OPNFV functional test guide

Contents

Introduction 1
Prerequisites 2
Description of the test cases 3
vPing 3
OpenDaylight 4
Rally bench test suite 5
Tempest 5
Tooling installation 5
Configuration of config_functest.yaml 8
Manual testing 9
vPing 9
OpenDaylight 9
Rally bench suite 9
Tempest suite 10
Test results 10
vPing 10
OpenDaylight 10
Known issues 11

Rally bench suite 11
Known issues 12
Tempest suite 12
Known issues 12

Testing Automation 13
Connection of your platform 13
Integrating into CI Pipeline 13
References 13

Introduction

Testing is a key challenge of OPNFV. It shall be possible to run functional tests on any OPNFV solution.
The goal of this document consists in

« a description of functional tests for OPNFV
« a description of the tools needed to perform these tests

« the procedure to configure the tools and the scenarios associated with these tests

Functional tests shall be automated (as much as possible) and collected results shall be used to improve
the robustness and the reliability of the overall system.

Function tests may cover any domain that could lead to improve the OPNFV solution and define "Telco
Cloud" KPI.

The last section also describes how to automate these tests within the OPNFV continuous integration
project.

ETSI NFV defined 9 use cases (ref ETSI):

* VNF as a Service

* NFV as a service

* VNF Forwarding graphs

* Virtual Network Platform as a Service
* Virtualisation of Mobile Core and IMS
* Virtualisation of Mobile station

* Fixed Access NFV

* Virtualization of CDNs (vCDN)

« Virtualization of the Home environment
Most of the use cases are also discussed in upstream projects (e.g. Openstack Telco Working Group)
For release 1 (Arno), 4 test suites have been selected:

« Rally Bench test suite for Openstack

» Openstack Tempest test suite

» OpenDaylight test suite

* vPing
The 3 first suites are directly inherited from upstream projects. vPing, that is already present in Tempest
suite, has been developped to provided a basic "hello world" functional test example.

vIMS, VEPC, vPE, VHGW, vCDN, vWhatever use cases are not considered for first release. It does not
mean that such use cases cannot be tested on OPNFV Arno. It means that these testcases have not been
integrated in the Continuous Integration and no specific work (integration or developpment) have been
done for the first release. We may expect that new VNFs and new scenarios will be created and
integrated in the future releases. See functest guide for details.

Prerequisites

We assume that an OPNFV Arno solution has been installed.

The installation of the OPNFV solution is out of scope of this document but can be found [here]. In the rest
of the document the OPNFV solution would be considered as the System Under Test (SUT).

The installation and configuration of the tools needed to perform the tests will be described in the following
sections.

For release 1, the tools are automatically installed, but the tests are not fully automated due to the
requirement that sourcing of OpenStack credentials is required on at least one machine where tests are
launched. More details will be provided in the configuration section.

It is recommended to install the different tools on the jump host server as defined in the pharos project.
The high level architecture can be described as follow:

Cl MC/ Li ght s+out managenent Admi n Private Public Storage
PXE
+

http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV001v010101p%20-%20Use%20Cases.pdf
https://wiki.openstack.org/wiki/TelcoWorkingGroup
https://build.opnfv.org/ci/view/functest/
https://wiki.opnfv.org/_media/opnfv-_functest.pdf
https://wiki.opnfv.org/documentation/Arno
https://wiki.opnfv.org/pharos

'
'
'
'
'
< '
N '
~— '
—_t+t -t —) ——— et — ——+
2 ' ' ' '
o ' ' ' '
| ' ' ' '
[a N ' ' ' '
< —_ ' ' ' '
N]] ' '
= ' ' ' '
> ' ' ' '
' ' ' '
X+ -+ e+ — o ——+
o ' ' ' ' ' '
| ' ' ' ' ' '
[a N ' ' ' ' ' '
— ' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
T e e — TP o | e e e e e e | > | e e e e e e e e e e e P > 1 = [= [—— ar
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ']]]]
' ' ' ' ¥ P —=— & = 9P — a° ar
' ' '] '
' ' ' ' P = ar 1
' ' ' '] 1 O '
' ' ' ' P = ar ' '
]]]]] < '
T s TP s IF e e e e = = AP —— O — 7 + — + ' ' - O '
' '] [P I ' o C '
' ' P = ar ' ' ' Y— = '
' ' ' r N ' ' > w '
' + -+ ' ' ' ' ' ' n O >]
' ' ' ' o ' ' ' D — O '
' — ' ()] ' ' ' ' ' ' T Q C '
' () ' = 1 ' ' ' ' ' ' o v Q '
' > (Y +— (o] 0 . m ' ' ' ' ' ' C T O '
] — [o o= o O ' ' ' ' ' ' '
' O 1 — o] o m- I ' ' ' ' ']]
' %2} ' Dnm o o O ']]]] T = ——— I — 9r
' m-] nd > o .« C ' ' ' ']]
' ' | -]]]] T = ——— I — 9r
] >] L] ' ']]
[l Lo S [l [l [l T e e e = AP = ar
' ' ']]
]] 1 T = ——— I — 9r
T — P e e e e e e e e e s e e T | |
' T = P —o——me———— Ir
' '
' '
' '
]]
S S g R

Boot VML

Description of the test cases

The goal of this test can be described as follow:

VPi ng testcase

vPing

| Get IP VML

Tester | System
Under
Test
VM2 pi ngs VML

I

I

| Check console | og
| I f ping:

| exit K

| el se (timeout)
| exit KO

I

I

This example, using OpenStack Python clients can be considered as an "Hello World" example and may
be modified for future use.

OpenDaylight

The ODL suite consists in a set of basic tests inherited from ODL project. The suite tests the creation and
deletion of network, subnet, port though OpenDaylight and Neutron.

The list of tests can be described as follow:

* Restconf.basic: Get the controller modules via Restconf

* Neutron.Networks

» Check OpenStack Networks :: Checking OpenStack Neutron for known networks
» Check OpenDaylight Networks :: Checking OpenDaylight Neutron API
« Create Network :: Create new network in OpenStack
» Check Network :: Check Network created in OpenDaylight
» Neutron.Networks :: Checking Network created in OpenStack are pushed
» Neutron.Subnets
» Check OpenbtadigButuietets ClEvkoking iepsSiBek Mgutheutoorkddn Subnets
 Create New subnet :: Create new subnet in OpenStack
» Check New subnet :: Check new subnet created in OpenDaylight
« Neutron.Subnets :: Checking Subnets created in OpenStack are pushed
* Neutron.Ports
» Check OpenStack ports :: Checking OpenStack Neutron for known ports
» Check OpenDaylight ports :: Checking OpenDaylight Neutron API
« Create New Port :; Create new port in OpenStack
» Check New Port :: Check new subnet created in OpenDaylight
 Neutron.Ports :: Checking Port created in OpenStack are pushed

* Delete Ports

« Delete previously created subnet in OpenStack
» Check subnet deleted in OpenDaylight
» Check subnet deleted in OpenStack

* Delete network
« Delete previously created network in OpenStack
» Check network deleted in OpenDaylight
» Check network deleted in OpenStack

Rally bench test suite

Rally bench test suite consist in a suite of light performance tests on some of the OpenStack components.

The goal of this test suite is to test the different modules of OpenStack and get significant figures that
could help us to define telco Cloud KPI.

The OPNFV scenarios are based on the collection of the existing Rally scenarios:

« authenticate
« cinder

* nova

* requests

« glance

* keystone

* neutron

* quotas
This test suite provides performance information on VIM (OpenStack) part.

No SLA were defined for release 1, we just consider whether the tests are passed or failed.
In the future SLA shall be defined (e.g. accepting booting time for a given image with a given flavour).

Through its integration in Continuous Integration, the evolution of the performance of these tests shall also
be considered.

Tempest

Tempest is the OpenStack Integration Test Suite. We use Rally to run Tempest suite.

The Tempest.conf configuration file is automatically generated by Rally then the Tempest suite is run,
each test duration is measured.

We considered the smoke test suite for Arno.

The goal of this test is to to check the basic OpenStack functionality on a fresh installation.

Tooling installation

2 external tools are needed for the functional tests on Arno:

* Rally

* Robot
Rally is used for benchmarking and running Tempest. Robot is used for running OpenDaylight test suites.

https://wiki.openstack.org/wiki/Rally
http://docs.openstack.org/developer/tempest/overview.html

A script (config_test.py) has been created to simplify as much as possible the installation of the different
suites of tests.

This script config_test.py is hosted in OPNFV repository and uses the configuration file
config_functest.yamil:

usage: config_functest.py [-h] [-d] [-f] path action
posi tional argunents:

repo_path path to the repository

action Possi bl e actions are: 'start|check]|clean'

optional argunents:

-h, --help show this hel p nessage and exit

-d, --debug Debug node

-f, --force wused to avoid pronpting the user for confirnation when cleaning functest environnent.
Actions

« start: will prepare the functional testing environment

« check: will check the configuration (scenarios available, environment variables properly set,
networks,..)

« clean: will clean the functional test environement if existing
This script will:

« Install Rally environment

* Install Robot environment

« Install Tempest

* Retrieve test scenarios

« Create temporary neutron private network (if needed)

« Create Glance images

When integrated in Cl, the only prerequisite consists in retrieving the OpenStack credentials (rc file). This
file shall be saved on the jumphost. It must be sourced by the user (who shall have sudo rights) executing
the tests.

For the Continuous Integration we store this file under $HOME/functest/opnfv-openrc.sh on the jumphost
server so Cl can automatically execute the suite of tests

The procedure to set up functional testing environment can be described as follow:
|og on the Jumphost server Be sure you are no root then execute:

[user @unphost]$ mkdir <Your_functest_directory>

[user @unphost]$ cd <Your _functest_directory>

[user @unphost]$ git clone https://git.opnfv.org/functest
[user @ unphost] $ cd testcases/

Modify and adapt needed parameters in the config_functest.yaml. Follow the instructions below. Retrieve OpenStack source file (conf
your OpenRC file to let Rally access to your OpenStack, you can either export it from Horizon or build it manually (OpenStack credel
are required):

[user @unphost] $ source Your_OpenRC file
[user @unphost] $ python <functest_repo_directory>/config_functest.py -d <Your_functest_directory> start

At the end of the git clone, the tree of <functest_repo_directory> will have the following structure:

https://git.opnfv.org/cgit/functest/tree/testcases/config_functest.py
https://git.opnfv.org/cgit/functest/tree/testcases/config_functest.yaml
http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html

mmm docs

] mmm functest.rst

] mmm | mages

| mmm | ms_overvi ew. png

mmm | NFO

mmm || CENSE

mmm testcases
mmm config functest. py
mmm config_functest.yanl
mmm Controllers
[] mmm ODL

] mmm Cl
[[mEm create venv.sh
[[] mEE customtests
[[] [] EEE neutron
|] mmm jntegration
]]] mmm distributions
| | n mmm features
]]] mmm feature-selector
|]] mmm packagi ng
]]] mmm pom xm
[[] [] mmm test
]]] EEE VM
]] mmm | 0ogs
|] EEE requirenents.pip
[[mmm start _tests.sh
[]] mmm test |ist.txt
| mmm ODL.nd
mmm functest _utils.py
mmm VIM
] mmm OpenStack
] mmm Cl
]] mmm |ibraries
|]] mmm run_rally. py
]] mEm suites
]] mmm opnfv-authenticate.json
]] mmm opnfv-cinder.json
|] mmm opnfv-glance.json
]] mmm opnfv-heat.json
|] mmm opnfv-keystone.json
]] mmm opnfv-neutron.json
]] mmm opnfv-nova.json
|] mmm opnfv-quotas.json
|] mmm opnfv-requests.json
|] mmm opnfv-snoke-green.json
]] mmm opnfv-snoke.json
|] mmm opnfv-tenpest.json
]] mmm opnfv-vmjson
| mmm (penStack. md
mmm VPing
mmm Cl

mmm |[ibraries
mmm VPi ng. py

NOTE: the Rally environment will be installed under ~/.rally/ the default Tempest configuration
(automatically generated by Rally based on OpenStack credentials) can be found under

.rally/tempest/for-deployment-<deployment_id>/tempest.conf

Configuration of config_functest.yaml

Do not change the directories structure:

« image_name: name of the image that will be created in Glance
« image_url: URL of the image to be downloaded
« image_disk_format: glance image disk format (raw, gcow2, ...)

 neutron_private_net_name: name of an OpenStack private network. If not existing, it will be
created

* neutron_private_subnet_name: private subnet network to be created if not existing

* neutron_private_subnet_cidr: range of the private subnet.

* neutron_private_subnet_start; start IP

* neutron_private_subnet_end: end IP

* neutron_router_name: name of the router between the private and the public networks
* ping_timeout: time out of the vPing test case

« vm_flavor: name of the flavor used to create the VMs

e vm_name_1: name of the first VM

e vm_name_2: name of the second VM

« ip_1: IP of the first VM (matching the private subnet cidr)

*ip_2: IP of the second VM

Please note that you need to install this environment only once. As long as the credentials of the System
Under Test do not change, there is no reason to modify the testing environment.

If you need more details on Rally installation, see Rally installation procedure.

You can check if the configuration of rally is fine by typing 'rally deployment check’, you shall see the list of
available services as follow:

rally depl oynment check
keyst one endpoints are valid and follow ng service are avail abl e:

fococcooooocos dooccccoocos foocccccoocos +
| Services | Type | Status |
oo TS SEEE SE SR S S +
cinder	vol ume	Available
cinderv2	volunev2	Available
glance	i mage	Available
keystone	identity	Available
neutron	network	Available
nova	conpute	Available
nova_ec2	conpute_ec2	Available
novav3	conputev3	Available
e e domeeeeaa +

o 05 CECCCCE0C00N00CN0NE000S0O0CEo000S a0 Mo 0 OO o OO0 CCNNCEONNNCNO0C000C00N00C0005000500 focconoocoooo +
| LD | Nanme | Size (B) |
ftooccoococoocccoocoooocoooccooocooossooooo g S e dbooscooccoooo +
| 0al5951f - 6388- 4d5d- 8531- 79e7205eb140 | cirros_2015 04 10 13 13 18 | 13167616 |
| b1504066- 045a- 4f 8f - 8919- 8c665ef 3f 400 | Ubuntu 14.04 64b | 253297152 |

foocccoccccccccooccooooccooooooooooosoo fooccocooocccoooccooooccoooooccccooccoooooooooo foccoooscooos +

https://rally.readthedocs.org/en/latest/tutorial/step_0_installation.html

rally show flavors

fooooccoscosccoscooccoocooocoooooooooos foocosccoosocccoocooooa fooooooo foosocccooo fooocccoooos foocosccooos +
| 1D | Nane | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
fooocccoscosccoscooccoocooocoooooooooos foocosccoosocccoocooooa fooooooo foosocccooo fooooccoooos foocooccooos +
110e6375- a058- 4af 6- b21le- b765187904d2	nil. medi um	2	1024		20	
7084d7e7-415a- 455d- a55a- 2ad286ddf 7¢9	nl.	arge	4	4096		80
a0345ba7-c667- 4f d2- 964f - 7e98f 8cda279	mi. x	arge	4	8192		200
accdc28c-5e20-4859- a5cc-61cf9009e56d	mil. smal		1	512		10
B L B T Fommmm - Fom e e T Fom e e +
rally show networks

Net wor ks for user “admin® in tenant “adnmin :

fooocccoccosscoscooscoocooocooooosoooos foocococcoooococooocccoocooocooos docooos +

| 1D | Label | CIDR |
fooooccoccosscoscooscoscooocoooooooooos doococccoooccoccoosccoosooocooos docooos +

| 4f 43c349- 956f - 4073- 9ef 6- 75bf 4e62a0e7 | functest-net | None |

| faefaabl-e503-41fc-875b-5e3112be49ed | provi der_network | None |

I 0O CCCO0OCOoCCO0NCEN00COoNCo00C000000000a0 o ocoooCo00Co00000Co00o0000000a foocooo +

Manual testing

vPing
You can run the vPing testcase by typing:

[user @ unphost] $ python <functest_repo_directory>/vPing/vPing. py -d <Your_functest_directory>

OpenDaylight
You can run ODL suite as follow:

[user @unphost]$ python <functest_repo_directory>testcases/ Controllers/CODL/Cl/start_tests.sh
ODL wiki page describes system preparation and running tests. See Integration Group CSIT.

Rally bench suite

You can run the script as follow:

[user @ unphost]$ python <functest_repo_directory>/testcases/VIM QpenStack/Cl/libraries/run_rally.py <functest_repo_directory> <npdul e_to_be_tested>
with <module_to_be tested> set to:

* authenticate
« cinder
* nova
* requests
* glance
* keystone
* neutron
e quotas
«all
The script will:
« run rally with the selected scenario

* generate the html result page into <result_folder>/<timestamp>/opnfv-[module name].html

https://wiki.opendaylight.org/view/CrossProject:Integration_Group:CSIT

* generate the json result page into <result_folder>/<timestamp>/opnfv-[module name].json

« generate OK or KO per test based on json result file

Tempest suite

It is possible to use Rally to perform Tempest tests (ref: tempest installation guide using Rally) You just
need to run:

rally verify start snoke

The different modes available are smoke, baremetal, compute, data_processing, identity, image, network,
object_storage, orchestration, telemetry, and volume. For Arno, it was decided to focus on smoke tests.

Test results

vPing
vPing result is displayed in the console:

Functest: run vPing

2015-06- 02 21:24:55,065 - vPing - INFO - dance i mage found 'functest-ing'

2015- 06- 02 21:24:55,066 - vPing - INFO - Creating neutron network functest-net...

2015- 06- 02 21:24:57,672 - vPing - INFO - Flavor found 'ni.smal |’

2015-06- 02 21:24:58,670 - vPing - INFO - Creating instance 'opnfv-vping-1'" with I P 192. 168. 120. 30. ..
2015-06-02 21:25:32,098 - vPing - INFO - Instance 'opnfv-vping-1' is ACTIVE

2015- 06- 02 21:25:32,540 - vPing - INFO - Creating instance 'opnfv-vping-2' with | P 192.168. 120. 40. ..
2015-06- 02 21:25:38,614 - vPing - INFO - Instance 'opnfv-vping-2' is ACTIVE.

2015-06-02 21:25:38,614 - vPing - INFO - Waiting for ping...

2015- 06- 02 21:26:42,385 - vPing - INFO - vPing detected!

2015-06- 02 21:26:42,385 - vPing - INFO - Ceaning up...

2015- 06- 02 21:26:54,127 - vPing - INFO - Deleting network 'functest-net'...

2015- 06-02 21:26:55,349 - vRPing - INFO - vPing K

OpenDaylight
The results of ODL tests can be seen in the console:

Basi c. 010 Restconf OK :: Test suite to verify Restconf is K

Get Controller Mdules :: Get the controller nodul es via Restconf | PASS |
Basi c. 010 Restconf OK :: Test suite to verify Restconf is K | PASS |
1 critical test, 1 passed, O failed

1 test total, 1 passed, O failed

Basi ¢ | PASS |
1 critical test, 1 passed, O failed
1 test total, 1 passed, O failed

Qut put: /hone/jenkins-ci/workspace/functest-opnfv-junp-2/output.xm
Log: / hone/ j enki ns-ci / wor kspace/ f unct est - opnfv-j unp-2/1 og. ht m
Report: /hone/jenki ns-ci/workspace/ functest-opnfv-junp-2/report. htm

https://www.mirantis.com/blog/rally-openstack-tempest-testing-made-simpler/

Neutron. Del ete Networks :: Checking Network deleted in OpenStack a... | FAIL |
2 critical tests, 1 passed, 1 failed
2 tests total, 1 passed, 1 failed

Neutron :: Test suite for Neutron Plugin | FAIL |
18 critical tests, 15 passed, 3 failed
18 tests total, 15 passed, 3 failed

Qut put: /hone/jenkins-ci/workspace/functest-opnfv-junp-2/output.xm
Log: / hone/ j enki ns-ci / wor kspace/ f unct est - opnf v-j unp- 2/ 1 og. ht m
Report: /hone/jenkins-ci/workspace/functest-opnfv-junp-2/report.htm

3 result files are generated:

* output.xml
* log.html

* report.html
ODL result page

(BT

Known issues

Tests are expected to fail now:

» Check port deleted in OpenDaylight
» Check subnet deleted in OpenDaylight

» Check Network deleted in OpenDaylight

These failures to delete objects in OpenDaylight (when removed via OpenStack Neutron) are due to the
following bug: https://bugs.opendaylight.org/show_bug.cgi?id=3052.

More details on functest wiki (ODL section)

Rally bench suite

Results are available in the result folder through a html page and a json file.

It generates a result page per module and can be described as follow.

Benchmark overview

‘‘‘‘‘‘‘
durstion ¢) Fullduration (§) Merstions Rumner Erors Success (SLA)

> Glanceimages

https://bugs.opendaylight.org/show_bug.cgi?id=3052
https://wiki.opnfv.org/r1_odl_suite

Known issues

» some tests of Cinder suite may be failed due to time-out (timer could probably be extended in the

configuration file)

» some test of Nova & Neutron suite may fail due to network issues (previously created network not
properly cleaned and/or quota exceeded because of created ressources that have not be properly

cleaned) or ODL bugs (see ODL bug lists).
More details on functest wiki (Rally section).

Tempest suite

You can get the results of tempest by typing:

rally verify list

You shall see the results as follow:

Total results of verification:

dmoocosssccccoocoomoooooooooosssSa99999 dmooocsssccccsomoomoooooooooosssSo99999 dmooossssss fesoooos dmoooosssss fecsocoooccooooooosss=sos5559s dmooossssss +
| wu D | Depl oyment UUI D | Set name | Tests | Failures | Created at | Status

e e B E B S B B +
| 0144c50f - ab03- 45f b- 9¢36- 242ad6440b46 | d9elbb21- 8e36-4d89- b137-0c852dbb308e | snoke | 87 | 32 | 2015-05-05 16:36:00.986003 | finished |
decccmcccccacccccccccccescc e aaaaan e deeccnenann [—_— [- B decccnenann +

If you run this test several times, you will see as many lines as test attempts.

You can get more details on the test by typing:

rally verify show --uuid <UU D of the test>
rally verify detailed --uuid <UU D of the test>

"show" will show you all the restults including the time needed to execute the test. "detailed” will display

additional elements (errors)

Example of test result display:

+
| name | time

o e e e e e e e e e e e e e eeeeeeaeeeo- Ao
| tenpest.api.network.test_routers. RoutersTest.test_create_show |ist_update_del ete_router[id-f64403e2- 8483- 4b34-8ccd- b09a87bcc68c, snoke] | 0.011466

| tenpest. api.network.test_security_groups. SecGroupl Pv6Test . test_create_|ist_update_show del ete_security_group[i d- bf d128e5- 3c92- 44b6- 9d66- 7f €29d22c802, snoke] | 1. 234566

| tenpest.api.network.test_security_groups. SecG oupl Pv6Test.test_create_show_ del ete_security_group_rul e[id-cfb99e0Oe- 7410- 4a3d- 8alc- 959a63ee77e9, snoke] | 1.060221

| tenpest.api.network.test_security_groups. SecG oupl Pv6Test.test_|ist_security_groups[id-e30abdl7-fef9-4739-8617-dc26da88e686, snoke] | 0.060797

| tenpest.api.network.test_security_groups. SecGroupTest.test_create_|ist_update_show del ete_security_group[id- bf d128e5- 3c92- 44b6- 9d66- 7f €29d22¢802, snoke] | 0.685149

| tenpest.api.network.test_security_groups. SecG oupTest.test_create_show del ete_security_group_rul e[id-cfb99ele- 7410- 4a3d- 8aOc- 959a63ee77e9, snoke] | 0.730561

| tenpest.api.network.test_security_groups. SecGroupTest.test_|ist_security_groups[id-e30abd17-f ef 9- 4739- 8617- dc26da88e686, snoke] | 0.116862

| |

| |

tenpest . api . obj ect _storage. t est _account _quot as. Account Quot asTest 0.0

Known issues

Several tests are declared as failed. They can be divided in 3 main categories:

« Invalid credentials (10 errors)
» Multiple possible networks found, use a Network ID to be more specific.

* Network errors

. 2RRRQQQF

https://bugs.opendaylight.org/buglist.cgi?component=General&product=neutron&resolution=---
https://wiki.opnfv.org/r1_rally_bench

The "Invalid Credential" error is not an error. Adding "admin_domain_name=default" in the tempest.conf
file generated by Rally will lead to successful tests. A Rally patch has been proposed to Rally community.

The Multiple possible netwok error occurs several times and may have different origins. It indicates that
the test needs a network context to be run properly. A change in the automatically generated tempest.conf
file could allow to precise the network ID.

The network errors are various and dealing with all the aspects of networking: create/update/delete
network/subnet/port/router. Some may be due to (possible) bug in tempest when it tries to delete networks
which should not be there for the following tests. Some may be caused by the ODL bugs, several bugs
related to tempest are already reported in ODL bug lists.

The follow-up of these tests can be found on the functest wiki (Tempest section).

Testing Automation

For Arno, the Cl job performs the following actions:

« clean and prepare functest environment
* run vPing

* run ODL tests

« run Rally Bench

e run Tempest

« clean functest environment
Connection of your platform

If you want to add your platform to the community automation, please follow the Octopus procedure.

Integrating into Cl Pipeline

Contact Octopus Team (#opnfv-octopus) and see pipeline document for more details.

References

OPNFV main site: opnfvmain.
OPNFV functional test page: opnfvfunctest.
IRC support chan: #opnfv-testperf

https://review.openstack.org/#/c/187481/
https://github.com/openstack/rally/blob/master/rally/verification/tempest/config.py
https://bugs.opendaylight.org/buglist.cgi?component=General&product=neutron&resolution=---
https://wiki.opnfv.org/r1_tempest
https://wiki.opnfv.org/octopus/jenkins_slave_connection/
https://wiki.opnfv.org/octopus/pipelines
http://www.opnfv.org
https://wiki.opnfv.org/opnfv_functional_testing

	Introduction
	Prerequisites
	Description of the test cases
	vPing
	OpenDaylight
	Rally bench test suite
	Tempest

	Tooling installation
	Configuration of config_functest.yaml

	Manual testing
	vPing
	OpenDaylight
	Rally bench suite
	Tempest suite

	Test results
	vPing
	OpenDaylight
	Known issues

	Rally bench suite
	Known issues

	Tempest suite
	Known issues

	Testing Automation
	Connection of your platform
	Integrating into CI Pipeline

	References

