OPNFV Build instructions for - Fuel deployment
tool - OPNFV Arno SR1 release

Table of Contents

Abstract
License
Version history
Introduction
Requirements
Minimum Hardware Requirements
Minimum Software Requirements
Preparations
Setting up the Docker build container
Setting up OPNFV Gerrit in order to being able to clone the code
Clone the OPNFV code git repository
Building
Configure your build environment
Low level build method using make
Abstracted build method using build.sh
Artifacts

A A W W W W W DN DNMNDNMNDNDMDDNMNMDNDDNDNDP P P

References

Abstract

This document describes how to build the Fuel deployment tool for the Arno SR1 release of OPNFV, the
build system, dependencies and required system resources.

License

Arno SR1 release of OPNFV when using Fuel as a deployment tool DOCs (c) by Jonas Bjurel (Ericsson
AB)

Arno SR1 release of OPNFV when using Fuel as a deployment tool DOCs (c) are licensed under a
Creative Commons Attribution 4.0 International License. You should have received a copy of the license
along with this. If not, see <http://creativecommons.org/licenses/by/4.0/>.

Version history

Date Ver. Author Comment

2015-06-03 1.0.0 Jonas Bjurel (Ericsson | Instructions for the Arno
AB) release

2015-09-24 1.1.0 Jonas Bjurel (Ericsson | Instructions for the Arno
AB) SR1 release

http://creativecommons.org/licenses/by/4.0/

Introduction

This document describes the build system used to build the Fuel deployment tool for the Arno SR1
release of OPNFV, required dependencies and minimum requirements on the host to be used for the
buildsystem.

The Fuel build system is desigened around Docker containers such that dependencies outside of the build
system can be kept to a minimum. It also shields the host from any potential dangerous operations
performed by the build system.

The audience of this document is assumed to have good knowledge in network and Unix/Linux
administration.

Requirements

Minimum Hardware Requirements

* An x86_64 host (Bare-metal or VM) with Ubuntu 14.04 LTS installed
» ~30 GB available disc
* 4 GB RAM

Minimum Software Requirements
The build host should run Ubuntu 14.04 operating system.

On the host, the following packages must be installed:

« docker - see https://docs.docker.com/installation/ubuntulinux/ for installation notes for Ubuntu 14.04.
Note: only use the Ubuntu stock distro of Docker (docker.io)

« git (simply available through sudo apt-get install git)
» make (simply available through sudo apt-get install make)

« curl (simply available through sudo apt-get install curl)

Preparations

Setting up the Docker build container
After having installed Docker, add yourself to the docker group:
<usermod -a -G docker [userid]>

Also make sure to define relevant DNS servers part of the global dns chain in in your
</etc/default/docker> configuration file, eg.

<DOCKER_OPTS=" --dns=8.8.8.8 --dns=8.8.8.4">
Then restart docker:

<sudo service docker.io restart>
Setting up OPNFV Gerrit in order to being able to clone the code

« Start setting up OPNFV gerrit by creating a SSH key (unless you don't already have one), create one
with ssh-keygen

»« Add your generated public key in OPNFV Gerrit <https://gerrit.opnfv.org/> (this requires a
linuxfoundation account, create one if you do not already have one)

https://docs.docker.com/installation/ubuntulinux/
https://gerrit.opnfv.org/

* Select "SSH Public Keys" to the left and then "Add Key" and paste your public key in.

Clone the OPNFV code git repository
Now it is time to clone the code repository:
<git clone ssh://'Linux foundation user'@gerrit.opnfv.org:29418/genesis>

Now you should have the OPNFV genesis repository with the Fuel directories stored locally on your build
host.

Check out the Arno SR1 release: <cd genesis> <git checkout arno.2015.2.0>

Building
There are two methods available for building Fuel:

* A low level method using Make

» An abstracted method using build.sh

Configure your build environment
** Configuring the build environment should not be performed if building standard Arno release **

Select the versions of the components you want to build by editing the fuel/build/config.mk file.

Low level build method using make
The low level method is based on Make:
From the <fuel/build> directory, invoke <make [target]>

Following targets exist:
* none/all - this will:

« If not already existing, initialize the docker build environment

« If not already done, build OpenDaylight from upstream (as defined by fuel-build config-spec)
« If not already done, build fuel from upstream (as defined by fuel-build/config-spec)

« Build the defined additions to fuel (as defined by the structure of this framework)

* Apply changes and patches to fuel (as defined by the structure of this framework)

* Reconstruct a fuel .iso image
* clean - this will remove all artifacts from earlier builds.
If the build is successful, you will find the generated ISO file in the <fuel/build/release> subdirectory!

Abstracted build method using build.sh

The abstracted build method uses the <fuel/ci/build.sh> script which allows you to:

* Create and use a build cache - significantly speeding up the buildtime if upstream repositories have
not changed.

* push/pull cache and artifacts to an arbitrary URI (http(s):, file:, ftp:)
For more info type <fuel/ci/build.sh -h>.

ssh://'Linux
mailto:user'@gerrit.opnfv.org

Artifacts

The artifacts produced are:

* <OPNFV_XXXX.iso> - Which represents the bootable Fuel image, XXXX is replaced with the build
identity provided to the build system

* <OPNFV_XXXX.iso.txt> - Which holds version metadata.

References

Authors: Jonas Bjurel (Ericsson)

Version: 1.1.0
Documentation tracking
Revision: c28f7b46cf0f098c6c9e981aa7867cf681c0dfcd
Build date: Sun Sep 27 19:33:21 UTC 2015

	Abstract
	License
	Version history
	Introduction
	Requirements
	Minimum Hardware Requirements
	Minimum Software Requirements
	Preparations
	Setting up the Docker build container
	Setting up OPNFV Gerrit in order to being able to clone the code
	Clone the OPNFV code git repository

	Building
	Configure your build environment
	Low level build method using make

	Abstracted build method using build.sh
	Artifacts
	References

