPv6 Feature of Brahmaputra Release

7.1 Promise capabilitiesandusage

CONTENTS

B~ W

AN N Lt

CHAPTER
ONE

ABSTRACT

OPNFV is a collaborative project aimed at providing a variety of virtualisation deployments intended to host applica-
tions serving the networking and carrier industry. This document provides guidance and instructions for using platform
features designed to support these applications, made available in the Brahmaputra release of OPNFV.

This document is not intended to replace or replicate documentation from other open source projects such as Open-
Stack or OpenDaylight, rather highlight the features and capabilities delivered through the OPNFV project.

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

2 Chapter 1. Abstract

CHAPTER
TWO

OVERVIEW

OPNFV provides a variety of virtual infrastructure deployments designed to host virtualised network functions
(VNFs). This guide intends to help users of the platform leverage the features and capabilities delivered by the
OPNFYV project.

OPNFV Continuous Integration builds, deploys and tests combinations of virtual infrastructure components in what
are defined as scenarios. A scenario may include components such as OpenStack, OpenDaylight, OVS, KVM etc.
where each scenario will include different source components or configurations. Scenarios are designed to enable
specific features and capabilities in the platform that can be leveraged by the OPNFV user community.

2.1 OPNFV Scenarios

Each OPNFV scenario provides unique features and capabilities, it is important to ensure you have a scenario deployed
on your infrastructure that provides the right capabilities for your needs before working through the user guide.

This user guide outlines how to work with key components and features in the platform, each feature description
section will indicate the scenarios that provide the components and configurations required to use it.

Each scenario provides a set of platform capabilities and features that it supports. It is possible to identify which
features are provided by reviewing the scenario name, however not all features and capabilities are discernible from
the name itself.

2.1.1 Scenario Naming

In OPNFV, scenarios are identified by short scenario names. These names follow a scheme that identifies the key

components and behaviours of the scenario, the rules for scenario naming are as follows:
os-[controller]-[feature]-[mode]-[option]

For example: os-nosdn-kvm-noha provides an OpenStack based deployment using neutron including the OPNFV
enhanced KVM hypervisor.

The [feature] tag in the scenario name describes the main feature provided by the scenario. This scenario may also
provide support for advanced fault management features which is not apparent in the scenario name. The following
section describes the features available in each scenario.

2.1.2 Brahmaputra feature support matrix

The following table provides an overview of the available scenarios and supported features in the Brahmaputra release
of OPNFV.

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

For details on which scenario’s are best for you and how to install and configure them on your infrastructure the
OPNFV Configuration guide provides a definitive reference.

The user guide will describe how to enable and utilise features and use cases implemented and tested on deployed
OPNFYV scenarios. For details of the use cases and tests that have been run you should check the validation procedures
section of the features configuration guide. This will provide information about the specific use cases that have been
validated and are working on your deployment.

2.2 General usage guidelines

The user guide for OPNFV features and capabilities provide step by step instructions for using features that have been
configured according to the installation and configuration instructions.

This guide is structured in a manner that will provide usage instructions for each feature in its own section. Identify
the feature capability you would like to leverage and read through that user guide section to understand the available
usage. The combination of platform features, if available in a given scenario and not otherwise indicated, should
function by following each features section. Dependencies between features will be highlighted in the user guide text.

You may wish to use the platform in a manner that the development team have not foreseen, or exercise capabilities
not fully validated on the platform. If you experience issues leveraging the platform for the uses you have envisioned
the OPNFV user mailing list provides a mechanism to establish a dialog with the community to help you overcome
any issues identified.

It may be that you have identified a bug in the system, or that you are trying to execute a use case that has not yet ben
implemented. In either case OPNFV is in essence a development project looking to ensure the required capabilities
for our users are available.

4 Chapter 2. Overview

http://artifacts.opnfv.org/opnfvdocs/docs/configguide/index.html

CHAPTER
THREE

USING COMMON PLATFORM COMPONENTS

This section outlines basic usage principans and methods for some of the commonly deployed components of suported
OPNFYV scenario’s in Brahmaputra. The subsections provide an outline of how these components are commonly used
and how to address them in an OPNFV deployment. The components derive from autonomous upstream commu-
nities and where possible this guide will provide direction ot the relevant documentation made available by those
communities to better help you navigate the OPNFV deployment.

3.1 Brahmaputra OpenStack User Guide

OpenStack is a cloud operating system developed and released by the OpenStack project. OpenStack is used in
OPNFV for controlling pools of compute, storage, and networking resources in a Pharos compliant infrastructure.

OpenStack is used in Brahmaputra to manage tenants (known in OpenStack as projects), users, services, images,
flavours, and quotas across the Pharos infrastructure. The OpenStack interface provides the primary interface for
an operational Brahmaputra deployment and it is from the “horizon console” that an OPNFV user will perform the
majority of administrative and operational activities on the deployment.

3.1.1 OpenStack references

The OpenStack user guide provides details and descriptions of how to configure and interact with the OpenStack
deployment. This guide can be used by lab engineers and operators to tune the OpenStack deployment to your liking.

Once you have configured OpenStack to your purposes, or the Brahmaputra deployment meets your needs as deployed,
an operator, or administrator, will find the best guidance for working with OpenStack in the OpenStack administration
guide.

3.1.2 Connecting to the OpenStack instance

Once familiar with the basic of working with OpenStack you will want to connect to the OpenStack instance via the
Horizon Console. The Horizon console provide a Web based GUI that will allow you operate the deployment. To do
this you should open a browser on the JumpHost to the following address and enter the username and password:

http://{ Controller-VIP}:80/index.html> username: admin password: admin

Other methods of interacting with and configuring OpenStack,, like the REST API and CLI are also available in the
Brahmaputra deployment, see the OpenStack administration guide for more information on using those interfaces.

https://www.openstack.org
http://docs.openstack.org/user-guide
http://docs.openstack.org/user-guide-admin
http://docs.openstack.org/user-guide-admin
http:/
http://docs.openstack.org/user-guide-admin

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

3.1.3 Common SDN components
3.2 OpenDaylight User Guide

OpenDaylight is an SDN controller platform developed and released by the OpenDaylight project. The OpenDaylight
controller is installed and configured in OPNFV as the networking component of a variety of OPNFV VNFi scenarios
using the neutron ODL device driver as an integration point toward OpenStack.

OpenDaylight runs within a JVM that is installed in OPNFV within a container and integrated with OpenStack. The
OpenDaylight instance can be configured through the OpenStack Horizon interface, or accessed directly from the
OPNFV Jumphost. The Brahmaputra release of OPNFV integrates the latest Lithium stable release or when deploying
an SFC or SDNVPN scenario will integrate a Beryllium release version.

3.2.1 OpenDaylight references

For an overview of the OpenDaylight controller a good reference is the Getting Started Guide. For more detailed
information about using the platform the OpenDaylight User Guide provides a good feature by feature reference.

It is important when working on your Brahmaputra deployment to be aware of the configured state of the OpenDaylight
controller in the scenario you have deployed, installing an SFC scenario will for instance configure the OpenDaylight
controller with the required SFC Karaf features in the OpenDaylight controller. Make sure you read the installation
and configuration guide carefully to understand the state of the deployed system.

3.2.2 Connecting to the OpenDaylight instance

Once you are familiar with the OpenDaylight controller and it’s configuration you will want to connect to the Open-
Daylight instance from the Jumphost. To do this you should open a browser on the JumpHost to the following address
and enter the username and password:

http://{ Controller-VIP}:8181/index.html> username: admin password: admin

Other methods of interacting with and configuring the controller, like the REST API and CLI are also available in the
Brahmaputra deployment, see the OpenDaylight User Guide for more information on using those interfaces.

It is important to be aware that when working directly on the OpenDaylight controller the OpenStack instance will
not always be aware of the changes you are making to the networking controller. This may result in unrecoverable
inconsistencies in your deployment.

3.3 ONOS User Guide

ONOS is an SDN controller platform developed and released by the ONOS project. The ONOS controller is installed
and configured in OPNFV as the networking component of a variety of OPNFV VNFi scenarios.

ONOS runs within a JVM that is installed in OPNFV within a container and integrated with OpenStack. The ONOS
instance can be configured through the OpenStack Horizon interface, or accessed directly from the OPNFV Jumphost.
The Brahmaputra release of OPNFV integrates the latest ONOS 1.4 (EMU) release version.

3.3.1 ONOS references

For an overview of the ONOS controller a good reference is the User Guide. For more detailed information about the
EMU version of ONOS, documentation is available on the ONOS download page.

6 Chapter 3. Using common platform components

https://www.opendaylight.org/
https://www.opendaylight.org/downloads/
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qt/6342/128122/bk_getting_started_guide_20150629.pdf
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qw/6342/128126/bk_user_guide_20150629.pdf
http:/
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qw/6342/128126/bk_user_guide_20150629.pdf
https://www.onosproject.org
https://wiki.onosproject.org/display/ONOS/Download+packages+and+tutorial+VMs
https://wiki.onosproject.org/display/ONOS/User's+Guide
https://wiki.onosproject.org/display/ONOS/Download+packages+and+tutorial+VMs

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

3.3.2 Connecting to the ONOS instance

Once you are familiar with the ONOS controller and it’s configuration you will want to connect to the ONOS instance
from the Jumphost. To do this you should open a browser on the JumpHost to the following address and enter the
username and password:

http://{ Controller-VIP}:8282/index.html> username: karaf password: karaf

Other methods of interacting with and configuring the controller, like the REST API and CLI are also available in the
Brahmaputra deployment, see the ONOS User Guide for more information on using those interfaces.

It is important to be aware that when working directly on the ONOS controller the OpenStack instance will not always
be aware of the changes you are making to the networking controller. This may result in unrecoverable inconsistencies
in your deployment.

3.3. ONOS User Guide 7

http:/
https://wiki.onosproject.org/display/ONOS/User's+Guide

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

8 Chapter 3. Using common platform components

CHAPTER

FOUR

USING THE TEST FRAMEWORKS IN OPNFV

Testing is one of the key activities in OPNFV, validation can include component level testing, system testing, automated
deployment validation and performance charecteristics testing.

The following sections outline how to use the test projects delivering automated test suites and frameworks in the in
the Brahmaputra release of OPNFV.

4.1 Description of the test cases

Functest is an OPNFV project dedicated to functional testing. In the continuous integration, it is launched after an
OPNFV fresh installation. The Functest target is to verify the basic functions of the infrastructure.

Functest includes different test suites which several test cases within. Test cases are developed in Functest and in

feature projects.

The current list of test suites can be distributed in 3 main domains:

t———————— f———————— —_———— +
| Domain | Test suite | Comments

+ == + == +===
| | vPing | NFV "Hello World" using SSH connection

| | | and floatting IP

| o —————— B e +
| VIM | vPing_userdata | Ping using userdata and cloud-init

| | | mechanism

| o ————— e +
| (Virtualised | Tempest | OpenStack reference test suite " [2] _

| Infrastructure +-——————-—---———— e +
| Manager) | Rally scenario | OpenStack testing tool testing OpenStack

| | | modules " [3] _

o o B +
| | OpenDaylight | Opendaylight Test suite

| - —_— +
| Controllers | ONOS | Test suite of ONOS L2 and L3 functions

| o e ———— +
| | OpenContrail |

o o e +
| Features | vIMS | Show the capability to deploy a real NFEV

| | | test cases.

| | | The IP Multimedia Subsytem is a typical

| | | Telco test case, referenced by ETSI.

| | | It provides a fully functional VoIP System
| o Bt i +
| | Promise | Resource reservation and management

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

project to identify NFV related
requirements and realize resource
reservation for future usage by capacity
management of resource pools regarding
compute, network and storage.

Most of the test suites are developed upstream. For example, Tempest is the OpenStack integration test suite. Functest
is in charge of the integration of different functional test suites.

The Tempest suite has been customized but no new test cases have been created. Some OPNFV feature projects (e.g.
SDNVPN) have created Tempest tests cases and pushed to upstream.

The tests run from CI are pushed into a database. The goal is to populate the database with results and to show them
on a Test Dashboard.

There is no real notion of Test domain or Test coverage yet. Basic components (VIM, controllers) are tested through
their own suites. Feature projects also provide their own test suites.

vIMS test case was integrated to demonstrate the capability to deploy a relatively complex NFV scenario on top of the
OPNFYV infrastructure.

Functest considers OPNFV as a black box. OPNFYV, since Brahmaputra, offers lots of possible combinations:
* 3 controllers (OpenDayligh, ONOS, OpenContrail)
* 4 installers (Apex, Compass, Fuel, Joid)

However most of the tests shall be runnable on any configuration.

4.2 Executing the functest suites

4.2.1 Manual testing

Once the Functest docker container is running and Functest environment ready (through
/home/opnfv/repos/functest/docker/prepare_env.sh script), the system is ready to run the tests.

The script run_tests.sh is located in $repos_dir/functest/docker and it has several options:

./run_tests.sh -h
Script to trigger the tests automatically.

usage:

bash run_tests.sh [-—-offline] [-h|-—-help] [-t <test_name>]
where:

—-h|--help show this help text

—-r|—-—report push results to database (false by default)

-n|—--no-clean do not clean up OpenStack resources after test run

-t |—-—-test run specific set of tests

<test_name> one or more of the following: vping,vping_userdata,odl,rally, temps

examples:

run_tests.sh
run_tests.sh —--test vping,odl
run_tests.sh -t tempest,rally —-—-no-clean

pst, vims, onos,

10 Chapter 4. Using the test frameworks in OPNFV

http://docs.openstack.org/developer/tempest/overview.html

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

The -r option is used by the Continuous Integration in order to push the test results into a test collection database, see
in next section for details. In manual mode, you must not use it, your try will be anyway probably rejected as your
POD must be declared in the database to collect the data.

The -n option is used for preserving all the existing OpenStack resources after execution test cases.

The -t option can be used to specify the list of test you want to launch, by default Functest will try to launch all its test
suites in the following order vPing, odl, Tempest, vVIMS, Rally. You may launch only one single test by using -t <the
test you want to launch>.

Within Tempest test suite you can define which test cases you want to execute in your environment by editing
test_list.txt file before executing run_tests.sh script.

Please note that Functest includes cleaning mechanism in order to remove everything except what was present after
a fresh install. If you create your own VMs, tenants, networks etc. and then launch Functest, they all will be deleted
after executing the tests. Use the —no-clean option with run_test.sh in order to preserve all the existing resources.
However, be aware that Tempest and Rally create of lot of resources (users, tenants, networks, volumes etc.) that are
not always properly cleaned, so this cleaning function has been set to keep the system as clean as possible after a full
Functest run.

You may also add you own test by adding a section into the function run_test().

4.2.2 Automated testing

As mentioned in [1], the prepare-env.sh and run_test.sh can be executed within the container from jenkins. 2 jobs
have been created, one to run all the test and one that allows testing test suite by test suite. You thus just have to launch
the acurate jenkins job on the target lab, all the tests shall be automatically run.

When the tests are automatically started from CI, a basic algorithm has been created in order to detect whether the test
is runnable or not on the given scenario. In fact, one of the most challenging task in Brahmaputra consists in dealing
with lots of scenario and installers. Functest test suites cannot be systematically run (e.g. run the ODL suite on an
ONOS scenario).

CI provides several information:
* The installer (apexlcompasslfuelljoid)
¢ The scenario [controller]-[feature]-[mode] with
— controller = (odllonosloclinosdn)
— feature = (ovs(dpdk)lkvm)
— mode = (halnoha)

Constraints per test case are defined in the Functest configuration file
/home/opnfv/functest/config/config_functest.yaml:

test-dependencies:
functest:
vims:
scenario: ' (ocl) | (odl) | (nosdn) '
vping:
vping_userdata:
scenario: ' (ocl) | (odl) | (nosdn) '
tempest:
rally:
odl:
scenario: 'odl'
onos:

4.2. Executing the functest suites 11

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

scenario: 'onos'

At the end of the Functest environment creation (prepare_env.sh see ‘[1]¢_), a file (/home/opnfv/functest/conf/testcase-
list.txt) is created with the list of all the runnable tests. We consider the static constraints as regex and compare them
with the scenario. For instance, odl can be run only on scenario including odl in its name.

The order of execution is also described in the Functest configuration file:

test_exec_priority:

vping
vping_userdata
tempest

odl

onos

ovno

doctor

O J o U b W N

promise

9: odl-vpnservice

10: bgpvpn

11: openstack-neutron-bgpvpn-api-extension-tests
12: vims

13: rally

The tests are executed in the following order:
* Basic scenario (vPing, vPing_userdata, Tempest)
¢ Controller suites: ODL or ONOS or OpenContrail
* Feature projects (promise, vIMS)
* Rally (benchmark scenario)

At the end of an automated execution, everything is cleaned. Before running Functest, a snapshot of the OpenStack
configuration (users, tenants, networks,) is performed. After Functest, a clean mechanism is launched to delete
everything that would not have been properly deleted in order to restitute the system as it was prior to the tests.

12 Chapter 4. Using the test frameworks in OPNFV

CHAPTER
FIVE

GETTING STARTED WITH ‘VSPERF’

VSPEREF requires a traffic generators to run tests, automated traffic gen support in VSPERF includes:
 IXIA traffic generator (IxNetwork hardware) and a machine that runs the IXIA client software.

* Spirent traffic generator (TestCenter hardware chassis or TestCenter virtual in a VM) and a VM to run the Spirent
Virtual Deployment Service image, formerly known as “Spirent LabServer”.

If you want to use another traffic generator, please select the Dummy generator option as shown in Traffic generator
instructions

To see the supported Operating Systems, vSwitches and system requirements, please follow the installation instructions
to install.

Follow the Traffic generator instructions to install and configure a suitable traffic generator.

In order to run VSPEREF, you will need to download DPDK and OVS. You can do this manually and build them in a
preferred location, OR you could use vswitchperf/src. The vswitchperf/src directory contains makefiles that will allow
you to clone and build the libraries that VSPERF depends on, such as DPDK and OVS. To clone and build simply:

$ cd src
$ make

VSPERF can be used with stock OVS (without DPDK support). When build is finished, the libraries are stored in
src_vanilla directory.

The ‘make’ builds all options in src:
* Vanilla OVS
* OVS with vhost_user as the guest access method (with DPDK support)
* OVS with vhost_cuse s the guest access method (with DPDK support)

The vhost_user build will reside in src/ovs/ The vhost_cuse build will reside in vswitchperf/src_cuse The Vanilla OVS
build will reside in vswitchperf/src_vanilla

To delete a src subdirectory and its contents to allow you to re-clone simply use:

$ make clobber

The 10_custom. conf file is the configuration file that overrides default configurations in all the other configuration
files in . /conf The supplied 10_custom.conf file MUST be modified, as it contains configuration items for
which there are no reasonable default values.

The configuration items that can be added is not limited to the initial contents. Any configuration item mentioned in
any .conf file in . /conf directory can be added and that item will be overridden by the custom configuration value.

If your 10_custom. conf doesn’t reside in the . /conf directory of if you want to use an alternative configuration
file, the file can be passed to vsperf viathe ——conf-file argument.

13

http://artifacts.opnfv.org/vswitchperf/docs/configguide/trafficgen.html
http://artifacts.opnfv.org/vswitchperf/docs/configguide/trafficgen.html
http://artifacts.opnfv.org/vswitchperf/docs/configguide/installation.html
http://artifacts.opnfv.org/vswitchperf/docs/configguide/trafficgen.html

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

‘$./vsperf —--conf-file <path_to_custom_conf> ...

Note that configuration passed in via the environment (--1oad—-env) or via another command line argument will
override both the default and your custom configuration files. This “priority hierarchy” can be described like so (1 =
max priority):

1. Command line arguments
2. Environment variables
3. Configuration file(s)

vsperf uses a VM called vloop_vnf for looping traffic in the PVP and PV VP deployment scenarios. The image can be
downloaded from http://artifacts.opnfv.org/.

$ wget http://artifacts.opnfv.org/vswitchperf/vloop-vnf-ubuntu-14.04_20151216.gcow2

vloop_vnf forwards traffic through a VM using one of: * DPDK testpmd * Linux Bridge * 12fwd kernel Module.
Alternatively you can use your own QEMU image.

A Kernel Module that provides OSI Layer 2 Ipv4 termination or forwarding with support for Destination Network
Address Translation (DNAT) for both the MAC and IP addresses. 12fwd can be found in <vswitchperf_dir>/src/12fwd

Before running any tests make sure you have root permissions by adding the following line to /etc/sudoers:

username ALL= (ALL) NOPASSWD: ALL

username in the example above should be replaced with a real username.

To list the available tests:

‘$./vsperf —--list

To run a single test:

’$./vsperf STESTNAME

Where STESTNAME is the name of the vsperf test you would like to run.

To run a group of tests, for example all tests with a name containing ‘RFC2544’:

‘$./vsperf —--conf-file=<path_to_custom_conf>/10_custom.conf —--tests="RFC2544"

To run all tests:

‘$./vsperf —--conf-file=<path_to_custom_conf>/10_custom.conf

Some tests allow for configurable parameters, including test duration (in seconds) as well as packet sizes (in bytes).

$./vsperf -—conf-file user_settings.py
——tests RFC2544Tput
—-—test-param "duration=10;pkt_sizes=128"

For all available options, check out the help dialog:

$./vsperf —--help

1. If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make

14 Chapter 5. Getting Started with ‘vsperf’

http://artifacts.opnfv.org/

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

2. Update your “10_custom.conf™ file to use the appropriate variables for Vanilla OVS:

VSWITCH = 'OvsVanilla'
VSWITCH_VANILLA_PHY PORT_NAMES = ['S$PORTL1', 'S$SPORTL']

Where $PORT1 and $PORT? are the Linux interfaces you’d like to bind to the vswitch.

3. Run test:

’$./vsperf —--conf-file=<path_to_custom_conf>

Please note if you don’t want to configure Vanilla OVS through the configuration file, you can pass it as a CLI
argument; BUT you must set the ports.

’$./vsperf —--vswitch OvsVanilla ‘

To run tests using vhost-user as guest access method:

1. Set VHOST_METHOD and VNF of your settings file to:

VHOST_METHOD="'user"'
VNF = 'QemuDpdkVhost'

2. If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make
3. Run test:
$./vsperf —-conf-file=<path_to_custom_conf>/10_custom.conf

To run tests using vhost-cuse as guest access method:

1. Set VHOST_METHOD and VNF of your settings file to:

VHOST_METHOD="'cuse'
VNF = 'QemuDpdkVhostCuse'

2. If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make
3. Run test:
$./vsperf —--conf-file=<path_to_custom_conf>/10_custom.conf

To run tests using Vanilla OVS:

1. Set the following variables:

VSWITCH = 'OvsVanilla'
VNE = 'QemuVirtioNet'

VANILLA_TGEN_PORT1_IP = n.n.n.n
VANILLA_TGEN_PORT1_MAC = nn:nn:nn:nnh:nn:nn

VANILLA_TGEN_PORT2_IP = n.n.n.n
VANILLA_TGEN_PORT2_MAC = nn:nn:nn:nn:nn:nn

15

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

VANILLA_ BRIDGE_IP = n.n.n.n
or use ——test-param
./vsperf —-conf-file=<path_to_custom_conf>/10_custom.conf

—-—test-param "vanilla_tgen_tx_ip=n.n.n.n;
vanilla_tgen_tx_mac=nn:nn:nn:nn:nn:nn"

2. If needed, recompile src for all OVS variants

$ cd src
$ make distclean
$ make
3. Run test:
’$./vsperf —--conf-file<path_to_custom_conf>/10_custom.conf

To select loopback application, which will perform traffic forwarding inside VM, following configuration parameter
should be configured:

‘GUEST_LOOPBACK = ['testpmd', 'testpmd']

or use —test-param

$./vsperf —--conf-file=<path_to_custom_conf>/10_custom.conf
——test-param "guest_loopback=testpmd"

Supported loopback applications are:

'testpmd’ - testpmd from dpdk will be built and used

'12fwd’ - 12fwd module provided by Huawei will be built and used
'linux_bridge' - linux bridge will be configured

'buildin’ — nothing will be configured by vsperf; VM image must

ensure traffic forwarding between its interfaces

Guest loopback application must be configured, otherwise traffic will not be forwarded by VM and testcases with PVP
and PVVP deployments will fail. Guest loopback application is set to ‘testpmd’ by default.

Every developer participating in VSPERF project should run pylint before his python code is submitted for review.
Project specific configuration for pylint is available at ‘pylint.rc’.

Example of manual pylint invocation:

$ pylint --rcfile ./pylintrc ./vsperf

If you encounter the following error: “before (last 100 chars): ‘-path=/dev/hugepages,share=on: unable to map backing
store for hugepages: Cannot allocate memoryrnrn” with the PVP or PVVP deployment scenario, check the amount of
hugepages on your system:

’$ cat /proc/meminfo | grep HugePages

By default the vswitchd is launched with 1Gb of memory, to change this, modify —socket-mem parameter in
conf/02_vswitch.conf to allocate an appropriate amount of memory:

’VSWITCHD_DPDK_ARGS = ['"-c', 'Ox4', '-n', '"4', '——-socket-mem 1024,0']

16 Chapter 5. Getting Started with ‘vsperf’

CHAPTER
SIX

USING BRAHMAPUTRA FEATURES

The following sections of the user guide provide feature specific usage guidelines and references. Providing users the
necessary information to leveraging the features in the platform, some operation in this section may refer back to the
guides in the general system usage section.

6.1 Copper capabilities and usage

This release focused on use of the OpenStack Congress service for managing configuration policy. See the Congress
intro guide on readthedocs for information on the capabilities and usage of Congress.

6.2 Doctor capabilities and usage

6.2.1 Immediate Notification
Immediate notification can be used by creating ‘event’ type alarm via OpenStack Alarming (Aodh) API with relevant
internal components support.

See, upstream spec document: http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-
evaluator.html

You can find an example of consumer of this notification in doctor repository. It can be executed as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests

CONSUMER_PORT=12346

python consumer.py "SCONSUMER _PORT" > consumer.log 2>&1 &

6.2.2 Consistent resource state awareness (Compute/host-down)

Resource state of compute host can be fixed according to an input from a monitor sitting out side of OpenStack
Compute (Nova) by using force-down APL

See http://artifacts.opnfv.org/doctor/brahmaputra/docs/manuals/mark-host-down_manual.html for more detail.

17

http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress
http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress
http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html
http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html
http://artifacts.opnfv.org/doctor/brahmaputra/docs/manuals/mark-host-down_manual.html

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

18 Chapter 6. Using Brahmaputra Features

CHAPTER
SEVEN

USING IPV6 FEATURE OF BRAHMAPUTRA RELEASE

This section provides the users with gap analysis regarding IPv6 feature requirements with OpenStack Kilo Official
Release and Open Daylight Lithium Official Release. The gap analysis serves as feature specific user guides and
references when as a user you may leverage the IPv6 feature in the platform and need to perform some IPv6 related

operations.

This section provides users with IPv6 gap analysis regarding feature requirement with OpenStack Neutron in Kilo
Official Release. The following table lists the use cases / feature requirements of VIM-agnostic IPv6 functionality,
including infrastructure layer and VNF (VM) layer, and its gap analysis with OpenStack Neutron in Kilo Official

Release.

Use Case / Requirement

Supported in Kilo Neutron

Notes

All topologies work in a multi-tenant
environment

Yes

The IPv6 design is following the
Neutron tenant networks model; dns-
masq is being used inside DHCP
network namespaces, while radvd is
being used inside Neutron routers
namespaces to provide full isolation
between tenants. Tenant isolation
can be based on VLANs, GRE, or
VXLAN encapsulation. In case of
overlays, the transport network (and
VTEPs) must be IPv4 based as of to-
day.

IPv6 VM to VM only

Yes

It is possible to assign IPv6-only ad-
dresses to VMs. Both switching
(within VMs on the same tenant net-
work) as well as east/west routing
(between different networks of the
same tenant) are supported.

IPv6 external L2 VLAN directly at-
tached to a VM

Yes

IPv6 provider network model; RA
messages from upstream (external)
router are forwarded into the VMs

Continued on next page

19

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

Table 7.1 — continued from previous page

Use Case / Requirement

Supported in Kilo Neutron

Notes

IPv6 subnet routed via L3 agent to an
external IPv6 network

1. Both VLAN and overlay (e.g.
GRE, VXLAN) subnet at-
tached to VMs;

2. Must be able to support multi-
ple L3 agents for a given ex-
ternal network to support scal-
ing (neutron scheduler to as-
sign vRouters to the L3 agents)

1. Yes
2. Yes

Configuration is enhanced in Kilo to
allow easier setup of the upstream
gateway, without the user forced to
create an [Pv6 subnet for the external
network.

Ability for a NIC to support both
IPv4 and IPv6 (dual stack) address.

1. VM with a single interface as-
sociated with a network, which
is then associated with two
subnets.

2. VM with two different inter-
faces associated with two dif-
ferent networks and two differ-
ent subnets.

1. Yes
2. Yes

Dual-stack is supported in Neutron
with the addition of Multiple
IPv6 Prefixes Blueprint

Support IPv6 Address assignment
modes.

1. SLAAC

2. DHCPv6 Stateless

3. DHCPv6 Stateful

1. Yes
2. Yes
3. Yes

Ability to create a port on an IPv6
DHCPv6 Stateful subnet and assign a
specific IPv6 address to the port and
have it taken out of the DHCP ad-
dress pool.

Yes

Ability to create a port with fixed_ip
for a SLAAC/DHCPv6-Stateless
Subnet.

The following patch dis-
ables this operation:
https://review.openstack.org/#/c/12914

Support for private IPv6 to external
IPv6 floating IP; Ability to specify
floating IPs via Neutron API (REST
and CLI) as well as via Horizon,
including combination of IPv6/IPv4
and IPv4/IPv6 floating IPs if imple-
mented.

Rejected

Blueprint proposed in upstream and

got rejected. General expectation

is to avoid NAT with IPv6 by as-

signing GUA to tenant VMs. See

https://review.openstack.org/#/c/13973
for discussion.

1/

Continued on next page

20

Chapter 7. Using IPv6 Feature of Brahmaputra Release

https://review.openstack.org/#/c/129144/
https://review.openstack.org/#/c/139731/

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

Table 7.1 — continued from previous page

Use Case / Requirement

Supported in Kilo Neutron

Notes

Provide IPv6/IPv4 feature parity in
support for pass-through capabilities
(e.g., SR-IOV).

To-Do

The L3 configuration should be trans-
parent for the SR-IOV implemen-
tation. SR-IOV networking sup-
port introduced in Juno based on the
sriovnicswitch ML2 driver is
expected to work with IPv4 and IPv6
enabled VMs. We need to verify if it
works or not

Additional IPv6 extensions, for ex-
ample: IPSEC, IPv6 Anycast, Mul-
ticast

No

It does not appear to be considered
yet (lack of clear requirements)

VM access to the meta-data server to
obtain user data, SSH keys, etc. using
cloud-init with IPv6 only interfaces.

No

This is currently not supported.
Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround
(so that the IPv4 network is used to
obtain connectivity with the metadata
service)

Full support for IPv6 matching (i.e.,
IPv6, ICMPv6, TCP, UDP) in secu-
rity groups. Ability to control and
manage all IPv6 security group capa-
bilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

Yes

During network/subnet/router create,
there should be an option to allow
user to specify the type of address
management they would like. This
includes all options including those
low priority if implemented (e.g.,
toggle on/off router and address pre-
fix advertisements); It must be sup-
ported via Neutron API (REST and
CLI) as well as via Horizon

Yes

Two new Subnet attributes were in-
troduced to control IPv6 address as-
signment options:

e ipv6-ra-mode: to deter-
mine who sends Router Adver-
tisements;

* ipv6-address-mode: to
determine how VM obtains
IPv6 address, default gateway,
and/or optional information.

Security groups anti-spoofing: Pre-
vent VM from using a source
IPv6/MAC address which is not as-
signed to the VM

Yes

Protect tenant and provider network
from rough RAs

Yes

When using a tenant network, Neu-
tron is going to automatically handle
the filter rules to allow connectivity
of RAs to the VMs only from the
Neutron router port; with provider
networks, users are required to spec-
ify the LLA of the upstream router
during the subnet creation, or oth-
erwise manually edit the security-
groups rules to allow incoming traffic
from this specific address.

Continued on next page

21

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

Table 7.1 — continued from previous page

Use Case / Requirement

Supported in Kilo Neutron

Notes

Support the ability to assign multiple
IPv6 addresses to an interface; both
for Neutron router interfaces and VM
interfaces.

Yes

Ability for a VM to support a mix of | Yes

multiple IPv4 and IPv6 networks, in-

cluding multiples of the same type.

Support for IPv6 Prefix Delegation. Roadmap Some partial support is available in
Liberty release

Distributed Virtual Routing (DVR) | No Blueprint proposed upstream, pend-

support for IPv6 ing discussion.

IPv6 First-Hop Security, IPv6 ND | Roadmap Supported in Liberty release

spoofing.

IPv6 support in Neutron Layer3 High | Yes

Auvailability (keepalived+VRRP).

This section provides users with IPv6 gap analysis regarding feature requirement with Open Daylight Lithium Official
Release. The following table lists the use cases / feature requirements of VIM-agnostic IPv6 functionality, including
infrastructure layer and VNF (VM) layer, and its gap analysis with Open Daylight Lithium Official Release.

Use Case / Requirement

Supported in ODL Lithium

Notes

REST API support for IPv6 subnet
creation in ODL

Yes

Yes, it is possible to create IPv6 sub-
nets in ODL using Neutron REST
APL

For a network which has both IPv4
and IPv6 subnets, ODL mechanism
driver will send the port information
which includes IPv4/v6 addresses
to ODL Neutron northbound API.
When port information is queried it
displays IPv4 and IPv6 addresses.
However, in Lithium release, ODL
net-virt provider does not support
IPv6 features (i.e., the actual func-
tionality is missing and would be
available only in the later releases of
ODL).

IPv6 Router support in ODL
1. Communication between VMs
on same compute node
2. Communication between VMs
on different compute nodes
(east-west)
3. External routing (north-south)

ODL net-virt provider in Lithium
release only supports IPv4 Router.
Support for IPv6 Router is planned
in later releases using Routing
Manager. In the meantime, if IPv6
Routing is necessary, we can use
ODL for L2 connectivity and Neu-
tron L3 agent for IPv4/v6 routing.
Note: In Lithium SR3 release, we
have the following issue, which is
fixed upstream and back-ported to
stable/lithium branch on De-
cember 15th, 2015.

Continued on next page

22

Chapter 7. Using IPv6 Feature of Brahmaputra Release

http://lists.opendaylight.org/pipermail/ovsdb-dev/2015-November/002288.html
http://git.opendaylight.org/gerrit/#/c/30253/4
http://git.opendaylight.org/gerrit/#/c/30474

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

Table 7.2 — continued from previous page

Use Case / Requirement Supported in ODL Lithium Notes

IPAM: Support for IPv6 Address as- | No Although it is possible to create

signment modes. different types of IPv6 subnets in
1. SLAAC ODL, ODL_L3 would have to imple-
2. DHCPv6 Stateless ment the IPv6 Router that can send
3. DHCPv6 Stateful out Router Advertisements based on

the IPv6 addressing mode. Router
Advertisement is also necessary for
VMs to configure the default route.

When using ODL for L2 forward- | Yes
ing/tunneling, is it compatible with

IPv6.
Full support for IPv6 matching (i.e., | No Security Groups for IPv6 are cur-
IPv6, ICMPv6, TCP, UDP) in secu- rently not supported.

rity groups. Ability to control and
manage all IPv6 security group capa-
bilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

Shared Networks support No ODL currently assumes a single ten-
ant to network mapping and does not
support shared networks among ten-

ants.
IPv6 external L2 VLAN directly at- | ToDo
tached to a VM.
ODL on an IPv6 only Infrastructure. | ToDo Deploying OpenStack with ODL on

an IPv6 only infrastructure where the
API endpoints are all [Pv6 addresses.

7.1 Promise capabilities and usage

Promise is a resource reservation and management project to identify NFV related requirements and realize resource
reservation for future usage by capacity management of resource pools regarding compute, network and storage.

The following are the key features provided by this module:
» Capacity Management

* Reservation Management

 Allocation Management

The Brahmaputra implementation of Promise is built with the YangForge data modeling framework ! , using a shim-
layer on top of OpenStack to provide the Promise features. This approach requires communication between Con-
sumers/Administrators and OpenStack to pass through the shim-layer. The shim-layer intercepts the message flow to
manage the allocation requests based on existing reservations and available capacities in the providers. It also extracts
information from the intercepted messages in order to update its internal databases. Furthermore, Promise provides ad-
ditional intent-based APIs to allow a Consumer or Administrator to perform capacity management (i.e. add providers,
update the capacity, and query the current capacity and utilization of a provider), reservation management (i.e. create,
update, cancel, query reservations), and allocation management (i.e. create, destroy, query instances).

Detailed information about Promise use cases, features, interface specifications, work flows, and the underlying
Promise YANG schema can be found in the Promise requirement document * .

! YangForge framework, http://github.com/opnfy/yangforge
2 Promise requirement document, http://http://artifacts.opnfv.org/promise/docs/requirements/index.html

7.1. Promise capabilities and usage 23

http://github.com/opnfv/yangforge
http://http://artifacts.opnfv.org/promise/docs/requirements/index.html

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

7.1.1 Promise usage

The yfc run command will load the primary application package from this repository along with any other dependency
files/assets referenced within the YAML manifest and instantiate the opnfv-promise module and run REST/JSON
interface by default listeningon port 5000.:

$ yfc run promise.yaml

You can also checkout the GIT repository (https://github.com/opnfv/promise/) or simply download the files into your
local system and run the application.

7.1.2 Promise feature and APl usage guidelines and examples

This section lists the Promise features and API implemented in OPNFV Brahmaputra.

Note 1: In contrast to ETSI NFV specifications and the detailed interface specification in Section 7, the Promise shim-
layer implementation does not distinguish intent interfaces per resource type, i.e. the various capacity, reservations, etc.
operations have different endpoints for each domain such as compute, storage, and network. The current shim-layer
implementation does not separate the endpoints for performing the various operations.

Note 2: The listed parameters are optional unless explicitly marked as “mandatory”.

Reservation management

The reservation management allows a Consumer to request reservations for resource capacity or specific resource
elements. Reservations can be for now or a later time window. After the start time of a reservation has arrived, the
Consumer can issue create server instance requests against the reserved capacity / elements. Note, a reservation will
expire after a predefined expiry time in case no allocation referring to the reservation is requested.

The implemented workflow is well aligned with the described workflow in the Promise requirement document '
(Clause 6.1) except for the “multi-provider” scenario as described in (Multi-)provider management .

create-reservation

This operation allows making a request to the reservation system to reserve resources. The Consumer can either
request to reserve a certain capacity (container) or specific resource elements (elements), like a certain server instance.

The operation takes the following input parameters:

* start: start time of the requested reservation

* end: end time of the requested reservation

* container: request for reservation of capacity
— instances: number of instances
— cores: number of cores
— ram: size of ram (in MB)
— networks: number of networks
— addresses: number of (public) IP addresses
— ports: number of ports

— routers: number of routers

24 Chapter 7. Using IPv6 Feature of Brahmaputra Release

https://github.com/opnfv/promise/

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

subnets: number of subnets

gigabytes: size of storage (in GB)

volumes: number of volumes

snapshots: number of snapshots

* elements: reference to a list of ‘pre-existing’ resource elements that are required for fulfillment of the resource-
usage-request

- instance-identifier: identifier of a specific resource element
* zone: identifier of an Availability Zone

Promise will check the available capacity in the given time window and in case sufficient capacity exists to meet the
reservation request, will mark those resources “reserved” in its reservation map.

update-reservation

This operation allows to update the reservation details for an existing reservation.

It can take the same input parameters as in create-reservation but in addition requires a mandatory reference to the
reservation-id of the reservation that shall be updated.

cancel-reservation

This operation is used to cancel an existing reservation.
The operation takes the following input parameter:

* reservation-id (mandatory): identifier of the reservation to be canceled.

query-reservation

The operation queries the reservation system to return reservation(s) matching the specified query filter, e.g., reserva-
tions that are within a specified start/end time window.

The operation takes the following input parameters to narrow down the query results:

* zone: identifier of an Availability Zone

» without: excludes specified collection identifiers from the result

¢ elements:
— some: query for ResourceCollection(s) that contain some or more of these element(s)
— every: query for ResourceCollection(s) that contain all of these element(s)

» window: matches entries that are within the specified start/end time window
— start: start time
— end: end time

— scope: if set to ‘exclusive’, only reservations with start AND end time within the time window are returned.
Otherwise (‘inclusive’), all reservation starting OR ending in the time windows are returned.

 show-utilization: boolean value that specifies whether to also return the resource utilization in the queried time
window or not

7.1. Promise capabilities and usage 25

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

subscribe-reservation-events | notify-reservation-events

Subscription to receive notifications about reservation-related events, e.g. a reservation is about to expire or a reserva-
tion is in conflict state due to a failure in the NFVL

Note, this feature is not yet available in Brahmaputra release.

Allocation management

create-instance

This operation is used to create an instance of specified resource(s) for immediate use utilizing capacity from the pool.
Create-instance requests can be issued against an existing reservation, but also allocations without a reference to an
existing reservation are allowed. In case the allocation request specifies a reservation identifier, Promise checks if a
reservation with that ID exists, the reservation start time has arrived (i.e. the reservation is ‘active’), and the required
capacity for the requested flavor is within the available capacity of the reservation. If those conditions are met, Promise
creates a record for the allocation (VMState="INITIALIZED”) and update its databases. If no reservation_id was
provided in the allocation request, Promise checks whether the required capacity to meet the request can be provided
from the available, non-reserved capacity. If yes, Promise creates a record for the allocation with an unique instance-id
and update its databases. In any other case, Promise rejects the create-instance request.

In case the create-instance request is rejected, Promise responds with a “status=rejected” providing the reason of the
rejection. This will help the Consumer to take appropriate actions, e.g., send an updated create-instance request. In
case the create-instance request was accepted and a related allocation record has been created, the shim-layer issues a
createServer request to the VIM Controller providing all information to create the server instance.

The operation takes the following input parameters:

* name (mandatory): Assigned name for the instance to be created

* image (mandatory): the image to be booted in the new instance

* flavor (mandatory): the flavor of the requested server instance

* networks: the list of network uuids of the requested server instance

* provider-id: identifier of the provider where the instance shall be created

* reservation-id: identifier of a resource reservation the create-instance is issued against
The Brahamputra implementation of Promise has the following limitations:

 All create server instance requests shall pass through the Promise shim-layer such that Promise can keep track of
all allocation requests. This is necessary as in the current release the sychronization between the VIM Controller
and Promise on the available capacity is not yet implemented.

* Create-allocation requests are limited to “simple” allocations, i.e., the current workflow only supports the Nova
compute service and create-allocation requests are limited to creating one server instance at a time

* Prioritization of reservations and allocations is yet not implemented. Future version may allow certain policy-
based conflict resolution where, e.g., new allocation request with high priority can “forcefully” terminate lower
priority allocations.

destroy-instance

This operation request to destroy an existing server instance and release it back to the pool.

The operation takes the following input parameter:

26 Chapter 7. Using IPv6 Feature of Brahmaputra Release

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

* instance-id: identifier of the server instance to be destroyed

query-resource-collection

This operation allows to query for resource collection(s) that are within the specified start/end time window.

subscribe-allocation-events | notify-allocation-events

Subscription to receive notifications about allocation-related events, e.g. an allocation towards the VIM that did not
pass the Promise shim-layer

Note, this feature is not yet available in Brahmaputra release.

Capacity management

The capacity management feature allows the Consumer or Administrator to do capacity planning, i.e. the capacity
available to the reservation management can differ from the actual capacity in the registered provider(s). This feature
can, e.g., be used to limit the available capacity for a given time window due to a planned downtime of some of the
resources, or increase the capacity available to the reservation system in case of a plannes upgrade of the available
capacity.

increase/decrease-capacity

This operations allows to increase/decrease the total capacity that is made available to the Promise reservation service
between a specified window in time. It does NOT increase the actual capacity of a given resource provider, but is used
for capacity management inside Promise.

This feature can be used in different ways, like

» Limit the capacity available to the reservation system to a value below 100% of the available capacity in the
VIM, e.g., in order to leave “buffer” in the actual NFVI to be used outside the Promise reservation service.

¢ Inform the reservation system that, from a given time in the future, additional resources can be reserved, e.g.,
due to a planned upgrade of the available capacity of the provider.

* Similarily, the “decrease-capacity” can be used to reduce the consumable resources in a given time window, e.g.,
to prepare for a planned downtime of some of the resources.

» Expose multiple reservation service instances to different consumers sharing the same resource provider.
The operation takes the following input parameters:

e start: start time for the increased/decreased capacity

* end: end time for the increased/decreased capacity

* container: see create-reservation

Note, increase/decreasing the capacity in Promise is completely transparent to the VIM. As such, when increasing
the virtual capacity in Promise (e.g. for a planned upgrade of the capacity), it is in the responsibility of the Con-
sumer/Administrator to ensure sufficient resources in the VIM are available at the appropriate time, in order to prevent
allocations against reservations to fail due to a lack of resources. Therefore, this operations should only be used
carefully.

7.1. Promise capabilities and usage 27

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

query-capacity

This operation is used to query the available capacity information of the specified resource collection. A filter attribute
can be specified to narrow down the query results.

The current implementation supports the following filter criteria:
* time window: returns reservations matching the specified window

* window scope: if set to ‘exclusive’, only reservations with start AND end time within the time window are
returned. Otherwise, all reservation starting OR ending in the time windows are returned.

* metric: query for one of the following capacity metrics:

— ‘total’: resource pools

‘reserved’: reserved resources

‘usage’: resource allocations

‘available’: remaining capacity, i.e. neither reserved nor allocated

subscribe-capacity-events | notify-capacity-events

These operations enable the Consumer to subscribe to receiving notifications about capacity-related events, e.g., in-
creased/decreased capacity for a provider due to a failure or upgrade of a resource pool. In order to provide such
notifications to its Consumers, Promise shim-layer has to subscribe itself to OpenStack Aodh to be notified from the
VIM about any capacity related events.

Note, this feature is not yet available in Brahmaputra release.

(Multi-)provider management

This API towards OpenStack allows an Consumer/Administrator to add and remove resource providers to Promise.
Note, Promise supports a multi-provider configuration, however, for Brahmaputra, multi-provider support is not yet
fully supported.

add-provider

This operation is used to register a new resource provider into the Promise reservation system.

Note, for Brahmaputra, the add-provider operation should only be used to register one provider with the Promise
shim-layer. Further note that currently only OpenStack is supported as a provider.

The operation takes the following input parameters:
* provider-type (mandatory) = ‘openstack’: select a specific resource provider type.
 endpoint (mandatory): target URL endpoint for the resource provider.
* username (mandatory)
* password (mandatory)
* region: specified region for the provider
* tenant
- id

— name

28 Chapter 7. Using IPv6 Feature of Brahmaputra Release

OPNFV User Guide, Release arno.2015.1.0 (2e05184)

remove-provider

This operation removes a resource provider from the reservation system. Note, this feature is not yet available in
Brahmaputra release.

7.1. Promise capabilities and usage 29

	Abstract
	Overview
	OPNFV Scenarios
	General usage guidelines

	Using common platform components
	Brahmaputra OpenStack User Guide
	OpenDaylight User Guide
	ONOS User Guide

	Using the test frameworks in OPNFV
	Description of the test cases
	Executing the functest suites

	Getting Started with `vsperf'
	Using Brahmaputra Features
	Copper capabilities and usage
	Doctor capabilities and usage

	Using IPv6 Feature of Brahmaputra Release
	Promise capabilities and usage

