> 0PNFV

Example Documentation table of

contents
Release arno.2015.1.0 (2e05184)

OPNFV

February 07, 2016

CONTENTS

How to setup the workflow of automatic documentation build for your project 3
Variant 1 - standard 7
Variant 2 - custom 9
NOTE: 13
Project Name: Documentation 15
5.1 Projectdescription: v it e e e e e e e e e e e e e e e e e e e 15
5.2 SCOPE: o ot e e e e e e 15
5.3 Dependencies: i e e e e e e e e e e e e e e e e e e e 16
5.4 Committers and Contributors: L e e e e 16
5.5 Planned deliverables e e e e e e e e e 16
5.6 Proposed Release Schedule: 16
Creating/Configuring/Verifying Jenkins Jobs 19
Other options to generate documentation that we tested 23

Indices and tables 25

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

*:0PNFV

Contents:

CONTENTS 1

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

2 CONTENTS

CHAPTER
ONE

HOW TO SETUP THE WORKFLOW OF AUTOMATIC
DOCUMENTATION BUILD FOR YOUR PROJECT

Setup you repository and then clone locally:

ssh-add your-ssh.key
git clone ssh://<username>Qgerrit.opnfv.org:29418/<project>

cd <project>

Inside the repository create the following structure::

gerrit.opnfv.org/<project>
| -— docs/
| | -— some-project-description.rst
| |-— other-doc-1l.rst
| |-— images/
I |-— ».png|*.Jjpg
|-— release/
| | -— some-release-doc.rst
| | -— images/
I == ».pngl*.Jjpg
| -— requirements/
| |-— requirements.rst
| |-— images/
| == x.pngl~*.Jjpg
|-— design_docs/
| | -— some-design-doc.rst
| |-— images/
I |-= ».pnglx*.Jpg
| -— some_project_file.py
|-— some_shell_script.sh
| —— INFO
' —— README

More details about the default structure you can find here at paragraph “How and where to store the document content
files in your repository”.

In order to obtain a nice .html & .pdf at then end you must write you documentation using reSt markup
quick guides:
* http://docutils.sourceforge.net/docs/user/rst/quickref.html

* http://rest-sphinx-memo.readthedocs.org/en/latest/ReST.html

https://wiki.opnfv.org/documentation
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://rest-sphinx-memo.readthedocs.org/en/latest/ReST.html

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

e http://www.math.uiuc.edu/~gfrancis/illimath/windows/aszgard_mini/movpy-2.0.0-
py2.4.4/manuals/docutils/ref/rst/directives.html

An nice online editor that will help you write reSt and see your changes live. After done editing you can copy the
source document in the repository and follow the workflow.

Clone the releng repository so you can created jobs for JJB:

‘git clone ssh://<username>@Qgerrit.opnfv.org:29418/releng

Enter the project settings:

‘cd releng/Jjjb/<project>/

Create the verify & build scripts

The scripts are the same for most projects and if you need customizations copy them under your project in re-
leng/jjb/<project>/:

cp releng/7jjb/opnfvdocs/build-docu.sh releng/jjb/<your-project>/

and change according to you needs.
If standard will suffice for you skip this step and jump to Edit <your-project>.yml, Variant 1 - standard
docu-build.sh:

#!/bin/bash
set -e
set -o pipefail

project="$(git remote -v | head -nl | awk '{{print $2}}' | sed -e 's,.* :\(.x/\)\?,,' —e
export PATH=$PATH:/usr/local/bin/
git_shal="$(git rev-parse HEAD)"

docu_build_date="$(date)"

files={()
while read -r -d ''; do
files+=("SREPLY")
done < < (find * -type f —-iname 'x.rst' -print0)

for file in "S{{files([@]/}"; do
file cut=" {file%.*x/}"
gs_cp_folder=" {file_cut }}"
sed part
add one '_' at the end of each trigger variable; ex: _shal +'_' & _date + '_'
they were added here without the '_'suffix to avoid sed replacement
sed -1 "s/_shal/$git_shal/g" sfile
sed —-i "s/_date/$docu_build_date/g" S$file

rst2html part
echo "rst2html S$file"
rst2html —--halt=2 $file | gsutil cp -L gsoutput.txt - \
gs://artifacts.opnfv.org/"Sproject"/"Sgs_cp_folder".html
gsutil setmeta -h "Content-Type:text/html" \
-h "Cache-Control:private, max—-age=0, no-transform" \
gs://artifacts.opnfv.org/"Sproject"/"Sgs_cp_folder".html
cat gsoutput.txt

4 Chapter 1. How to setup the workflow of automatic documentation build for your project

's/\.git$// "]

on both of ti

http://www.math.uiuc.edu/~gfrancis/illimath/windows/aszgard_mini/movpy-2.0.0-py2.4.4/manuals/docutils/ref/rst/directives.html
http://www.math.uiuc.edu/~gfrancis/illimath/windows/aszgard_mini/movpy-2.0.0-py2.4.4/manuals/docutils/ref/rst/directives.html
http://rst.ninjs.org/

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

rm —f gsoutput.txt

echo "rst2pdf $file"
rst2pdf $file —o — | gsutil cp -L gsoutput.txt - \
gs://artifacts.opnfv.org/"Sproject"/"Sgs_cp_folder".pdf
gsutil setmeta -h "Content-Type:application/pdf" \
-h "Cache-Control:private, max—-age=0, no-transform" \
gs://artifacts.opnfv.org/"Sproject"/"Sgs_cp_folder".pdf
cat gsoutput.txt
rm —f gsoutput.txt

done

images=()
while read -r -d ''; do
images+= ("SREPLY")
done < <(find » -type f \(—-iname *.Jjpg -o —iname *.png \) -print0)

for img in "${{images[@] }}"; do

uploading found images

echo "uploading $img"

cat "simg" | gsutil cp -L gsoutput.txt - \

gs://artifacts.opnfv.org/"Sproject"/"Simg"

gsutil setmeta —-h "Content-Type:image/Jjpeg" \
-h "Cache-Control:private, max—-age=0, no-transform" \
gs://artifacts.opnfv.org/"Sproject"/"simg"

cat gsoutput.txt

rm —-f gsoutput.txt

done

#the double {{ in file cut="${{file%.+}}" is to escape jjb's yaml

docu-verify.sh:

#!/bin/bash
set -e
set -o pipefail

project="$§(git remote -v | head -nl | awk '{{print $2}}' | sed -e 's,.* :\(.x/\)\?,,' —e
export PATH=S$PATH:/usr/local/bin/

git_shal="$(git rev-parse HEAD)"
docu_build_date="$ (date)"

files=()
while read -r -d ''; do
files+=("SREPLY")
done < < (find * -type f -iname 'x.rst' -print0)

for file in "S5{{files[Q@]/}"; do

file cut="s5{{file%.x}}"
gs_cp_folder="5{{file_cut/}}"

sed part
add one '_' at the end of each trigger variable; ex: _shal +'_' & _date + '_'

's/\.gits$// "]

on both of ti

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

they were added here without the '_'suffix to avoid sed replacement
sed -i "s/_shal/$git_shal/g" S$file

sed -1 "s/_date/S«¢ ouilc ate/g" S$file

rst2html part

echo "rst2html S$file"

rst2html —--exit-status=2 S$file > Sfile cut".html"

echo "rst2pdf S$file"

rst2pdf Sfile -o $file_cut".pdf"

done

#the double {{ in file cut="${{file%.+}}" is to escape jjb's yaml

Edit <your-project>.yml:

vi releng/jjb/<your-project>/<your-project>.yml

Make sure you have the job-templates set correctly as below.

example:: vi releng/jjb/opnfvdocs/opnfvdocs.yml # make sure you are using one of the variants below and that
linclude-raw directive is present

6 Chapter 1. How to setup the workflow of automatic documentation build for your project

CHAPTER
TWO

VARIANT 1 - STANDARD

By chosing Variant 1 you will use the scripts from opnfvdocs project.

<your-project>.yml:

- Jjob-template:

name: 'opnfvdocs-

node: master

builders:
— shell:

'include-

- Jjob-template:

name: 'opnfvdocs-

node: master

builders:
— shell:

'include-

- Jjob-template:

name: 'opnfvdocs-

node: master

builders:
- shell:

'include-

daily—{stream}'

raw ../opnfvdocs/docu-build.sh

verify'

raw ../opnfvdocs/docu-verify.sh
merge'
raw ../opnfvdocs/docu-build.sh

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

8 Chapter 2. Variant 1 - standard

CHAPTER
THREE

VARIANT 2 - CUSTOM

<your-project>.yml:

- Jjob-template:
name: 'opnfvdocs-daily-{stream}'

node: master
builders:
— shell:

!include-raw docu-build.sh

- Jjob-template:
name: 'opnfvdocs-verify'

node: master
builders:
- shell:

!include-raw docu-verify.sh

- job-template:
name: 'opnfvdocs-merge'

node: master
builders:

— shell:
'include-raw docu-build.sh

“node: master” is important here as all documentations are built on Jenkins master node for now.

Please reffer to the releng repository for the correct indentation as JJB is very picky with those and also for the rest
of the code that is missing in the example code and replaced by ”...”. Also you must have your documentation under
docs/ in the repository or gsutil will fail to copy them; for customizations you might need to addapt build-docu.sh as
we did for genesis project as different documents need to go into different places.

Stage files example:

’qit add docu-build.sh docu-verify.sh <project>.yml

Commit change with —signoft:

’git commit —--signoff

Send code for review in Gerrit:

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

‘git review -v

Create the documentation using the recommended structure in your repository and submit to gerrit for review
Jenkins will take over and produce artifacts in the form of .html & .pdf

Jenkins has the proper packages installed in order to produce the artifacts.

Artifacts are stored on Google Storage (still to decide where, structure and how to present them)
http://artifacts.opnfv.org/

Here you can download the PDF version of this guide.

Scrape content from html artifacts on wiki

This section describes how the html build artifacts can be made visible on Wiki using he scrape method. DokuWiki
speeds up browsing through the wiki by caching parsed files1). If a currently cached version of a document exists, this
cached copy is delivered instead of parsing the data again. On editing and previewing no cache is used.

To prevent a page from ever being cached, use the NOCACHE tag anywhere in the document. This is useful if the
page contains dynamic content, e.g. PHP code that pulls in outside information, where the caching would prevent the
most recent information from being displayed. Same applies if documentation artifacts are rebuilt the cached version
is shown if the NOCACHE tag is not used.

https://www.dokuwiki.org/caching
In order to have you documentation on Wiki you need to create a wiki page and include an adaption of the code below:

example:

~~NOCACHE~~

{{scrape>http://artifacts.opnfv.org/opnfvdocs/docs/enable_docu_gen.html}}

Please try to write documentation as accurate and clear as possible as once reviewed and merged it will be automatically
built and displayed on Wiki and everyone would apreciate a good written/nice looking guide.

If you want to see on wiki what code is scraped from the built artifacts click “Show pagesource” in the right (it will
appear if you hover over the magnifier icon); this way you know what is written straight on wiki and what is embedded
with “scrape”. By knowing these details you will be able to prevent damages by manually updating wiki.

Wiki update - how it works

Edit Wiki page https://wiki.opnfv.org/<page> and look for { { scrape>http://artifacts.opnfv.org/<project>/<folder>/<doc-
file>.html}} Click “Preview” and see if the change you submitted to Git is present; add a short description in “Edit
summary” field, then click “Save” to update the page. This extra step is needed as Wiki does not auto update content
for now.

How to track documentation

You must include at the bottom of every document that you want to track the following:

**Documentation trackingxx*
Revision:

Build date: _date_

Image inclusion for artifacts

Create a folder called images in the same folder where you documentation resides and copy .jpg or .png files there,
according to the guide here: https://wiki.opnfv.org/documentation

Here is an example of what you need to include in the .rst files to include an image:

10 Chapter 3. Variant 2 - custom

http://artifacts.opnfv.org/
http://artifacts.opnfv.org/opnfvdocs/docs/enable_docu_gen.pdf
https://www.dokuwiki.org/caching
https://wiki.opnfv.org
https://wiki.opnfv.org/documentation

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

. image:: images/smiley.png
theight: 200
:width: 200

:ralt: Just a smiley face!
ralign: left

The image will be shown in both .html and .pdf resulting artifacts.

11

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

12 Chapter 3. Variant 2 - custom

CHAPTER
FOUR

NOTE:

In order to generate html & pdf documentation the needed packages are rst2pdf & python-docutils if the Jenkins is
CentOS/RHEL; many variants have been tested but this is the cleanest solution found. For html generation it also
supports css styles if needed.

Documentation tracking
Revision:

Build date: _date

13

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

14 Chapter 4. NOTE:

CHAPTER
FIVE

PROJECT NAME: DOCUMENTATION

* Proposed name for the project: “’opnfv documentation’
* Proposed name for the repository: “’opnfvdocs’*

* Project Categories: Documentation

5.1 Project description:

* Produce documentation for OPNFV releases including but not limited to:

— Release notes

Installation guide

User guide

* Any relevant references and interface specifications for OPNFV projects or components.

Include any architecture diagrams or specifications, reference to OPNFV requirements list.

Provide guidelines and tooling for documentation handling across all OPNFV projects

5.2 Scope:

 Set up a structure, and a template, for document development with source control (same as source code). Lever-
aging upstream documentation structure and tools.

¢ Following as close as possible the same contribution process & tools as our source code
* Structure OPNFV documentation logically
* Develop initial set of release documents:

Release note

Install guide
User Guide

API reference (if there is content in release 1)

Interface specification (if there is content in release 1)

* Provide language options for documentation where applicable: In first release English only, Wiki (via HTML
scraping from Gerrit), and PDF.

* Provide tooling and processes for OPNFV projects to implement and follow for consistency

15

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

5.3 Dependencies:

» All OPNFV projects participating in a release.
» Upstream project documentation to be referenced

* Where there are external fora or standard development organization dependencies, list informative and normative
references & specifications.

5.4 Committers and Contributors:

» Name of and affiliation of the project leader :
— Christopher Price: christopher.price @ericsson.com

e Names and affiliations of the committers

Christopher Price: christopher.price @ericsson.com

Wenjing Chu (Dell): wenjing_chu@dell.com
Ashiq Khan (NTTdocomo): khan@nttdocomo.com

Fatih Degirmenci: fatih.degirmenci@ericsson.com

Rodriguez, Iben: Iben.Rodriguez @spirent.com
— Malla Reddy Sama: sama@docomolab-euro.com
* Any other contributors
— Bryan Sullivan (AT&T)
— Trevor Cooper: trevor.cooper @intel.com
Description of roles in the documentation project:
* Committers (Editors): has overall responsibility of document structure, editing, style and toolchains

* opnfvdocs contributors: individual section will have contributors who are domain experts in those areas, other
contributors may simply help out working on the documentation and tools as needed.

* other projects: Committers will be responsible for maintaining documentation artifacts in project repositories.

5.5 Planned deliverables

* Project release documentation for OPNFV
— Including collation of all release relevant project documentations

* Establishment and maintenance of the OPNFV documentation processes and toolchains

5.6 Proposed Release Schedule:

 opnfvdocs will follow each OPNFV release and produce needed documentation
— Release 1 will provide basic documentation including revision control.

— By release 2 a multi-project toolchain will be in place with processes and version control

16 Chapter 5. Project Name: Documentation

mailto:christopher.price@ericsson.com
mailto:christopher.price@ericsson.com
mailto:wenjing_chu@dell.com
mailto:khan@nttdocomo.com
mailto:fatih.degirmenci@ericsson.com
mailto:Iben.Rodriguez@spirent.com
mailto:sama@docomolab-euro.com
mailto:trevor.cooper@intel.com

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

— Iterative improvements to the processes and toolchains are expected on a release by release basis.
Documentation tracking
Revision:

Build date: _date_

5.6. Proposed Release Schedule: 17

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

18 Chapter 5. Project Name: Documentation

CHAPTER
SIX

CREATING/CONFIGURING/VERIFYING JENKINS JOBS

Clone the repo:

git clone ssh://YOUQgerrit.opnfv.org:29418/releng

make changes:

git commit -sv

git review

remote: Resolving deltas: 100% (3/3)

remote: Processing changes: new: 1, refs: 1, done

remote:

remote: New Changes:

remote: https://gerrit.opnfv.org/gerrit/51

remote:

To ssh://agardner@gerrit.opnfv.org:29418/releng.git
* [new branch] HEAD -> refs/publish/master

Follow the link to gerrit https://gerrit.opnfv.org/gerrit/51 in a few moments the verify job will have completed and you
will see Verified +1 jenkins-ci in the gerrit ui.

If the changes pass the verify job https://build.opnfv.org/ci/view/builder/job/builder-verify-jjb/ The patch can be sub-
mitited by a committer.

Job Types
* Verify Job
* Trigger: recheck or reverify
* Merge Job
 Trigger: remerge

The verify and merge jobs are retriggerable in Gerrit by simply leaving a comment with one of the keywords listed
above. This is useful in case you need to re-run one of those jobs in case if build issues or something changed with the
environment.

You can add below persons as reviewers to your patch in order to get it reviewed and submitted.
¢ Ulrich Kleber (Ulrich.Kleber @huawei.com)
* Fatih Degirmenci (fatih.degirmenci @ericsson.com)
* Xinyu Zhao(Jerry) (zhaoxinyu@huawei.com)

Or just email a request for submission to opnfv-helpdesk @rt.linuxfoundation.org

The Current merge and verify jobs for jenkins job builder as pulled from the repo:

19

https://gerrit.opnfv.org/gerrit/51
https://build.opnfv.org/ci/view/builder/job/builder-verify-jjb/
mailto:Ulrich.Kleber@huawei.com
mailto:fatih.degirmenci@ericsson.com
mailto:zhaoxinyu@huawei.com
mailto:opnfv-helpdesk@rt.linuxfoundation.org

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

- project:
name: builder-jobs
jobs:
- 'builder-verify-jjb'
- 'builder-merge'

project: 'releng'

- Jjob-template:
name: builder-verify-jjb

project-type: freestyle

logrotate:
daysToKeep: 30
numToKeep: 10
artifactDaysToKeep: -1
artifactNumToKeep: -1

parameters:
- project-parameter:
project: '{project}'
- gerrit-parameter:
branch: 'master'
scm:
- gerrit-trigger-scm:
credentials—-1id: '{ssh-credentials}'
refspec: 'SGERRIT_REFSPEC'
choosing-strategy: 'gerrit'

wrappers:
- ssh-agent-credentials:
user: '{ssh-credentials}'

triggers:
- gerrit:
trigger-on:
- patchset-created-event:

exclude-drafts: 'false'
exclude-trivial-rebase: 'false'
exclude-no-code-change: 'false'

- draft-published-event
- comment-added-contains-event:
comment-contains-value: 'recheck'
- comment-added-contains-event:
comment-contains-value: 'reverify'
projects:
- project-compare-type: 'ANT'
project-pattern: 'releng'
branches:
- branch-compare-type: 'ANT'
branch-pattern: '**/master'
file-paths:
— compare—-type: ANT
pattern: jjb/#*x
— compare—-type: ANT
pattern: jjb-templates/xx*

20 Chapter 6. Creating/Configuring/Verifying Jenkins Jobs

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

builders:
- shell: |
source /opt/virtualenv/jenkins-job-builder/bin/activate
jenkins-jobs test /opt/jenkins-ci/builder/

- job-template:
name: 'builder-merge'

builder-merge Jjob to run JJB update
#
This job's purpose is to update all the JJB

project-type: freestyle

logrotate:
daysToKeep: 30
numToKeep: 40
artifactDaysToKeep: -1
artifactNumToKeep: 5

parameters:
- project-parameter:
project: '{project}'
- gerrit-parameter:
branch: 'master'

scm:
- gerrit-trigger-scm:
credentials—-id: '{ssh-credentials}'
refspec: "'
choosing-strategy: 'default'

wrappers:
- ssh-agent-credentials:
user: '{ssh-credentials}'

triggers:
- gerrit:
trigger-on:
— change—-merged-event
- comment-added-contains-event:
comment-contains-value: 'remerge'
projects:

- project-compare-type: 'ANT'
project-pattern: 'releng'
branches:

- branch-compare-type: 'ANT'
branch-pattern: 'xx/master’'
file-paths:
- compare—-type: ANT
pattern: Jjjb/#*x

builders:
- shell: |
source /opt/virtualenv/Jjenkins-job-builder/bin/activate
cd /opt/jenkins-ci/releng
git pull
jenkins—-jobs update —--delete-old jjb/

21

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

Documentation tracking
Revision:

Build date: _date

22 Chapter 6. Creating/Configuring/Verifying Jenkins Jobs

CHAPTER
SEVEN

OTHER OPTIONS TO GENERATE DOCUMENTATION THAT WE
TESTED

Doxygen plugin -> HTML published plugin (html)/ LaTeX (pdf)
Description: This was the first discovered method

* html: using Doxygen plugin + HTML publisher It involves some customization at doxygen level + custom html
header/footer

* pdf: it generates a .pdf using latex
e Input files: .md , .rst
* Output: .html & .pdf

¢ Pros:

standard tools: doxygen, html publisher, LaTeX suite

doxygen plugin available in Jenkins, you just need to install it; html publisher plugin available in Jenkins,
you just need to install it

destination files are generated fast

standard reStructuredText or Markdown
* Cons:
— takes some time to customize the output in matters of template, requires custom html header/footer
— latex suite is quite substantial in amount of packages and consumed space (around 1.2 GB)
¢ Tested: roughly, functional tests only
Maven & clouddocs-maven-plugin (actually used to generate openstack-manuals)

Description: It represents the standard tool to generate Openstack documentation manuals, uses maven, maven plugins,
clouddocs-maven-plugins; location of finally generated files is the object of a small Bash script that will reside as Post-
actions

* Input files: .xml
e Output: .html & .pdf
* Pros:
— quite easy for initial setup

— uses openstack documentation generation flows as for openstack-manuals (clouddocs-maven-plugin),
maven installs all you need generate the documentation

e Cons:

23

Example Documentation table of contents, Release arno.2015.1.0 (2e05184)

— could be tricky to generate a custom layout, knowledge about Maven plugins required, .pom editing
— dependent of multiple maven plugins
— input files are .xml and xml editing knowledge is required
¢ Tested: roughly, functional tests only
Sphinx & LaTeX suite

Description: The easiest to install, the cleanest in matter of folder & files structure, uses standard tools available in
repositories; location of finally generated files is the object of a small Bash script that will reside as Post-actions

¢ Input files: .rst as default
e Output: .html & .pdf
* Pros:
— standard tools: Python Sphinx, LaTeX suite
— destination files are generated fast
— standard reStructuredText as default; other inputs can be configured
— Sphinx’s installation is very clean in matters of folder structure; the cleanest from all tested variants
— latex suite is also easy to install via yum/apt and available in general repos

— everyone is migration from other tools to Spinx lately; it provides more control and better looking docu-
mentation

— can be used also for source-code documentation, specially if you use Python
e Cons:
— takes some time to customize the output in matters of template, requires custom html header/footer
— latex suite is quite substantial in amount of packages and consumed space (around 1.2 GB)
* Tested: roughly, functional tests only
Documentation tracking
Revision:

Build date: _date

24 Chapter 7. Other options to generate documentation that we tested

CHAPTER
EIGHT

INDICES AND TABLES

e search
Revision:

Build date: February 07, 2016

25

	How to setup the workflow of automatic documentation build for your project
	Variant 1 - standard
	Variant 2 - custom
	NOTE:
	Project Name: Documentation
	Project description:
	Scope:
	Dependencies:
	Committers and Contributors:
	Planned deliverables
	Proposed Release Schedule:

	Creating/Configuring/Verifying Jenkins Jobs
	Other options to generate documentation that we tested
	Indices and tables

