
OPNFV Configuration Guide
Release arno.2015.1.0 (deee452)

OPNFV

February 15, 2016

CONTENTS

1 Abstract 1

2 Configuration Options 3
2.1 OPNFV Scenario’s . 3

3 Installer Configuration 7
3.1 Apex configuration . 7
3.2 Fuel configuration . 7
3.3 Deploy JOID in your LAB . 10

4 Feature Configuration 17
4.1 Copper configuration . 17
4.2 Doctor Configuration . 23
4.3 IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 23
4.4 Promise Feature Configuration Overview . 36

5 Post Configuration Activities 39
5.1 Scenario validation activities . 39
5.2 Feature validation activities . 40
5.3 Additional testing and validation activities . 43

i

ii

CHAPTER

ONE

ABSTRACT

This document provides guidance and instructions for the configuration of the Brahmaputra release of OPNFV.

The release includes four installer tools leveraging different technologies; Apex, Compass4nfv, Fuel and JOID, which
deploy components of the platform.

This document provides a guide for the selection of tools and components including guidelines for how to deploy and
configure the platform to an operational state.

1

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

2 Chapter 1. Abstract

CHAPTER

TWO

CONFIGURATION OPTIONS

OPNFV provides a variety of virtual infrastructure deployments called scenarios designed to host virtualised network
functions (VNF’s). Each scenario provide specific capabilities and/or components aimed to solve specific problems
for the deployment of VNF’s. A scenario may include components such as OpenStack, OpenDaylight, OVS, KVM
etc. where each scenario will include different source components or configurations.

2.1 OPNFV Scenario’s

Each OPNFV scenario provides unique features and capabilities, it is important to understand your target platform
capabilities before installing and configuring your target scenario. This configuration guide outlines how to install and
configure components in order to enable the features you require.

Scenarios are implemented as deployable compositions through integration with an installation tool. OPNFV supports
multiple installation tools and for any given release not all tools will support all scenarios. While our target is to
establish parity across the installation tools to ensure they can provide all scenarios, the practical challenge of achieving
that goal for any given feature and release results in some disparity.

2.1.1 Scenario Naming

In OPNFV scenarios are identified by short scenario names, these names follow a scheme that identifies the key
components and behaviours of the scenario. The rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

Details of the fields are

• os: mandatory

– Refers to the platform type used

– possible value: os (OpenStack)

• [controller]: mandatory

– Refers to the SDN controller integrated in the platform

– example values: nosdn, ocl, odl, onos

– [feature]: mandatory

* Refers to the feature projects supported by the scenario

* example values: nofeature, kvm, ovs

– [mode]: mandatory

3

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

* Refers to the deployment type, which may include for instance high availability

* possible values: ha, noha

– [option]: optional

* Used for the scenarios those do not fit into naming scheme.

* The optional field in the short scenario name should not be included if there is no optional scenario.

Some examples of supported scenario names are:

• os-nosdn-kvm-noha

– This is an OpenStack based deployment using neutron including the OPNFV enhanced KVM hypervisor

• os-odl_l2-nofeature-ha

– This is an OpenStack deployment in high availability mode including OpenDaylight layer2 networking

• os-onos-kvm_ovs-noha

– This is an OpenStack deployment using ONOS including OPNFV enhanced KVM and OVS versions

2.1.2 Installing your scenario

There are two main methods of deploying your target scenario, one method is to follow this guide which will walk you
through the process of deploying to your hardware using scripts or ISO images, the other method is to set up a Jenkins
slave and connect your infrastructure to the OPNFV Jenkins master.

For the purposes of evaluation and development a number of Brahmaputra scenarios are able to be deployed virtually
to mitigate the requirements on physical infrastructure. Details and instructions on performing virtual deployments
can be found in the installer specific installation instructions.

To set up a Jenkins slave for automated deployment to your lab, refer to the Jenkins slave connect guide.

2.1.3 Brahmaputra scenario overeview

The following table provides an overview of the installation tools and available scenario’s in the Brahmaputra release
of OPNFV.

4 Chapter 2. Configuration Options

http://artifacts.opnfv.org/brahmaputra.1.0/docs/opnfv-jenkins-slave-connection.brahmaputra.1.0.html

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

This document will describe how to install and configure your target OPNFV scenarios. Remember to check the
associated validation procedures section following your installation for details of the use cases and tests that have been
run.

2.1. OPNFV Scenario’s 5

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

6 Chapter 2. Configuration Options

CHAPTER

THREE

INSTALLER CONFIGURATION

The following sections describe the per installer configuration options. Further details for each installer are captured
in the referred project documentation.

3.1 Apex configuration

3.2 Fuel configuration

This section provides brief guidelines on how to install and configure the Brahmaputra release of OPNFV when using
Fuel as a deployment tool including required software and hardware configurations.

For detailed instructions on how to install the Brahmaputra release using Fuel, see:<TODO>

3.2.1 Pre-configuration activities

Planning the deployment

Before starting the installation of the Brahmaputra release of OPNFV when using Fuel as a deployment tool, some
planning must be done.

Familiarize yourself with the Fuel by reading the following documents:

• Fuel planning guide <https://docs.mirantis.com/openstack/fuel/fuel-7.0/planning-guide.html>

• Fuel user guide <http://docs.mirantis.com/openstack/fuel/fuel-7.0/user-guide.html>

• Fuel operations guide <http://docs.mirantis.com/openstack/fuel/fuel-7.0/operations.html>

Before the installation can start, a number of deployment specific parameters must be collected, those are:

1. Provider sub-net and gateway information

2. Provider VLAN information

3. Provider DNS addresses

4. Provider NTP addresses

5. Network overlay you plan to deploy (VLAN, VXLAN, FLAT)

6. Monitoring Options you want to deploy (Ceilometer, Syslog, etc.)

7. How many nodes and what roles you want to deploy (Controllers, Storage, Computes)

8. Other options not covered in the document are available in the links above

7

https://docs.mirantis.com/openstack/fuel/fuel-7.0/planning-guide.html
http://docs.mirantis.com/openstack/fuel/fuel-7.0/user-guide.html
http://docs.mirantis.com/openstack/fuel/fuel-7.0/operations.html

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Retrieving the ISO image

First of all, the Fuel deployment ISO image needs to be retrieved, the .iso image of the Brahmaputra release of OPNFV
when using Fuel as a deployment tool can be found at: <TODO>

Alternatively, you may build the .iso from source by cloning the opnfv/fuel git repository. Detailed instructions on
how to build a Fuel OPNFV .iso can be found here: <TODO>

3.2.2 Hardware requirements

Following high level hardware requirements must be met:

HW Aspect Requirement
of nodes Minimum 5 (3 for non redundant deployment):

• 1 Fuel deployment master (may be virtualized)
• 3(1) Controllers (1 colocated mongo/ceilometer

role, 2 Ceph-OSD roles)
• 1 Compute (1 co-located Ceph-OSD role)

CPU Minimum 1 socket x86_AMD64 with Virtualization
support

RAM Minimum 16GB/server (Depending on VNF work load)
Disk Minimum 256GB 10kRPM spinning disks
Networks 4 Tagged VLANs (PUBLIC, MGMT, STORAGE, PRI-

VATE)
1 Un-Tagged VLAN for PXE Boot - ADMIN Network
note: These can be run on single NIC - or spread out
over other nics as your hardware supports

For a detailed hardware compatibility matrix - please see: <https://www.mirantis.com/products/openstack-drivers-
and-plugins/hardware-compatibility-list/>

Top of the rack (TOR) Configuration requirements

The switching infrastructure provides connectivity for the OPNFV infrastructure operations, tenant networks
(East/West) and provider connectivity (North/South); it also provides needed connectivity for the storage Area Net-
work (SAN). To avoid traffic congestion, it is strongly suggested that three physically separated networks are used,
that is: 1 physical network for administration and control, one physical network for tenant private and public networks,
and one physical network for SAN. The switching connectivity can (but does not need to) be fully redundant, in such
case it and comprises a redundant 10GE switch pair for each of the three physically separated networks.

The physical TOR switches are not automatically configured from the OPNFV reference platform. All the networks
involved in the OPNFV infrastructure as well as the provider networks and the private tenant VLANs needs to be
manually configured.

Manual configuration of the Brahmaputra hardware platform should be carried out according to the OPNFV Pharos
specification <TODO>

3.2.3 Jumphost configuration

The Jumphost server, also known as the “Fuel master” provides needed services/functions to deploy an OP-
NFV/OpenStack cluster as well functions for cluster life-cycle management (extensions, repair actions and upgrades).

8 Chapter 3. Installer Configuration

https://www.mirantis.com/products/openstack-drivers-and-plugins/hardware-compatibility-list/
https://www.mirantis.com/products/openstack-drivers-and-plugins/hardware-compatibility-list/

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

The Jumphost server requires 2 (4 if redundancy is required) Ethernet interfaces - one for external management of the
OPNFV installation, and another for jump-host communication with the OPNFV cluster.

Install the Fuel jump-host

Mount the Fuel Brahmaputra ISO file as a boot device to the jump host server, reboot it, and install the Fuel Jumphost
in accordance with the instructions found here: <TODO>

3.2.4 Platform components configuration

Fuel-Plugins

Fuel plugins enable you to install and configure additional capabilities for your Fuel OPNFV based cloud, such as
additional storage types, networking functionality, or NFV features developed by OPNFV.

Fuel offers an open source framework for creating these plugins, so there’s a wide range of capabilities that you can
enable Fuel to add to your OpenStack clouds.

The OPNFV Brahmaputra version of Fuel provides a set of pre-packaged plugins developed by OPNFV:

Plugin
name

Short description

Open-
Day-
light

OpenDaylight provides an open-source SDN Controller providing networking features such as L2 and
L3 network control, “Service Function Chaining”, routing, networking policies, etc. More information
on OpenDaylight in the OPNFV Brahmaputra release can be found in a separate section in this
document.

ONOS ONOS is another open-source SDN controller which in essense fill the same role as OpenDaylight.
More information on ONOS in the OPNFV Brahmaputra release can be found in a separate section in
this document.

BGP-
VPN

BGP-VPN provides an BGP/MPLS VPN service More information on BGP-VPN in the OPNFV
Brahmaputra release can be found in a separate section in this document.

OVS-
NSH

OVS-NSH provides a variant of Open-vSwitch which supports “Network Service Headers” needed for
the “Service function chaining” feature More information on “Service Function Chaining” in the
OPNFV Brahmaputra release can be found in a in a separate section in this document.

OVS-
NFV

OVS-NFV provides a variant of Open-vSwitch with carrier grade characteristics essential for NFV
workloads. More information on OVS-NFV in the OPNFV Brahmaputra release can be found in a in a
separate section in this document.

KVM-
NFV

KVM-NFV provides a variant of KVM with improved virtualization characteristics essential for NFV
workloads. More information on KVM-NFV in the OPNFV Brahmaputra release can be found in a in
a separate section in this document.

VSPERF VSPERF provides a networking characteristics test bench that facilitates characteristics/performance
evaluation of vSwithches More information on VSPERF in the OPNFV Brahmaputra release can be
found in a in a separate section in this document.

Additional third-party plugins can be found here: https://www.mirantis.com/products/openstack-drivers-and-
plugins/fuel-plugins/ Note: Plugins are not necessarilly compatible with each other, see <TODO> for compati-
bility information

The plugins come prepackaged, ready to install. To do so follow the instructions provided here: <TODO>

Fuel environment

A Fuel environment is an OpenStack instance managed by Fuel, one Fuel instance can manage several OpenStack
instances/environments with different configurations, etc.

3.2. Fuel configuration 9

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

To create a Fuel instance, follow the instructions provided here: <TODO>

Provisioning of aditional features and services

Although the plugins have already previously been installed, they are not per default enabled for the environment we
just created. The plugins of you choice need to be enabled and configured.

To enable a plugin, follow the instructions in the installation instructions <TODO>

For configuration of the plugins, please refer to the corresponding feature in the ????? <TODO>

Networking

All the networking aspects need to be configured in terms of: - Interfaces/NICs - VLANs - Sub-nets - Gateways - User
network segmentation (VLAN/VXLAN) - DNS - NTP - etc.

For guidelines on how to configure networking, please refer to the installation instructions here: <TODO>

Node allocation

Now, it is time to allocate the nodes in your OPNFV cluster to OpenStack-, SDN-, and other feature/service roles.
Some roles may require redundancy, while others don’t; Some roles may be co-located with other roles, while others
may not. The Fuel GUI will guide you in the allocation of roles and will not permit you to perform invalid allocations.

For detailed guide-lines on node allocation, please refer to the installation instructions: <TODO>

Off-line deployment

The OPNFV Brahmaputra version of Fuel can be deployed using on-line upstream repositories (default) or off-line
using built-in local repositories on the Fuel jump-start server.

For instructions on how to configure Fuel for off-line deployment, please refer to the installation instructions:
<TODO>

Deployment

You should now be ready to deploy your OPNFV Brahmaputra environment - but before doing so you may want to
verify your network settings.

For further details on network verification and deployment, please refer to the installation instructions: <TODO>

3.3 Deploy JOID in your LAB

3.3.1 Bare Metal Installations:

3.3.2 Requirements as per Pharos:

3.3.3 Networking:

Minimum 2 networks

10 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

1. First for Admin network with gateway to access external network

2. Second for public network to consume by tenants for floating ips

NOTE: JOID support multiple isolated networks for data as well as storage. Based on your network options
for Openstack.

Minimum 6 physical servers

1. Jump host server:

Minimum H/W Spec needed

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(250 GB)

NIC: eth0(Admin, Management), eth1 (external network)

2. Control node servers (minimum 3):

Minimum H/W Spec

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(500 GB)

NIC: eth0(Admin, Management), eth1 (external network)

3. Compute node servers (minimum 2):

Minimum H/W Spec

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(1 TB) this includes the space for ceph as well

NIC: eth0(Admin, Management), eth1 (external network)

NOTE: Above configuration is minimum and for better performance and usage of the Openstack please con-
sider higher spec for each nodes.

Make sure all servers are connected to top of rack switch and configured accord-
ingly. No DHCP server should be up and configured. Only gateway at eth0 and eth1 network should be con-
figure to access the network outside your lab.

Jump node configuration:

1. Install Ubuntu 14.04 LTS server version of OS on the nodes. 2. Install the git and bridge-utils pack-
ages on the server and configure minimum two bridges on jump host:

brAdm and brPublic cat /etc/network/interfaces

3.3. Deploy JOID in your LAB 11

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

The loopback network interface

auto lo

iface lo inet loopback

iface eth0 inet manual

auto brAdm

iface brAdm inet static

address 10.4.1.1

netmask 255.255.248.0

network 10.4.0.0

broadcast 10.4.7.255

gateway 10.4.0.1

dns-* options are implemented by the resolvconf package, if installed

dns-nameservers 10.4.0.2

bridge_ports eth0

auto brPublic

iface brPublic inet static

address 10.2.66.2

netmask 255.255.255.0

bridge_ports eth2

NOTE: If you choose to use the separate network for management, data and storage then you need to create
bridge for each interface. In case of VLAN tags use the appropriate network on jump-host depend upon VLAN
ID on the interface.

3.3.4 Configure JOID for your lab

Get the joid code from gerritt

git clone https://gerrit.opnfv.org/gerrit/p/joid.git

cd joid/ci

Enable MAAS

• Create a directory in maas/<company name>/<pod number>/ for example

mkdir maas/intel/pod7/

• Copy files from pod5 to pod7

cp maas/intel/pod5/* maas/intel/pod7/

4 files will get copied: deployment.yaml environments.yaml interfaces.host lxc-add-more-interfaces

3.3.5 deployment.yaml file

Prerequisite:

1. Make sure Jump host node has been configured with bridges on each interface, so that appropriate MAAS and JUJU
bootstrap VM can be created. For example if you have three network admin, data and public then I would suggest
to give names like brAdm, brData and brPublic. 2. You have information about the node MAC address and power
management details (IPMI IP, username, password) of the nodes used for control and compute node.

12 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

3.3.6 modify deployment.yaml

This file has been used to configure your maas and bootstrap node in a VM. Comments in the file are self explanatory
and we expect fill up the information according to match lab infrastructure information. Sample deployment.yaml can
be found at https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=blob;f=ci/maas/intel/pod5/deployment.yaml

modify joid/ci/01-deploybundle.sh

under section case $3 add the intelpod7 section and make sure you have information provided correctly. Before
example consider your network has 192.168.1.0/24 your default network. and eth1 is on public network which will be
used to assign the floating ip.

’intelpod7’)

As per your lab vip address list be deafult uses 10.4.1.11 - 10.4.1.20

sed -i -- ’s/10.4.1.1/192.168.1.2/g’ ./bundles.yaml

Choose the external port to go out from gateway to use.

sed -i -- ’s/# "ext-port": "eth1"/ "ext-port": "eth1"/g’ ./bundles.yaml

;;

NOTE: If you are using seprate data network then add this line below also along with other changes. which represents
network 10.4.9.0/24 will be used for data network for openstack

sed -i -- ’s/#os-data-network: 10.4.8.0\/21/os-data-network: 10.4.9.0\/24/g’ ./bundles.yaml

modify joid/ci/02-maasdeploy.sh

under section case $1 add the intelpod7 section and make sure you have information provided correctly.

’intelpod7’)

cp maas/intel/pod7/deployment.yaml ./deployment.yaml

;;

NOTE: If you are using VLAN tags or more network for data and storage then make sure you modify the case $1
section under Enable vlan interface with maas appropriately. In the example below eth2 has been used as separate data
network for tenants in openstack with network 10.4.9.0/24 on compute and control nodes.

’intelpod7’)

maas refresh

enableautomodebyname eth2 AUTO "10.4.9.0/24" compute || true

enableautomodebyname eth2 AUTO "10.4.9.0/24" control || true

;;

3.3. Deploy JOID in your LAB 13

https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=blob;f=ci/maas/intel/pod5/deployment.yaml

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

MAAS Install

After integrating the changes as mentioned above run the MAAS install. Suppose you name the integration lab as
intelpod7 then run the below commands to start the MAAS deployment.

./02-maasdeploy.sh intelpod7

This will take approximately 40 minutes to couple hours depending on your environment. This script will do the
following:

1. Create 2 VMs (KVM).

2. Install MAAS in one of the VMs.

3. Configure the MAAS to enlist and commission a VM for Juju bootstrap node.

4. Configure the MAAS to enlist and commission bare metal servers.

When it’s done, you should be able to view MAAS webpage (http://<MAAS IP>/MAAS) and see 1 bootstrap node
and bare metal servers in the ‘Ready’ state on the nodes page.

Virtual deployment

By default, just running the script ./02-maasdeploy.sh will automatically create the KVM VMs on a single machine
and configure everything for you.

OPNFV Install

JOID allows you to deploy different combinations of OpenStack release and SDN solution in HA or non-HA mode.

For OpenStack, it supports Juno and Liberty. For SDN, it supports Openvswitch, OpenContrail, OpenDayLight and
ONOS.

In addition to HA or non-HA mode, it also supports to deploy the latest from the development tree (tip).

The deploy.sh in the joid/ci directoy will do all the work for you. For example, the following deploy OpenStack Libery
with OpenDayLight in a HA mode in the Intelpod7.

./deploy.sh -o liberty -s odl -t ha -l intelpod7 -f none

By default, the SDN is Openvswitch, non-HA, Liberty, Intelpod5, OPNFV Brahmaputra release and ODL_L2 for the
OPNFV feature.

Possible options for each choice are as follows:

[-s]

nosdn: openvswitch only and no other SDN.

odl: OpenDayLight Lithium version.

opencontrail: OpenContrail SDN.

onos: ONOS framework as SDN.

[-t]

nonha: NO HA mode of Openstack.

14 Chapter 3. Installer Configuration

http:/

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

ha: HA mode of openstack.

tip: the tip of the development.

[-o]

juno: OpenStack Juno version.

liberty: OpenStack Liberty version.

[-l] etc...

default: For virtual deployment where installation will be done on KVM created using ./02-maasdeploy.sh

intelpod5: Install on bare metal OPNFV pod5 of Intel lab.

intelpod6

orangepod2

..

(other pods)

Note: if you make changes as per your pod above then please use your pod.

[-f]

none: no special feature will be enabled.

ipv6: ipv6 will be enabled for tenant in openstack.

By default debug is enabled in script and error messages will be printed on the SSH terminal where you are running
the scripts. It could take an hour to couple hours (max) to complete.

Is the deployment done successfully?

Once juju-deployer is complete, use juju status to verify that all deployed unit are in the ready state.

juju status --format tabular

Find the Openstack-dashboard IP address from the juju status output, and see if you can log in via browser. The
username and password is admin/openstack.

Optionall, see if you can log in Juju GUI. Juju GUI is on the Juju bootstrap node which is the second VM you define
in the 02-maasdeploy.sh. The username and password is admin/admin.

If you deploy ODL, OpenContrail or ONOS, find the IP address of the web UI and login. Please refer to each SDN
bundle.yaml for username/password.

Troubleshoot

To access to any deployed units, juju ssh for example to login into nova-compute unit and look for /var/log/juju/unit-
<of interest> for more info.

juju ssh nova-compute/0

3.3. Deploy JOID in your LAB 15

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Example:

ubuntu@R4N4B1:~$ juju ssh nova-compute/0

Warning: Permanently added ’172.16.50.60’ (ECDSA) to the list of known
hosts.

Warning: Permanently added ’3-r4n3b1-compute.maas’ (ECDSA) to the list of
known hosts.

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-77-generic x86_64)

* Documentation: https://help.ubuntu.com/

<skipped>

Last login: Tue Feb 2 21:23:56 2016 from bootstrap.maas

ubuntu@3-R4N3B1-compute:~$ sudo -i

root@3-R4N3B1-compute:~# cd /var/log/juju/

root@3-R4N3B1-compute:/var/log/juju# ls

machine-2.log unit-ceilometer-agent-0.log unit-ceph-osd-0.log
unit-neutron-contrail-0.log unit-nodes-compute-0.log unit-nova-compute-0.log
unit-ntp-0.log

root@3-R4N3B1-compute:/var/log/juju#

By default juju will add the Ubuntu user keys for authentication into the deployed server and only ssh access
will be available.

Once you resolve the error, go back to the jump host to rerun the charm hook with:

juju resolved --retry <unit>

16 Chapter 3. Installer Configuration

CHAPTER

FOUR

FEATURE CONFIGURATION

The following sections describe the configuration options for specific platform features provided in Brahmaputra.
Further details for each feature are captured in the referred project documentation.

4.1 Copper configuration

This release focused on use of the OpenStack Congress service for managing configuration policy. The Congress install
procedure described here is largely manual. This procedure, as well as the longer-term goal of automated installer
support, is a work in progress. The procedure is further specific to one OPNFV installer (JOID, i.e. MAAS/JuJu)
based environment. Support for other OPNFV installer deployed environments is also a work in progress.

4.1.1 Pre-configuration activities

This procedure assumes OPNFV has been installed via the JOID installer.

4.1.2 Hardware configuration

There is no specific hardware configuration required for the Copper project.

4.1.3 Feature configuration

Following are instructions for installing Congress on an Ubuntu 14.04 LXC container in the OPNFV Controller node,
as installed by the JOID installer. This guide uses instructions from the Congress intro guide on readthedocs. Specific
values below will need to be modified if you intend to repeat this procedure in your JOID-based install environment.

Install base VM for congress on controller node

sudo juju ssh ubuntu@192.168.10.21

Clone the container

sudo lxc-clone -o juju-trusty-lxc-template -n juju-trusty-congress

17

http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Start the container

sudo lxc-start -n juju-trusty-congress -d

Get the container IP address

sudo lxc-info -n juju-trusty-congress

If you need to start over

sudo lxc-destroy --name juju-trusty-congress

Exit from controller (back to jumphost) and login to congress container

sudo juju ssh ubuntu@192.168.10.117

Update package repos

sudo apt-get update

Setup environment variables

export CONGRESS_HOST=192.168.10.106
export KEYSTONE_HOST=192.168.10.119
export CEILOMETER_HOST=192.168.10.116
export CINDER_HOST=192.168.10.117
export GLANCE_HOST=192.168.10.118
export NEUTRON_HOST=192.168.10.125
export NOVA_HOST=192.168.10.121

Install pip

sudo apt-get install python-pip -y

Install java

sudo apt-get install default-jre -y

Install other dependencies

when prompted, set and remember mysql root user password
sudo apt-get install git gcc python-dev libxml2 libxslt1-dev libzip-dev \
mysql-server python-mysqldb -y
sudo pip install virtualenv

18 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Clone congress

git clone https://github.com/openstack/congress.git
cd congress
git checkout stable/liberty

Create virtualenv

virtualenv ~/congress
source bin/activate

Setup Congress

sudo mkdir -p /etc/congress
sudo mkdir -p /etc/congress/snapshot
sudo mkdir /var/log/congress
sudo chown ubuntu /var/log/congress
sudo cp etc/api-paste.ini /etc/congress
sudo cp etc/policy.json /etc/congress

Install requirements.txt and tox dependencies

The need for this stepo was detected by errors during “tox -egenconfig”.

sudo apt-get install libffi-dev -y
sudo apt-get install openssl -y
sudo apt-get install libssl-dev -y

Install dependencies in virtualenv

pip install -r requirements.txt
python setup.py install

Install tox

pip install tox

Generate congress.conf.sample

tox -egenconfig

Edit congress.conf.sample as needed

sed -i -- 's/#verbose = true/verbose = true/g' etc/congress.conf.sample
sed -i -- 's/#log_file = <None>/log_file = congress.log/g' \
etc/congress.conf.sample
sed -i -- 's/#log_dir = <None>/log_dir = \/var\/log\/congress/g' \
etc/congress.conf.sample

4.1. Copper configuration 19

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

sed -i -- 's/#bind_host = 0.0.0.0/bind_host = 192.168.10.117/g' \
etc/congress.conf.sample
sed -i -- 's/#policy_path = <None>/policy_path = \
\/etc\/congress\/snapshot/g' etc/congress.conf.sample
sed -i -- 's/#auth_strategy = keystone/auth_strategy = noauth/g' \
etc/congress.conf.sample
sed -i -- 's/#drivers =/drivers =\
congress.datasources.neutronv2_driver.NeutronV2Driver,\
congress.datasources.glancev2_driver.GlanceV2Driver,\
congress.datasources.nova_driver.NovaDriver,\
congress.datasources.keystone_driver.KeystoneDriver,\
congress.datasources.ceilometer_driver.CeilometerDriver,\
congress.datasources.cinder_driver.CinderDriver/g' etc/congress.conf.sample
sed -i -- 's/#auth_host = 127.0.0.1/auth_host = 192.168.10.108/g' \
etc/congress.conf.sample
sed -i -- 's/#auth_port = 35357/auth_port = 35357/g' etc/congress.conf.sample
sed -i -- 's/#auth_protocol = https/auth_protocol = http/g' \
etc/congress.conf.sample
sed -i -- 's/#admin_tenant_name = admin/admin_tenant_name = admin/g' \
etc/congress.conf.sample
sed -i -- 's/#admin_user = <None>/admin_user = congress/g' \
etc/congress.conf.sample
sed -i -- 's/#admin_password = <None>/admin_password = congress/g' \
etc/congress.conf.sample
sed -i -- 's/#connection = <None>/connection = mysql:\/\/ubuntu:\
<mysql password>@localhost:3306\/congress/g' etc/congress.conf.sample

Copy congress.conf.sample to /etc/congress

sudo cp etc/congress.conf.sample /etc/congress/congress.conf

Create congress database

sudo mysql -u root -p
CREATE DATABASE congress;
GRANT ALL PRIVILEGES ON congress.* TO 'ubuntu'@'localhost' \
IDENTIFIED BY '<mysql password>';
GRANT ALL PRIVILEGES ON congress.* TO 'ubuntu'@'%' IDENTIFIED \
BY '<mysql password>';
exit

Install congress-db-manage dependencies

The need for this step was detected by errors in subsequent steps.

sudo apt-get build-dep python-mysqldb -y
pip install MySQL-python

Create database schema

congress-db-manage --config-file /etc/congress/congress.conf upgrade head

20 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Install dependencies of OpenStack, Congress, Keystone client operations

pip install python-openstackclient
pip install python-congressclient
pip install python-keystoneclient

Execute admin-openrc.sh as downloaded from Horizon

source ~/admin-openrc.sh

Setup Congress user

TODO: needs update in ‘Congress intro in readthedocs < http://congress.readthedocs.org/en/latest/readme.html#installing-
congress>‘_.

pip install cliff --upgrade
export ADMIN_ROLE=$(openstack role list | \
awk "/ Admin / { print \$2 }")
export SERVICE_TENANT=$(openstack project list | \
awk "/ admin / { print \$2 }")
openstack user create --password congress --project admin \
--email "congress@example.com" congress
export CONGRESS_USER=$(openstack user list | \
awk "/ congress / { print \$2 }")
openstack role add $ADMIN_ROLE --user $CONGRESS_USER \
--project $SERVICE_TENANT

Create Congress service

openstack service create congress --type "policy" \
--description "Congress Service"
export CONGRESS_SERVICE=$(openstack service list | \
awk "/ congress / { print \$2 }")

Create Congress endpoint

openstack endpoint create $CONGRESS_SERVICE \
--region $OS_REGION_NAME \
--publicurl http://$CONGRESS_HOST:1789/ \
--adminurl http://$CONGRESS_HOST:1789/ \
--internalurl http://$CONGRESS_HOST:1789/

Start the Congress service in the background

bin/congress-server &
disown the process (so it keeps running if you get disconnected)
disown -h %1

4.1. Copper configuration 21

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Create data sources

To remove datasources: openstack congress datasource delete <name>

It’s probably good to do these commands in a new terminal tab, as the congress server log from the last command will
be flooding your original terminal screen.

openstack congress datasource create nova "nova" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0
openstack congress datasource create neutronv2 "neutronv2" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0
openstack congress datasource create ceilometer "ceilometer" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0
openstack congress datasource create cinder "cinder" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0
openstack congress datasource create glancev2 "glancev2" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0
openstack congress datasource create keystone "keystone" \
--config username=$OS_USERNAME \
--config tenant_name=$OS_TENANT_NAME \
--config password=$OS_PASSWORD \
--config auth_url=http://$KEYSTONE_HOST:5000/v2.0

Run Congress Tempest Tests

tox -epy27

Restarting after server power loss etc

Currently this install procedure is manual. Automated install and restoral after host recovery is TBD. For now, this
procedure will get the Congress service running again.

On jumphost, SSH to Congress server
sudo juju ssh ubuntu@192.168.10.117
If that fails

On jumphost, SSH to controller node
sudo juju ssh ubuntu@192.168.10.119
Start the Congress container
sudo lxc-start -n juju-trusty-congress -d
Verify the Congress container status
sudo lxc-ls -f juju-trusty-congress

22 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

NAME STATE IPV4 IPV6 GROUPS AUTOSTART
--
juju-trusty-congress RUNNING 192.168.10.117 - - NO
exit back to the Jumphost, wait a minute, and go back to the \
"SSH to Congress server" step above

On the Congress server that you have logged into
source ~/admin-openrc.sh
cd congress
source bin/activate
bin/congress-server &
disown -h %1

4.2 Doctor Configuration

4.2.1 Doctor Inspector

Doctor Inspector is suggested to be placed in one of the controller nodes, but it can be put on any host where Doctor
Monitor can reach and accessible to the OpenStack Controller (Nova).

Make sure OpenStack env parameters are set properly, so that Doctor Inspector can issue admin actions such as
compute host force-down and state update of VM.

Then, you can configure Doctor Inspector as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests
INSPECTOR_PORT=12345
python inspector.py $INSPECTOR_PORT > inspector.log 2>&1 &

4.2.2 Doctor Monitor

Doctor Monitors are suggested to be placed in one of the controller nodes, but those can be put on any host which
is reachable to target compute host and accessible to the Doctor Inspector. You need to configure Monitors for all
compute hosts one by one.

Make sure OpenStack env parameters are set properly, so that Doctor Inspector can issue admin actions such as
compute host force-down and state update of VM.

Then, you can configure Doctor Monitor as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests
INSPECTOR_PORT=12345
COMPUTE_HOST='overcloud-novacompute-0'
sudo python monitor.py "$COMPUTE_HOST" \

"http://127.0.0.1:$INSPECTOR_PORT/events" > monitor.log 2>&1 &

4.3 IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Brahmaputra Release
installers. The environment may be pure OpenStack option or Open Daylight L2-only option. The deployment model
may be HA or non-HA. The infrastructure may be bare metal or virtual environment.

4.2. Doctor Configuration 23

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

For complete instructions and documentations of setting up service VM as an IPv6 vRouter using ANY method, please
refer to:

1. IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

2. IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

4.3.1 Pre-configuration Activities

The configuration will work in 2 environments:

1. OpenStack-only environment

2. OpenStack with Open Daylight L2-only environment

Depending on which installer will be used to deploy OPNFV, each environment may be deployed on bare metal or
virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

4.3.2 Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of OPNFV Brahmaputra
Release, please NOTE that:

• Because the anti-spoofing rules of Security Group feature in OpenStack prevents a VM from forwarding packets,
we need to disable Security Group feature in the OpenStack-only environment.

• The hostnames, IP addresses, and username are for exemplary purpose in instructions. Please change as needed
to fit your environment.

• The instructions apply to both deployment model of single controller node and HA (High Availability) deploy-
ment model where multiple controller nodes are used.

Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Brahmaputra Release:

Apex Installer:

HA deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv/os-nosdn-nofeature-ha.yaml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Apex installer.

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

24 Chapter 4. Feature Configuration

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html
http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Fuel Installer:

HA deployment in OpenStack-only environment
./deploy.sh -s os-nosdn-nofeature-ha

Non-HA deployment in OpenStack-only environment
./deploy.sh -s os-nosdn-nofeature-noha

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o liberty -s nosdn -t ha

Non-HA deployment in OpenStack-only environment
./deploy.sh -o liberty -s nosdn -t nonha

Please NOTE that you need to refer to installer’s documentation for other necessary parameters applicable to your
deployment.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

OPNFV-NATIVE-SEC-1: Change the settings in /etc/neutron/plugins/ml2/ml2_conf.ini as follows

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
extension_drivers = port_security
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows

/etc/nova/nova.conf
[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary depending on the installer. Please
refer to relevant documentation of specific installers

Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running. We have to source
the tenant credentials in this step. Please NOTE that the method of sourcing tenant credentials may vary depending
on installers. For example:

Apex installer:

source the tenant credentials using Apex installer of OPNFV
you need to copy the file /home/stack/overcloudrc from the installer VM called "instack"
to a location in controller node, for example, in the directory /opt
source /opt/overcloudrc

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 25

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step during
deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving the public
IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and OS-NATIVE-SETUP-5 in our
more complete instruction.

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router which need to provide
external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers should have created
an external network during installation. You must use the same name of external network that installer creates when
you create the subnet. For example:

• Apex installer: external

• Compass installer: ext-net

• Fuel installer: net04_ext

• Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates

26 Chapter 4. Feature Configuration

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and ipv6-int-network2 with
port_security disabled

neutron net-create --port_security_enabled=False ipv4-int-network1
neutron net-create --port_security_enabled=False ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and one IPv6 subnet
ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to ipv6-router

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address - basically for automation
- to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet 2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 27

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>

28 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

4.3.3 Setup Manual in OpenStack with Open Daylight L2-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in an environment of OpenStack and Open Daylight L2-only
of OPNFV Brahmaputra Release, please NOTE that:

• The hostnames, IP addresses, and username are for exemplary purpose in instructions. Please change as needed
to fit your environment.

• The instructions apply to both deployment model of single controller node and HA (High Availability) deploy-
ment model where multiple controller nodes are used.

• However, in case of HA, when ipv6-router is created in step SETUP-SVM-11, it could be created in any
of the controller node. Thus you need to identify in which controller node ipv6-router is created in order
to manually spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30.

Install OPNFV and Preparation

OPNFV-INSTALL-1: To install OpenStack with Open Daylight L2-only environment of OPNFV Brahmaputra Re-
lease:

Apex Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv/os-odl_l2-nofeature-ha.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Apex installer.

Compass Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-odl_l2-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -s os-odl_l2-nofeature-ha

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -s os-odl_l2-nofeature-noha

Joid Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o liberty -s odl -t ha

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 29

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o liberty -s odl -t nonha

Please NOTE that you need to refer to installer’s documentation for other necessary parameters applicable to your
deployment.

OPNFV-INSTALL-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically through local.conf configu-
ration file by some installers such as devstack, it is very likely that other installers such as Apex, Compass, Fuel
or Joid will enable Security Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

OPNFV-SEC-1: Change the settings in /etc/neutron/plugins/ml2/ml2_conf.ini as follows

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

OPNFV-SEC-2: Change the settings in /etc/nova/nova.conf as follows

/etc/nova/nova.conf
[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-SEC-3: After updating the settings, you will have to restart the Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary depending on the installer. Please
refer to relevant documentation of specific installers

Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login in OpenStack Controller Node. Start a new terminal, and change directory to where Open-
Stack is installed.

SETUP-SVM-2: We have to source the tenant credentials in this step. Please NOTE that the method of sourcing
tenant credentials may vary depending on installers. For example:

Apex installer:

source the tenant credentials using Apex installer of OPNFV
you need to copy the file /home/stack/overcloudrc from the installer VM called "instack"
to a location in controller node, for example, in the directory /opt
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Joid installer:

30 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

Informational Note: Move Public Network from Physical Network Interface to br-ex

SETUP-SVM-3: Move the physical interface (i.e. the public network interface) to br-ex

SETUP-SVM-4: Verify setup of br-ex

Those 2 steps are Informational. OPNFV Installer has taken care of those 2 steps during deployment. You may
refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving the public
IP address and setting up default route. Please refer to SETUP-SVM-3 and SETUP-SVM-4 in our more complete
instruction.

Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the data-center
physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers should have created
an external network during installation. You must use the same name of external network that installer creates when
you create the subnet. For example:

• Apex installer: external

• Compass installer: ext-net

• Fuel installer: net04_ext

• Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses
of your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 31

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex
http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

32 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to
ipv6-router, and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to au-
tomatically spawn a radvd, and

• Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix 2001:db8:0:2::/64
on its internal interface (eth1).

• Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling overhead and
any physical switch requirements. If so, push the mtu to the VM either using dhcp options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 33

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router. First of
all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller nodes are used,
ipv6-router created in step SETUP-SVM-11 could be in any of the controller node. Thus you need to iden-
tify in which controller node ipv6-router is created in order to manually spawn radvd daemon inside the
ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30. The following command in Neu-
tron will display the controller on which the ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24 through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | \
awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace. Now let
us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

34 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that it has successfully configured
the IPv6 address using SLAAC with prefix 2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs. Run some commands to verify
that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 35

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic to
reach external ipv6-router.

4.4 Promise Feature Configuration Overview

4.4.1 Promise installation

Install nodejs, npm and promise

curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo npm -g install npm@latest
git clone https://github.com/opnfv/promise.git
cd promise
npm install

Please note that the last command ‘npm install’ will install all needed dependencies for promise (including yangforge
and mocha)

4.4.2 Testing

Please perform the following preparation steps:

1. Set OpenStack environment parameters properly (e.g. source openrc admin demo in DevStack)

2. Create OpenStack tenant (e.g. promise) and tenant user (e.g. promiser)

3. Create a flavor in Nova with 1 vCPU and 512 MB RAM

4. Create a private network, subnet and router in Neutron

5. Create an image in Glance

Once done, the promise test script can be invoked as follows (as a single line command):

NODE_ENV=mytest \
OS_TENANT_NAME=promise \
OS_USERNAME=promiser \
OS_PASSWORD=<user password from Step 2> \
OS_TEST_FLAVOR=<flavor ID from Step 3> \
OS_TEST_NETWORK=<network ID from Step 4> \
OS_TEST_IMAGE=<image ID from Step 5> \
npm run -s test -- --reporter json > promise-results.json

The results of the tests will be stored in the promise-results.json file.

The results can also be seen in the console (“npm run -s test”)

All 33 tests passing?! Congratulations, promise has been successfully installed and configured.

36 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

4.4. Promise Feature Configuration Overview 37

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

38 Chapter 4. Feature Configuration

CHAPTER

FIVE

POST CONFIGURATION ACTIVITIES

Once you have deployed and configured your scenario and features you should validate the state of the system using
the following guides.

5.1 Scenario validation activities

The following guides provide information on how to validate the installation of you scenario based on the tools and
test suites available for the installation tool you have selected:

5.1.1 IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter. You have validated
the setup based on the instruction in previous sections. If you want to further test your setup, you can ping6 among
VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party. For more instructions and documentations, please refer to:

1. IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

2. IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

5.1.2 JOID post installation procedures

Configure OpenStack

In each SDN directory, for example joid/ci/opencontrail, there is a folder for Juju deployer where you can find the
charm bundle yaml files that the deploy.sh uses to deploy.

In the same directory, there is scripts folder where you can find shell scripts to help you configure the OpenStack
cloud that you just deployed. These scripts are created to help you configure a basic OpenStack Cloud to verify the
cloud. For more info on OpenStack Cloud configuration, please refer to the OpenStack Cloud Administrator Guide
on docs.openstack.org. Similarly, for complete SDN configuration, please refer to the respective SDN adminstrator
guide.

39

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html
http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Each SDN solution requires slightly different setup, please refer to the README in each SDN folder. Most likely
you will need to modify the openstack.sh and cloud-setup.sh scripts for the floating IP range, private IP network, and
SSH keys. Please go through openstack.sh, glance.sh and cloud-setup.sh and make changes as you see fit.

5.2 Feature validation activities

The following sections provide information on how to validate the features you have installed in your scenario:

5.2.1 Copper post installation procedures

This release focused on use of the OpenStack Congress service for managing configuration policy. The Congress
install verify procedure described here is largely manual. This procedure, as well as the longer-term goal of automated
verification support, is a work in progress. The procedure is further specific to one OPNFV installer (JOID, i.e.
MAAS/JuJu) based environment.

Automated post installation activities

No automated procedures are provided at this time.

Copper post configuration procedures

No configuration procedures are required beyond the basic install procedure.

Platform components validation

Following are notes on creating a container as test driver for Congress. This is based upon an Ubuntu host as installed
by JOID.

Create and Activate the Container

On the jumphost:

sudo lxc-create -n trusty-copper -t /usr/share/lxc/templates/lxc-ubuntu \
-- -b ubuntu ~/opnfv
sudo lxc-start -n trusty-copper -d
sudo lxc-info --name trusty-copper
(typical output)
Name: trusty-copper
State: RUNNING
PID: 4563
IP: 10.0.3.44
CPU use: 28.77 seconds
BlkIO use: 522.79 MiB
Memory use: 559.75 MiB
KMem use: 0 bytes
Link: vethDMFOAN
TX bytes: 2.62 MiB
RX bytes: 88.48 MiB
Total bytes: 91.10 MiB

40 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Login and configure the test server

ssh ubuntu@10.0.3.44
sudo apt-get update
sudo apt-get upgrade -y

Install pip
sudo apt-get install python-pip -y

Install java
sudo apt-get install default-jre -y

Install other dependencies
sudo apt-get install git gcc python-dev libxml2 libxslt1-dev \
libzip-dev php5-curl -y

Setup OpenStack environment variables per your OPNFV install
export CONGRESS_HOST=192.168.10.117
export KEYSTONE_HOST=192.168.10.108
export CEILOMETER_HOST=192.168.10.105
export CINDER_HOST=192.168.10.101
export GLANCE_HOST=192.168.10.106
export HEAT_HOST=192.168.10.107
export NEUTRON_HOST=192.168.10.111
export NOVA_HOST=192.168.10.112
source ~/admin-openrc.sh

Install and test OpenStack client
mkdir ~/git
cd git
git clone https://github.com/openstack/python-openstackclient.git
cd python-openstackclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
openstack service list
(typical output)
+----------------------------------+------------+----------------+
| ID | Name | Type |
+----------------------------------+------------+----------------+
2f8799ae50f24c928c021fabf8a50f5f	keystone	identity
351b13f56d9a4e25849406ec1d5a2726	cinder	volume
5129510c3143454f9ba8ec7e6735e267	cinderv2	volumev2
5ee1e220460f41dea9be06921400ce9b	congress	policy
78e73a7789a14f56a5d248a0cd141201	quantum	network
9d5a00fb475a45b2ae6767528299ed6b	ceilometer	metering
9e4b1624ef0b434abc0b82f607c5045c	heat	orchestration
b6c01ceb5023442d9f394b83f2a18e01	heat-cfn	cloudformation
ba6199e3505045ad87e2a7175bd0c57f	glance	image
d753f304a0d541dbb989780ae70328a8	nova	compute
+----------------------------------+------------+----------------+

Install and test Congress client
cd ~/git
git clone https://github.com/openstack/python-congressclient.git
cd python-congressclient
git checkout stable/liberty
sudo pip install -r requirements.txt

5.2. Feature validation activities 41

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

sudo python setup.py install
openstack congress driver list
(typical output)
+------------+--+
| id | description |
+------------+--+
ceilometer	Datasource driver that interfaces with ceilometer.
neutronv2	Datasource driver that interfaces with OpenStack Networking aka Neutron.
nova	Datasource driver that interfaces with OpenStack Compute aka nova.
keystone	Datasource driver that interfaces with keystone.
cinder	Datasource driver that interfaces with OpenStack cinder.
glancev2	Datasource driver that interfaces with OpenStack Images aka Glance.
+------------+--+

Install and test Glance client
cd ~/git
git clone https://github.com/openstack/python-glanceclient.git
cd python-glanceclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
glance image-list
(typical output)
+--------------------------------------+---------------------+
| ID | Name |
+--------------------------------------+---------------------+
| 6ce4433e-65c0-4cd8-958d-b06e30c76241 | cirros-0.3.3-x86_64 |
+--------------------------------------+---------------------+

Install and test Neutron client
cd ~/git
git clone https://github.com/openstack/python-neutronclient.git
cd python-neutronclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
neutron net-list
(typical output)
+--------------------------------------+----------+--+
| id | name | subnets |
+--------------------------------------+----------+--+
| dc6227df-af41-439f-bd2c-c2c2f0fe7fc5 | public | 5745846c-dd79-4900-a7da-bf506348ceac 192.168.10.0/24 |
| a3f9f13a-5de9-4d3b-98c8-d2e40a2ef8e9 | internal | 5e0be862-90da-44ab-af43-56d5c65aa049 10.0.0.0/24 |
+--------------------------------------+----------+--+

Install and test Nova client
cd ~/git
git clone https://github.com/openstack/python-novaclient.git
cd python-novaclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
nova hypervisor-list
(typical output)
+----+---------------------+-------+---------+
| ID | Hypervisor hostname | State | Status |
+----+---------------------+-------+---------+
| 1 | compute1.maas | up | enabled |

42 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

+----+---------------------+-------+---------+

Install and test Keystone client
cd ~/git
git clone https://github.com/openstack/python-keystoneclient.git
cd python-keystoneclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install

Setup the Congress Test Webapp

Clone Copper (if not already cloned in user home)
cd ~/git
if [! -d ~/git/copper]; then \
git clone https://gerrit.opnfv.org/gerrit/copper; fi

Copy the Apache config
sudo cp ~/git/copper/components/congress/test-webapp/www/ubuntu-apache2.conf \
/etc/apache2/apache2.conf

Point proxy.php to the Congress server per your install
sed -i -- "s/192.168.10.117/$CONGRESS_HOST/g" \
~/git/copper/components/congress/test-webapp/www/html/proxy/index.php

Copy the webapp to the Apache root directory and fix permissions
sudo cp -R ~/git/copper/components/congress/test-webapp/www/html /var/www
sudo chmod 755 /var/www/html -R

Make webapp log directory and set permissions
mkdir ~/logs
chmod 777 ~/logs

Restart Apache
sudo service apache2 restart

Using the Test Webapp

Browse to the trusty-copper server IP address.

Interactive options are meant to be self-explanatory given a basic familiarity with the Congress service and data model.
But the app will be developed with additional features and UI elements.

5.3 Additional testing and validation activities

Many of our testing tools can be manually installed to facilitate targeted testing of features and capabilities of your
scenario. The following guides provide instruction on setting up these testing suites:

5.3.1 Functional testing Installation

Pull the Functest Docker image from the Docker hub:

5.3. Additional testing and validation activities 43

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

$ docker pull opnfv/functest:brahmaputra.1.0

Check that the image is available:

$ docker images

Run the docker container giving the environment variables:

- INSTALLER_TYPE. Possible values are "apex", "compass", "fuel" or "joid".
- INSTALLER_IP. each installer has its installation strategy.

Functest may need to know the IP of the installer to retrieve the credentials (e.g. usually “10.20.0.2” for fuel, not neede
for joid...).

The minimum command to create the Functest docker file can be described as follows:

docker run -it -e "INSTALLER_IP=10.20.0.2" -e "INSTALLER_TYPE=fuel" opnfv/functest:brahmaputra.1.0 /bin/bash

Optionally, it is possible to precise the container name through the option –name:

docker run --name "CONTAINER_NAME" -it -e "INSTALLER_IP=10.20.0.2" -e "INSTALLER_TYPE=fuel" opnfv/functest:brahmaputra.1.0 /bin/bash

It is also possible to to indicate the path of the OpenStack creds using -v:

docker run -it -e "INSTALLER_IP=10.20.0.2" -e "INSTALLER_TYPE=fuel" -v <path_to_your_local_creds_file>:/home/opnfv/functest/conf/openstack.creds opnfv/functest:brahmaputra.1.0 /bin/bash

The local file will be mounted in the container under /home/opnfv/functest/conf/openstack.creds

After the run command the prompt appears which means that we are inside the container and ready to run Functest.

Inside the container, the following directory structure should be in place:

`-- home
`-- opnfv

|-- functest
| |-- conf
| |-- data
| `-- results
`-- repos

|-- bgpvpn
|-- functest
|-- odl_integration
|-- rally
|-- releng
`-- vims-test

Basically the container includes:

• Functest directory to store the configuration (the OpenStack creds are paste in /home/opngb/functest/conf), the
data (images neede for test for offline testing), results (some temporary artifacts may be stored here)

• Repositories: the functest repository will be used to prepare the environment, run the tests. Other repositories
are used for the installation of the tooling (e.g. rally) and/or the retrieval of feature projects scenarios (e.g.
bgpvpn)

The arborescence under the functest repo can be described as follow:
.

|-- INFO
|-- LICENSE
|-- commons
| |-- ims
| |-- mobile

44 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

| `-- traffic-profile-guidelines.rst
|-- docker
| |-- Dockerfile
| |-- common.sh
| |-- prepare_env.sh
| |-- requirements.pip
| `-- run_tests.sh
|-- docs
| |-- configguide
| |-- functest.rst
| |-- images
| `-- userguide
`-- testcases

|-- Controllers
|-- VIM
|-- __init__.py
|-- config_functest.py
|-- config_functest.yaml
|-- functest_utils.py
|-- functest_utils.pyc
|-- vIMS
`-- vPing

We may distinguish 4 different folders:

• commons: it is a folder dedicated to store traffic profile or any test inputs that could be reused by any test project

• docker: this folder includes the scripts that will be used to setup the environment and run the tests

• docs: this folder includes the user and installation/configuration guide

• testcases: this folder includes the scripts required by Functest internal test cases

Firstly run the script to install functest environment:

$ ${repos_dir}/functest/docker/prepare_env.sh

NOTE: ${repos_dir} is a default environment variable inside the docker container, which points to /home/opnfv/repos

Run the script to start the tests:

$ ${repos_dir}/functest/docker/run_tests.sh

5.3.2 Installing vswitchperf

Supported Operating Systems

• CentOS 7

• Fedora 20

• Fedora 21

• Fedora 22

• Ubuntu 14.04

5.3. Additional testing and validation activities 45

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

Supported vSwitches

The vSwitch must support Open Flow 1.3 or greater.

• OVS (built from source).

• OVS with DPDK (built from source).

Supported Hypervisors

• Qemu version 2.3.

Available VNFs

A simple VNF that forwards traffic through a VM, using:

• DPDK testpmd

• Linux Brigde

• custom l2fwd module

The VM image can be downloaded from: http://artifacts.opnfv.org/vswitchperf/vloop-vnf-ubuntu-
14.04_20151216.qcow2

Other Requirements

The test suite requires Python 3.3 and relies on a number of other packages. These need to be installed for the test
suite to function.

Installation of required packages, preparation of Python 3 virtual environment and compilation of OVS, DPDK and
QEMU is performed by script systems/build_base_machine.sh. It should be executed under user account, which will
be used for vsperf execution.

Please Note: Password-less sudo access must be configured for given user account before script is executed.

Execution of installation script:

$ cd systems
$./build_base_machine.sh

Please Note: you don’t need to go into any of the systems subdirectories, simply run the top level
build_base_machine.sh, your OS will be detected automatically.

Script build_base_machine.sh will install all the vsperf dependencies in terms of system packages, Python 3.x and
required Python modules. In case of CentOS 7 it will install Python 3.3 from an additional repository provided by
Software Collections (a link). Installation script will also use virtualenv to create a vsperf virtual environment, which
is isolated from the default Python environment. This environment will reside in a directory called vsperfenv in
$HOME.

You will need to activate the virtual environment every time you start a new shell session. Its activation is specific to
your OS:

CentOS 7

46 Chapter 5. Post Configuration Activities

http://artifacts.opnfv.org/vswitchperf/vloop-vnf-ubuntu-14.04_20151216.qcow2
http://artifacts.opnfv.org/vswitchperf/vloop-vnf-ubuntu-14.04_20151216.qcow2
http://www.softwarecollections.org/en/scls/rhscl/python33/
https://virtualenv.readthedocs.org/en/latest/

OPNFV Configuration Guide, Release arno.2015.1.0 (deee452)

$ scl enable python33 bash
$ cd $HOME/vsperfenv
$ source bin/activate

Fedora and Ubuntu

$ cd $HOME/vsperfenv
$ source bin/activate

Working Behind a Proxy

If you’re behind a proxy, you’ll likely want to configure this before running any of the above. For example:

export http_proxy=proxy.mycompany.com:123
export https_proxy=proxy.mycompany.com:123

5.3. Additional testing and validation activities 47

	Abstract
	Configuration Options
	OPNFV Scenario's

	Installer Configuration
	Apex configuration
	Fuel configuration
	Deploy JOID in your LAB

	Feature Configuration
	Copper configuration
	Doctor Configuration
	IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter
	Promise Feature Configuration Overview

	Post Configuration Activities
	Scenario validation activities
	Feature validation activities
	Additional testing and validation activities

