
JOID User Guide
Release draft (1098848)

OPNFV

August 18, 2016

CONTENTS

1 Introduction 1

2 Orientation 3
2.1 JOID in brief . 3
2.2 Typical JOID Setup . 3

3 Installation 5
3.1 Configuring the Jump Host . 5
3.2 Setting Up Your Environment for JOID . 6
3.3 Starting MAAS-deployer . 9
3.4 Troubleshooting MAAS deployer . 10
3.5 Deploying OPNFV . 10
3.6 OPNFV Juju Charm Bundles . 11
3.7 Testing Your Deployment . 13
3.8 Troubleshooting . 14

4 Post Installation Configuration 17
4.1 Configuring OpenStack . 17

5 Appendix A: Single Node Deployment 21

6 Appendix B: Automatic Device Discovery 23

7 Appendix C: Machine Constraints 25

8 Appendix D: Offline Deployment 27

i

ii

CHAPTER

ONE

INTRODUCTION

This document will explain how to install OPNFV Brahmaputra with JOID including installing JOID, configuring
JOID for your environment, and deploying OPNFV with different SDN solutions in HA, or non-HA mode. Prerequi-
sites include

• An Ubuntu 14.04 LTS Server Jumphost

• Minimum 2 Networks per Pharos requirement

– One for the administrative network with gateway to access the Internet

– One for the OpenStack public network to access OpenStack instances via floating IPs

– JOID supports multiple isolated networks for data as well as storage based on your network requirement
for OpenStack.

• Minimum 6 Physical servers for bare metal environment

– Jump Host x 1, minimum H/W configuration:

* CPU cores: 16

* Memory: 32GB

* Hard Disk: 1 (250GB)

* NIC: eth0 (Admin, Management), eth1 (external network)

– Control Node x 3, minimum H/W configuration:

* CPU cores: 16

* Memory: 32GB

* Hard Disk: 1 (500GB)

* NIC: eth0 (Admin, Management), eth1 (external network)

– Compute Node x 2, minimum H/W configuration:

* CPU cores: 16

* Memory: 32GB

* Hard Disk: 1 (1TB), this includes the space for Ceph.

* NIC: eth0 (Admin, Management), eth1 (external network)

OTE: Above configuration is minimum. For better performance and usage of the OpenStack, please consider higher
specs for all nodes.

Make sure all servers are connected to top of rack switch and configured accordingly. No DHCP server should be up
and configured. Configure gateways only on eth0 and eth1 networks to access the network outside your lab.

1

JOID User Guide, Release draft (1098848)

2 Chapter 1. Introduction

CHAPTER

TWO

ORIENTATION

2.1 JOID in brief

JOID as Juju OPNFV Infrastructure Deployer allows you to deploy different combinations of OpenStack release and
SDN solution in HA or non-HA mode. For OpenStack, JOID supports Juno and Liberty. For SDN, it supports Open-
vswitch, OpenContrail, OpenDayLight, and ONOS. In addition to HA or non-HA mode, it also supports deploying
from the latest development tree.

JOID heavily utilizes the technology developed in Juju and MAAS. Juju is a state-of-the-art, open source, univer-
sal model for service oriented architecture and service oriented deployments. Juju allows you to deploy, configure,
manage, maintain, and scale cloud services quickly and efficiently on public clouds, as well as on physical servers,
OpenStack, and containers. You can use Juju from the command line or through its powerful GUI. MAAS (Metal-
As-A-Service) brings the dynamism of cloud computing to the world of physical provisioning and Ubuntu. Connect,
commission and deploy physical servers in record time, re-allocate nodes between services dynamically, and keep
them up to date; and in due course, retire them from use. In conjunction with the Juju service orchestration software,
MAAS will enable you to get the most out of your physical hardware and dynamically deploy complex services with
ease and confidence.

For more info on Juju and MAAS, please visit https://jujucharms.com/ and http://maas.ubuntu.com.

2.2 Typical JOID Setup

The MAAS server is installed and configured in a VM on the Ubuntu 14.04 LTS Jump Host with access to the Internet.
Another VM is created to be managed by MAAS as a bootstrap node for Juju. The rest of the resources, bare metal
or virtual, will be registered and provisioned in MAAS. And finally the MAAS environment details are passed to Juju
for use.

3

https://jujucharms.com/
http://maas.ubuntu.com

JOID User Guide, Release draft (1098848)

4 Chapter 2. Orientation

CHAPTER

THREE

INSTALLATION

We will use MAAS-deployer to automate the deployment of MAAS clusters for use as a Juju provider. MAAS-
deployer uses a set of configuration files and simple commands to build a MAAS cluster using virtual machines for the
region controller and bootstrap hosts and automatically commission nodes as required so that the only remaining step
is to deploy services with Juju. For more information about the maas-deployer, please see https://launchpad.net/maas-
deployer.

3.1 Configuring the Jump Host

Let’s get started on the Jump Host node.

The MAAS server is going to be installed and configured in a virtual machine. We need to create bridges on the Jump
Host prior to setting up the MAAS-deployer.

OTE: For all the commands in this document, please do not use a ‘root’ user account to run. Please create a non root
user account. We recommend using the ‘ubuntu’ user.

Install the bridge-utils package on the Jump Host and configure a minimum of two bridges, one for the Admin network,
the other for the Public network:

$ sudo apt-get install bridge-utils

$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

iface p1p1 inet manual

auto brAdm
iface brAdm inet static

address 172.16.50.51
netmask 255.255.255.0
bridge_ports p1p1

iface p1p2 inet manual

auto brPublic
iface brPublic inet static

address 10.10.15.1
netmask 255.255.240.0

5

https://launchpad.net/maas-deployer
https://launchpad.net/maas-deployer

JOID User Guide, Release draft (1098848)

gateway 10.10.10.1
dns-nameservers 8.8.8.8
bridge_ports p1p2

NOTE: If you choose to use separate networks for management, data, and storage, then you need to create a bridge
for each interface. In case of VLAN tags, make the appropriate network on jump-host depend upon VLAN ID on the
interface.

NOTE: The Ethernet device names can vary from one installation to another. Please change the Ethernet device names
according to your environment.

MAAS-deployer has been integrated in the JOID project. To get the JOID code, please run

$ sudo apt-get install git
$ git clone https://gerrit.opnfv.org/gerrit/p/joid.git

3.2 Setting Up Your Environment for JOID

To set up your own environment, create a directory in joid/ci/maas/<company name>/<pod number>/ and copy an
existing JOID environment over. For example:

$ cd joid/ci
$ mkdir -p maas/myown/pod
$ cp maas/juniper/pod1/deployment.yaml maas/myown/pod/

Now let’s configure MAAS-deployer by editing the deployment.yaml file. Let’s review each section. We will use the
Juniper pod deployment.yaml as an example.

This file defines the deployment for the MAAS environment which is to be
deployed and automated.
demo-maas:

maas:
Defines the general setup for the MAAS environment, including the
username and password for the host as well as the MAAS server.
user: ubuntu
password: ubuntu

‘demo-maas’ is the environment name we set, it will be used by Juju. The username and password will be the login
credentials for the MAAS server VM and also for the MAAS server web UI.

Contains the virtual machine parameters for creating the MAAS virtual
server. Here you can configure the name of the virsh domain, the
parameters for how the network is attached.
name: opnfv-maas-juniper
interfaces: ['bridge=brAdm,model=virtio', 'bridge=brPublic,model=virtio']
memory: 4096
vcpus: 1
arch: amd64
pool: default
disk_size: 160G

When it’s configured, you will see a KVM VM created and named ‘opnfv-maas-juniper’ on the Jump Host with 2
network interfaces configured and connected to brAdm and brPublic on the host. You may want to increase the vcpu
number and disk size for the VM depending on the resources.

Apt http proxy setting(s)
apt_http_proxy:

6 Chapter 3. Installation

JOID User Guide, Release draft (1098848)

apt_sources:
- ppa:maas/stable
- ppa:juju/stable

If in your environment uses an http proxy, please enter its information here. In addition, add the MAAS and Juju PPA
locations here.

Virsh power settings
Specifies the uri and keys to use for virsh power control of the
juju virtual machine. If the uri is omitted, the value for the
--remote is used. If no power settings are desired, then do not
supply the virsh block.
virsh:

rsa_priv_key: /home/ubuntu/.ssh/id_rsa
rsa_pub_key: /home/ubuntu/.ssh/id_rsa.pub
uri: qemu+ssh://ubuntu@172.16.50.51/system

Defines the IP Address that the configuration script will use
to access the MAAS controller via SSH.
ip_address: 172.16.50.50

This section defines MAAS server IP (172.16.50.50) and the virsh power settings. The Juju bootstrap VM is defined
later.

This section allows the user to set a series of options on the
MAAS server itself. The list of config options can be found in
the upstream MAAS documentation:
- http://maas.ubuntu.com/docs/api.html#maas-server
settings:

main_archive: http://us.archive.ubuntu.com/ubuntu
upstream_dns: 8.8.8.8
maas_name: juniperpod1
kernel_opts: "console=tty0 console=ttyS1,115200n8"
ntp_server: ntp.ubuntu.com

Here we specify some settings for the MAAS server itself. Once MAAS is deployed, you will find these settings on
http://172.16.50.50/MAAS/settings/.

This section is used to define the networking parameters for when
the node first comes up. It is fed into the meta-data cloud-init
configuration and is used to configure the networking piece of the
service. The contents of this section are written directly to the
/etc/network/interfaces file.
#
Please note, this is slightly different than the
node-group-interfaces section below. This will configure the
machine's networking params, and the node-group-interfaces will
configure the maas node-group interfaces which is used for
controlling the dhcp, dns, etc.
network_config: |

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 172.16.50.50
netmask 255.255.255.0
network 172.16.50.0

3.2. Setting Up Your Environment for JOID 7

http://172.16.50.50/MAAS/settings/

JOID User Guide, Release draft (1098848)

broadcast 172.16.50.255
dns-nameservers 8.8.8.8 127.0.0.1

auto eth1
iface eth1 inet static
address 10.10.15.50
netmask 255.255.240.0
network 10.10.0.0
broadcast 10.10.15.255
gateway 10.10.10.1

This section defines the MAAS server’s network interfaces. Once MAAS is deployed, you will find this setting at
/etc/network/interfaces in the MAAS VM.

The node-group-interfaces section is used to configure the MAAS
network interfaces. Basic configuration is supported, such as which
device should be bound, the range of IP addresses, etc.
Note: this may contain the special identifiers:
${maas_net} - the first 3 octets of the ipv4 address
${maas_ip} - the ip address of the MAAS controller
node_group_ifaces:

- device: eth0
ip: 172.16.50.50
subnet_mask: 255.255.255.0
broadcast_ip: 172.16.50.255
router_ip: 172.16.50.50
static_range:

low: 172.16.50.60
high: 172.16.50.90

dynamic_range:
low: 172.16.50.91
high: 172.16.50.254

This section configures the MAAS cluster controller. Here it configures the MAAS cluster to provide DHCP and DNS
services on the eth0 interface with dynamic and static IP ranges defined. You should allocate enough IP addresses for
bare metal hosts in the static IP range, and allocate as many as possible in the dynamic IP range.

Defines the physical nodes which are added to the MAAS cluste
controller upon startup of the node.
nodes:

- name: 2-R4N4B2-control
tags: control
architecture: amd64/generic
mac_addresses:

- "0c:c4:7a:16:2a:70"
power:

type: ipmi
address: 10.10.7.92
user: ADMIN
pass: ADMIN
driver: LAN_2_0

- name: 3-R4N3B1-compute
tags: compute
architecture: amd64/generic
mac_addresses:

- "0c:c4:7a:53:57:c2"
power:

type: ipmi

8 Chapter 3. Installation

JOID User Guide, Release draft (1098848)

address: 10.10.7.84
user: ADMIN
pass: ADMIN
driver: LAN_2_0

<snip>

This section defines the physical nodes to be added to the MAAS cluster controller. For example, the first node here is
named ‘2-R4N4B2-control’, with a tag ‘control’ and architecture specified as amd64/generic. You will need to know
the MAC address of the network interface of the node where it can reach MAAS server; it’s the network interface of
the node to PXE boot on. You need to tell MAAS how to power control the node by providing the the BMC IP address
and BMC admin credentials. MAAS power control not only supports IPMI v2.0, but also supports virsh, Cisco UCS
manager, HP moonshot iLO, and Microsoft OCS, among others. Tag is used here with Juju constraints to make sure
that a particular service gets deployed only on hardware with the tag you created. Later when we go through the Juju
deploy bundle, you will see the constraints setting.

Contains the virtual machine parameters for creating the Juju bootstrap
node virtual machine
juju-bootstrap:

name: bootstrap
interfaces: ['bridge=brAdm,model=virtio', 'bridge=brPublic,model=virtio']
memory: 4096
vcpus: 2
arch: amd64
pool: default
disk_size: 120G

The last section of the example deployment.yaml file defines the Juju bootstrap VM node. When it’s configured, you
will see a KVM VM created and named ‘juju-boostrap’ on the Jump Host with 2 network interfaces configured and
connected to brAdm and brPublic on the host. You may want to increase the vcpu number and disk size for the VM
depending on the resources.

We are now done providing all the information regarding the MAAS VM and Juju VM, and how nodes and how
many of them will be registered in MAAS. This information is very important, if you have questions, please hop on to
#opnfv-joid IRC channel on freenode to ask.

Next we will use the 02-maasdeploy.sh in joid/ci to kick off maas-deployer. Before we do that, we will create an entry
to tell maas-deployer what deployment.yaml file to use. Use your favorite editor to add an entry under the section case
$1. In our example, this is what we add:

'juniperpod1')
cp maas/juniper/pod1/deployment.yaml ./deployment.yaml
;;

NOTE: If your username is different from ‘ubuntu’, please change the ssh key section accordingly:

#just make sure the ssh keys are added into maas for the current user
sed --i "s@/home/ubuntu@$HOME@g" ./deployment.yaml
sed --i "s@qemu+ssh://ubuntu@qemu+ssh://$USER@g" ./deployment.yaml

3.3 Starting MAAS-deployer

Now run the 02-maasdeploy.sh script with the environment you just created

~/joid/ci$./02-maasdeploy.sh juniperpod1

3.3. Starting MAAS-deployer 9

JOID User Guide, Release draft (1098848)

This will take approximately 40 minutes to couple of hours depending on your environment. This script will do
the following: 1. Create 2 VMs (KVM). 2. Install MAAS in one of the VMs. 3. Configure MAAS to enlist and
commission a VM for Juju bootstrap node. 4. Configure MAAS to enlist and commission bare metal servers.

When it’s done, you should be able to view the MAAS webpage (in our example http://172.16.50.50/MAAS) and see
1 bootstrap node and bare metal servers in the ‘Ready’ state on the nodes page.

Here is an example output of running 02-maasdeploy.sh: http://pastebin.ubuntu.com/15117137/

3.4 Troubleshooting MAAS deployer

During the installation process, please carefully review the error messages.

Join IRC channel #opnfv-joid on freenode to ask question. After the issues are resolved, re-running 02-maasdeploy.sh
will clean up the VMs created previously. There is no need to manually undo what’s been done.

3.5 Deploying OPNFV

JOID allows you to deploy different combinations of OpenStack release and SDN solution in HA or non-HA mode.
For OpenStack, it supports Juno and Liberty. For SDN, it supports Open vSwitch, OpenContrail, OpenDaylight and
ONOS (Open Network Operating System). In addition to HA or non-HA mode, it also supports deploying the latest
from the development tree (tip).

The deploy.sh script in the joid/ci directoy will do all the work for you. For example, the following deploys OpenStack
Liberty with OpenDaylight in a HA mode in the Intelpod7.

~/joid/ci$./deploy.sh -o liberty -s odl -t ha -l intelpod7 -f none

NOTE: You will need to modify ~/joid/ci/01-deploybundle.sh to deploy to your own environment, explained
later.

Take a look at the deploy.sh script. You will find we support the following for each option:

[-s]
nosdn: Open vSwitch.
odl: OpenDayLight Lithium version.
opencontrail: OpenContrail.
onos: ONOS framework as SDN.

[-t]
nonha: NO HA mode of OpenStack.
ha: HA mode of OpenStack.
tip: The tip of the development.

[-o]
juno: OpenStack Juno version.
liberty: OpenStack Liberty version.

[-l]
default: For virtual deployment where installation will be done on KVM created using ./02-maasdeploy.sh
intelpod5: Install on bare metal OPNFV pod5 of the Intel lab.
intelpod6: Install on bare metal OPNFV pod6 of the Intel lab.
orangepod2: Install on bare metal OPNFV pod2 of the Orange lab.
(other pods)
Note: if you make changes as per your pod above then please use your pod.

[-f]
none: no special feature will be enabled.
ipv6: IPv6 will be enabled for tenant in OpenStack.

10 Chapter 3. Installation

http://172.16.50.50/MAAS
http://pastebin.ubuntu.com/15117137/

JOID User Guide, Release draft (1098848)

The script will call 00-bootstrap.sh to bootstrap the Juju VM node, then it will call 01-deploybundle.sh with the
corrosponding parameter values.

./01-deploybundle.sh $opnfvtype $openstack $opnfvlab $opnfvsdn $opnfvfeature

You will notice in the 01-deploybundle.sh, it copies over the charm bundle file based on the ha/nonha/tip setting:

case "$1" in
'nonha')

cp $4/juju-deployer/ovs-$4-nonha.yaml ./bundles.yaml
;;

'ha')
cp $4/juju-deployer/ovs-$4-ha.yaml ./bundles.yaml
;;

'tip')
cp $4/juju-deployer/ovs-$4-tip.yaml ./bundles.yaml
cp common/source/* ./
sed -i -- "s|branch: master|branch: stable/$2|g" ./*.yaml
;;

*)
cp $4/juju-deployer/ovs-$4-nonha.yaml ./bundles.yaml
;;

esac

After the respective yaml file is copied over and renamed to bundle.yaml, in the next section, it will update the
bundle.yaml based on your network configuration and environment. For example, for the Juniper pod 1, we need to
change vip suffix from 10.4.1.1 to 172.16.50.1, which is our admin network, and eth1 is on the public network.

'juniperpod1')
sed -i -- 's/10.4.1.1/172.16.50.1/g' ./bundles.yaml
sed -i -- 's/#ext-port: "eth1"/ext-port: "eth1"/g' ./bundles.yaml
;;

NOTE: If you are using a separate data network, then add this line below along with other changes, which signify that
network 10.4.9.0/24 will be used as the data network for openstack.

sed -i -- 's/#os-data-network: 10.4.8.0\/21/os-data-network: 10.4.9.0\/24/g' ./bundles.yaml

By default debug is enabled in the deploy.sh script and error messages will be printed on the SSH terminal where you
are running the scripts. It could take an hour to a couple of hours (maximum) to complete. Here is an example output
of the deployment: http://pastebin.ubuntu.com/15006924/

You can check the status of the deployment by running this command in another terminal:

$ watch juju status --format tabular

This will refresh the juju status output in tabular format every 2 seconds. Here is an example output of juju status
–format tabular: http://pastebin.ubuntu.com/15134109/

Next we will show you what Juju is deploying and to where, and how you can modify based on your own needs.

3.6 OPNFV Juju Charm Bundles

The magic behind Juju is a collection of software components called charms. They contain all the instructions nec-
essary for deploying and configuring cloud-based services. The charms publicly available in the online Charm Store
represent the distilled DevOps knowledge of experts.

A bundle is a set of services with a specific configuration and their corresponding relations that can be deployed
together in a single step. Instead of deploying a single service, they can be used to deploy an entire workload, with

3.6. OPNFV Juju Charm Bundles 11

http://pastebin.ubuntu.com/15006924/
http://pastebin.ubuntu.com/15134109/

JOID User Guide, Release draft (1098848)

working relations and configuration. The use of bundles allows for easy repeatability and for sharing of complex,
multi-service deployments.

For OPNFV, we have collected the charm bundles for each SDN deployment. They are stored in each SDN directory
in ~/joid/ci. In each SDN folder, there are 3 bundle.yaml files, one for HA, one for non-HA, and the other for tip. For
example for OpenDaylight:

~/joid/ci/odl/juju-deployer$ ls
ovs-odl-ha.yaml ovs-odl-nonha.yaml ovs-odl-tip.yaml scripts
~/joid/ci/odl/juju-deployer$

We use Juju-deployer to deploy a set of charms via a yaml configuration file. You can find the complete format guide
for the Juju-deployer configuration file here: http://pythonhosted.org/juju-deployer/config.html

Let’s take a quick look at the ovs-odl-nonha.yaml to give you an idea about the charm bundle.

Assuming we are deploying OpenDayling with OpenStack Liberty in non-HA mode, according to the deploy.sh, we
know it will run these two commands:

juju-deployer -vW -d -t 3600 -c bundles.yaml trusty-liberty-nodes
juju-deployer -vW -d -t 7200 -r 5 -c bundles.yaml trusty-liberty

In the ovs-odl-nonha.yaml file, find the section of ‘trusty-liberty-nodes’ close to the bottom of the file:

trusty-liberty-nodes:
inherits: openstack-phase1
overrides:
series: trusty

It inherits ‘openstack-phase1’, which you will find in the beginning of the file:

openstack-phase1:
series: trusty
services:
nodes-api:

charm: "cs:trusty/ubuntu"
num_units: 1
constraints: tags=control

nodes-compute:
charm: "cs:trusty/ubuntu"
num_units: 1
constraints: tags=compute

ntp:
charm: "cs:trusty/ntp"

relations:
- - "ntp:juju-info"

- "nodes-api:juju-info"
- - "ntp:juju-info"

- "nodes-compute:juju-info"

In the ‘services’ subsection, here we deploy the ‘Ubuntu Trusty charm from the charm store,’ name the service ‘nodes-
api,’ deploy just one unit, and assign a tag of ‘control’ to this service. You can deploy the same charm and name it
differently such as the second service ‘nodes-compute.’ The third service we deploy is named ‘ntp’ and is deployed
from the NTP Trusty charm from the Charm Store. The NTP charm is a subordinate charm, which is designed for and
deployed to the running space of another service unit.

The tag here is related to what we define in the deployment.yaml file for the MAAS-deployer. When ‘constraints’ is
set, Juju will ask its provider, in this case MAAS, to provide a resource with the tags. In this case, Juju is asking one
resource tagged with control and one resource tagged with compute from MAAS. Once the resource information is
passed to Juju, Juju will start the installation of the specified version of Ubuntu.

12 Chapter 3. Installation

http://pythonhosted.org/juju-deployer/config.html

JOID User Guide, Release draft (1098848)

In the next subsection, we define the relations between the services. The beauty of Juju and charms is you can define
the relation of two services and all the service units deployed will set up the relations accordingly. This makes scaling
out a very easy task. Here we add the relation between NTP and the two bare metal services.

Once the relations are established, Juju-deployer considers the deployment complete and moves to the next.

juju-deployer -vW -d -t 7200 -r 5 -c bundles.yaml trusty-liberty

It will start at the ‘trusty-liberty’ section, which inherits the ‘contrail’ section, which inherits the ‘openstack-phase2’
section. it follows the same services and relations format as above. We will take a look at another common service
configuration next.

nova-cloud-controller:
branch: lp:~openstack-charmers/charms/trusty/nova-cloud-controller/next
num_units: 1
options:
network-manager: Neutron

to:
- "lxc:nodes-api=0"

We define a service name ‘nova-cloud-controller,’ which is deployed from the next branch of the nova-cloud-controller
Trusty charm hosted on the Launchpad openstack-charmers team. The number of units to be deployed is 1. We set the
network-manager option to ‘Neutron.’ This 1-service unit will be deployed to a LXC container at service ‘nodes-api’
unit 0.

To find out what other options there are for this particular charm, you can go to the code location at
http://bazaar.launchpad.net/~openstack-charmers/charms/trusty/nova-cloud-controller/next/files and the options are
defined in the config.yaml file.

Once the service unit is deployed, you can see the current configuration by running juju get:

$ juju get nova-cloud-controller

You can change the value with juju set, for example:

$ juju set nova-cloud-controller network-manager=’FlatManager’

Charms encapsulate the operation best practices. The number of options you need to configure should be at the
minimum. The Juju Charm Store is a great resource to explore what a charm can offer you. Following the
nova-cloud-controller charm example, here is the main page of the recommended charm on the Charm Store:
https://jujucharms.com/nova-cloud-controller/trusty/66

If you have any questions regarding Juju, please join the IRC channel #opnfv-joid on freenode for JOID related
questions or #juju for general questions.

3.7 Testing Your Deployment

Once juju-deployer is complete, use juju status –format tabular to verify that all deployed units are in the ready state.

Find the Openstack-dashboard IP address from the juju status output, and see if you can login via a web browser. The
username and password is admin/openstack.

Optionally, see if you can log in to the Juju GUI. The Juju GUI is on the Juju bootstrap node, which is the second VM
you define in the 02-maasdeploy.sh file. The username and password is admin/admin.

If you deploy OpenDaylight, OpenContrail or ONOS, find the IP address of the web UI and login. Please refer to each
SDN bundle.yaml for the login username/password.

3.7. Testing Your Deployment 13

http://bazaar.launchpad.net/~openstack-charmers/charms/trusty/nova-cloud-controller/next/files
https://jujucharms.com/nova-cloud-controller/trusty/66

JOID User Guide, Release draft (1098848)

3.8 Troubleshooting

Logs are indispensable when it comes time to troubleshoot. If you want to see all the service unit deployment logs, you
can run juju debug-log in another terminal. The debug-log command shows the consolidated logs of all Juju agents
(machine and unit logs) running in the environment.

To view a single service unit deployment log, use juju ssh to access to the deployed unit. For example to login into
nova-compute unit and look for /var/log/juju/unit-nova-compute-0.log for more info.

$ juju ssh nova-compute/0

Example:

ubuntu@R4N4B1:~$ juju ssh nova-compute/0
Warning: Permanently added '172.16.50.60' (ECDSA) to the list of known hosts.
Warning: Permanently added '3-r4n3b1-compute.maas' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-77-generic x86_64)

* Documentation: https://help.ubuntu.com/
<skipped>
Last login: Tue Feb 2 21:23:56 2016 from bootstrap.maas
ubuntu@3-R4N3B1-compute:~$ sudo -i
root@3-R4N3B1-compute:~# cd /var/log/juju/
root@3-R4N3B1-compute:/var/log/juju# ls
machine-2.log unit-ceilometer-agent-0.log unit-ceph-osd-0.log unit-neutron-contrail-0.log unit-nodes-compute-0.log unit-nova-compute-0.log unit-ntp-0.log
root@3-R4N3B1-compute:/var/log/juju#

NOTE: By default Juju will add the Ubuntu user keys for authentication into the deployed server and only ssh access
will be available.

Once you resolve the error, go back to the jump host to rerun the charm hook with:

$ juju resolved --retry <unit>

If you would like to start over, run juju destroy-environment <environment name> to release the resources, then you
can run deploy.sh again.

$ juju destroy-environment demo-maas
WARNING! this command will destroy the "demo-maas" environment (type: maas)
This includes all machines, services, data and other resources.

Continue [y/N]? y
$

If there is an error destroying the environment, use –force.

$ juju destroy-environment demo-maas --force
$

If the above command hangs, use Ctrl-C to get out of it, and manually remove the environment file in the
~/.juju/environments/ directory.

$ ls ~/.juju/environments/
demo-maas.jenv
$ sudo rm ~/.juju/environments/demo-maas.jenv
$

The following are the common issues we have collected from the community:

• The right variables are not passed as part of the deployment procedure.

14 Chapter 3. Installation

JOID User Guide, Release draft (1098848)

./deploy.sh -o liberty -s odl -t ha -l intelpod5 -f none

• If you have setup maas not with 02-maasdeply.sh then the ./clean.sh command could hang, the juju status com-
mand may hang because the correct MAAS API keys are not listed in environments.yaml, or environments.yaml
does not exist in the current working directory. Solution: Please make sure you have an environments.yaml file
under joid/ci directory and the correct MAAS API key has been listed.

• Deployment times out: use the command juju status –format=tabular and make sure all service containers
receive an IP address and they are executing code. Ensure there is no service in the error state.

• In case the cleanup process hangs,remove the files from the ~/.juju/ directory except environments.yaml and
shutdown all nodes manually.

Direct console access via the OpenStack GUI can be quite helpful if you need to login to a VM but cannot get to it over
the network. It can be enabled by setting the console-access-protocol in the nova-cloud-controller
to vnc. One option is to directly edit the juju-deployer bundle and set it there prior to deploying OpenStack.

nova-cloud-controller:
options:

console-access-protocol: vnc

To access the console, just click on the instance in the OpenStack GUI and select the Console tab.

3.8. Troubleshooting 15

JOID User Guide, Release draft (1098848)

16 Chapter 3. Installation

CHAPTER

FOUR

POST INSTALLATION CONFIGURATION

4.1 Configuring OpenStack

At the end of the deployment, the admin-openrc with OpenStack login credentials will be created for you. You can
source the file and start configuring OpenStack via CLI.

~/joid/ci/cloud$ cat admin-openrc
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://172.16.50.114:5000/v2.0
export OS_REGION_NAME=Canonical
~/joid/ci/cloud$

We have prepared some scripts to help your configure the OpenStack cloud that you just deployed. In each SDN
directory, for example joid/ci/opencontrail, there is a ‘scripts’ folder where you can find the scripts. These scripts are
created to help you configure a basic OpenStack Cloud to verify the cloud. For more information on OpenStack Cloud
configuration, please refer to the OpenStack Cloud Administrator Guide: http://docs.openstack.org/user-guide-admin/.
Similarly, for complete SDN configuration, please refer to the respective SDN administrator guide.

Each SDN solution requires slightly different setup. Please refer to the README in each SDN folder. Most likely
you will need to modify the openstack.sh and cloud-setup.sh scripts for the floating IP range, private IP network, and
SSH keys. Please go through openstack.sh, glance.sh and cloud-setup.sh and make changes as you see fit.

Let’s take a look at those for the Open vSwitch and briefly go through each script so you know what you need to
change for your own environment.

~/joid/ci/nosdn/juju-deployer/scripts$ ls
cloud-setup.sh glance.sh openstack.sh
~/joid/ci/nosdn/juju-deployer/scripts$

4.1.1 openstack.sh

Let’s first look at ‘openstack.sh’. First there are 3 functions defined, configOpenrc(), unitAddress(), and unitMachine().

configOpenrc()
{

cat <<-EOF
export OS_USERNAME=$1
export OS_PASSWORD=$2
export OS_TENANT_NAME=$3
export OS_AUTH_URL=$4
export OS_REGION_NAME=$5

17

http://docs.openstack.org/user-guide-admin/

JOID User Guide, Release draft (1098848)

EOF
}

unitAddress()
{

juju status | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"public-address\"]" 2> /dev/null
}

unitMachine()
{

juju status | python -c "import yaml; import sys; print yaml.load(sys.stdin)[\"services\"][\"$1\"][\"units\"][\"$1/$2\"][\"machine\"]" 2> /dev/null
}

The function configOpenrc() creates the OpenStack login credentials, the function unitAddress() finds the IP address
of the unit, and the function unitMachine() finds the machine info of the unit.

mkdir -m 0700 -p cloud
controller_address=$(unitAddress keystone 0)
configOpenrc admin openstack admin http://$controller_address:5000/v2.0 Canonical > cloud/admin-openrc
chmod 0600 cloud/admin-openrc

This creates a folder named ‘cloud’, finds the IP address of the keystone unit 0, feeds in the OpenStack admin creden-
tials to a new file name ‘admin-openrc’ in the ‘cloud’ folder and change the permission of the file. It’s important to
change the credentials here if you use a different password in the deployment Juju charm bundle.yaml.

machine=$(unitMachine glance 0)
juju scp glance.sh cloud/admin-openrc $machine:
juju run --machine $machine ./glance.sh

This section first finds the machine ID of the glance service unit 0, transfers the glance.sh and admin-openrc files over
to the glance unit 0, and then run the glance.sh in the glance unit 0. We will take a look at the glance.sh in the next
section.

machine=$(unitMachine nova-cloud-controller 0)
juju scp cloud-setup.sh cloud/admin-openrc ~/.ssh/id_rsa.pub $machine:
juju run --machine $machine ./cloud-setup.sh

This section first finds the the machine ID of the nova-cloud-controller service unit 0, transfers 3 files over to the
nova-cloud-controller unit 0, and then runs the cloud-setup.sh in the nova-cloud-controller unit 0. We will take a look
at the cloud-setup.sh following glance.sh.

4.1.2 glance.sh

. ~/admin-openrc

First, this script sources the admin-openrc file.

wget -P /tmp/images http://download.cirros-cloud.net/0.3.3/cirros-0.3.3-x86_64-disk.img
wget -P /tmp/images http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

Download two images, Cirros and Ubuntu Trusty cloud image to /tmp/images folder.

glance image-create --name "cirros-0.3.3-x86_64" --file /tmp/images/cirros-0.3.3-x86_64-disk.img --disk-format qcow2 --container-format bare --progress
glance image-create --name "ubuntu-trusty-daily" --file /tmp/images/trusty-server-cloudimg-amd64-disk1.img --disk-format qcow2 --container-format bare --progress
rm -rf /tmp/images

Use the glance python client to upload those two images, and finally remove those images from the local file system.

18 Chapter 4. Post Installation Configuration

JOID User Guide, Release draft (1098848)

If you wish to use different images, please change the image download links and filenames here accordingly.‘

NOTE: The image downloading and uploading might take too long and time out. In this case, use juju ssh glance/0 to
log in to the glance unit 0 and run the script again, or manually run the glance commands.

4.1.3 cloud-setup.sh

. ~/admin-openrc

First, source the the admin-openrc file.

adjust tiny image
nova flavor-delete m1.tiny
nova flavor-create m1.tiny 1 512 8 1

Adjust the tiny image profile as the default tiny instance is too small for Ubuntu.

configure security groups
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol icmp --remote-ip-prefix 0.0.0.0/0 default
neutron security-group-rule-create --direction ingress --ethertype IPv4 --protocol tcp --port-range-min 22 --port-range-max 22 --remote-ip-prefix 0.0.0.0/0 default

Open up the ICMP and SSH access in the default security group.

import key pair
keystone tenant-create --name demo --description "Demo Tenant"
keystone user-create --name demo --tenant demo --pass demo --email demo@demo.demo

nova keypair-add --pub-key id_rsa.pub ubuntu-keypair

Create a project called ‘demo’ and create a user called ‘demo’ in this project. Import the key pair.

configure external network
neutron net-create ext-net --router:external --provider:physical_network external --provider:network_type flat --shared
neutron subnet-create ext-net --name ext-subnet --allocation-pool start=10.5.8.5,end=10.5.8.254 --disable-dhcp --gateway 10.5.8.1 10.5.8.0/24

This section configures an external network ‘ext-net’ with a subnet called ‘ext-subnet’. In this subnet, the IP pool starts
at 10.5.8.5 and ends at 10.5.8.254. DHCP is disabled. The gateway is at 10.5.8.1, and the subnet mask is 10.5.8.0/24.
These are the public IPs that will be requested and associated to the instance. Please change the network configuration
according to your environment.

create vm network
neutron net-create demo-net
neutron subnet-create --name demo-subnet --gateway 10.20.5.1 demo-net 10.20.5.0/24

This section creates a private network for the instances. Please change accordingly.

neutron router-create demo-router

neutron router-interface-add demo-router demo-subnet

neutron router-gateway-set demo-router ext-net

This section creates a router and connects this router to the two networks we just created.

create pool of floating ips
i=0
while [$i -ne 10]; do

neutron floatingip-create ext-net
i=$((i + 1))

done

4.1. Configuring OpenStack 19

JOID User Guide, Release draft (1098848)

Finally, the script will request 10 floating IPs.

20 Chapter 4. Post Installation Configuration

CHAPTER

FIVE

APPENDIX A: SINGLE NODE DEPLOYMENT

By default, running the script ./02-maasdeploy.sh will automatically create the KVM VMs on a single machine and
configure everything for you.

*)
virtinstall=1
./cleanvm.sh
cp maas/default/deployment.yaml ./deployment.yaml
;;

Please change ~/joid/ci/maas/default/deployment.yaml accordingly. The MAAS-deployer will do the following: 1.
Create 2 VMs (KVM). 2. Install MAAS in one of the VMs. 3. Configure MAAS to enlist and commission a VM for
Juju bootstrap node.

Later, the 02-massdeploy.sh script will create two additional VMs and register them into the MAAS Server:

if ["$virtinstall" -eq 1]; then
create two more VMs to do the deployment.
sudo virt-install --connect qemu:///system --name node1-control --ram 8192 --vcpus 4 --disk size=120,format=qcow2,bus=virtio,io=native,pool=default --network bridge=virbr0,model=virtio --network bridge=virbr0,model=virtio --boot network,hd,menu=off --noautoconsole --vnc --print-xml | tee node1-control
sudo virt-install --connect qemu:///system --name node2-compute --ram 8192 --vcpus 4 --disk size=120,format=qcow2,bus=virtio,io=native,pool=default --network bridge=virbr0,model=virtio --network bridge=virbr0,model=virtio --boot network,hd,menu=off --noautoconsole --vnc --print-xml | tee node2-compute

node1controlmac=`grep "mac address" node1-control | head -1 | cut -d "'" -f 2`
node2computemac=`grep "mac address" node2-compute | head -1 | cut -d "'" -f 2`

sudo virsh -c qemu:///system define --file node1-control
sudo virsh -c qemu:///system define --file node2-compute

maas maas tags new name='control'
maas maas tags new name='compute'

controlnodeid=`maas maas nodes new autodetect_nodegroup='yes' name='node1-control' tags='control' hostname='node1-control' power_type='virsh' mac_addresses=$node1controlmac power_parameters_power_address='qemu+ssh://'$USER'@192.168.122.1/system' architecture='amd64/generic' power_parameters_power_id='node1-control' | grep system_id | cut -d '"' -f 4 `

maas maas tag update-nodes control add=$controlnodeid

computenodeid=`maas maas nodes new autodetect_nodegroup='yes' name='node2-compute' tags='compute' hostname='node2-compute' power_type='virsh' mac_addresses=$node2computemac power_parameters_power_address='qemu+ssh://'$USER'@192.168.122.1/system' architecture='amd64/generic' power_parameters_power_id='node2-compute' | grep system_id | cut -d '"' -f 4 `

maas maas tag update-nodes compute add=$computenodeid

fi

21

JOID User Guide, Release draft (1098848)

22 Chapter 5. Appendix A: Single Node Deployment

CHAPTER

SIX

APPENDIX B: AUTOMATIC DEVICE DISCOVERY

If your bare metal servers support IPMI, they can be discovered and enlisted automatically by the MAAS server. You
need to configure bare metal servers to PXE boot on the network interface where they can reach the MAAS server.
With nodes set to boot from a PXE image, they will start, look for a DHCP server, receive the PXE boot details, boot
the image, contact the MAAS server and shut down.

During this process, the MAAS server will be passed information about the node, including the architecture, MAC
address and other details which will be stored in the database of nodes. You can accept and commission the nodes via
the web interface. When the nodes have been accepted the selected series of Ubuntu will be installed.

23

JOID User Guide, Release draft (1098848)

24 Chapter 6. Appendix B: Automatic Device Discovery

CHAPTER

SEVEN

APPENDIX C: MACHINE CONSTRAINTS

Juju and MAAS together allow you to assign different roles to servers, so that hardware and software can
be configured according to their roles. We have briefly mentioned and used this feature in our exam-
ple. Please visit Juju Machine Constraints https://jujucharms.com/docs/stable/charms-constraints and MAAS tags
https://maas.ubuntu.com/docs/tags.html for more information.

25

https://jujucharms.com/docs/stable/charms-constraints
https://maas.ubuntu.com/docs/tags.html

JOID User Guide, Release draft (1098848)

26 Chapter 7. Appendix C: Machine Constraints

CHAPTER

EIGHT

APPENDIX D: OFFLINE DEPLOYMENT

When you have limited access policy in your environment, for example, when only the Jump Host has Internet access,
but not the rest of the servers, we provide tools in JOID to support the offline installation.

The following package set is provided to those wishing to experiment with a ‘disconnected from the internet’ setup
when deploying JOID utilizing MAAS. These instructions provide basic guidance as to how to accomplish the task,
but it should be noted that due to the current reliance of MAAS and DNS, that behavior and success of deployment
may vary depending on infrastructure setup. An official guided setup is in the roadmap for the next release:

1. Get the packages from here: https://launchpad.net/~thomnico/+archive/ubuntu/ubuntu-cloud-mirrors

NOTE: The mirror is quite large 700GB in size, and does not mirror SDN repo/ppa.

2. Additionally to make juju use a private repository of charms instead of using an external loca-
tion are provided via the following link and configuring environments.yaml to use cloudimg-base-url:
https://github.com/juju/docs/issues/757

27

https://launchpad.net/~thomnico/+archive/ubuntu/ubuntu-cloud-mirrors
https://github.com/juju/docs/issues/757

	Introduction
	Orientation
	JOID in brief
	Typical JOID Setup

	Installation
	Configuring the Jump Host
	Setting Up Your Environment for JOID
	Starting MAAS-deployer
	Troubleshooting MAAS deployer
	Deploying OPNFV
	OPNFV Juju Charm Bundles
	Testing Your Deployment
	Troubleshooting

	Post Installation Configuration
	Configuring OpenStack

	Appendix A: Single Node Deployment
	Appendix B: Automatic Device Discovery
	Appendix C: Machine Constraints
	Appendix D: Offline Deployment

