
Yardstick Overview
Release draft (e7e3490)

OPNFV

January 08, 2016

CONTENTS

1 Introduction 1
1.1 Contact Yardstick . 1

2 Methodology 3
2.1 Abstract . 3
2.2 ETSI-NFV . 3
2.3 Metrics . 3

3 Yardstick Test Cases 7
3.1 Abstract . 7
3.2 Generic NFVI Test Case Descriptions . 8
3.3 OPNFV Feature Test Cases . 16
3.4 Templates . 16

4 Yardstick Glossary 19

Index 21

i

ii

CHAPTER

ONE

INTRODUCTION

Welcome to Yardstick’s documentation !

Yardstick is an OPNFV Project.

The project’s goal is to verify infrastructure compliance, from the perspective of a VNF.

The Project’s scope is the development of a test framework, Yardstick, test cases and test stimuli to enable NFVI
verification. The Project also includes a sample VNF, the VTC and its experimental framework, ApexLake !

The chapter Methodology describes the methodology implemented by the Yardstick Project for NFVI verification. The
chapter Yardstick Test Cases includes a list of available Yardstick test cases.

Yardstick is used for verifying the OPNFV infrastructure and some of the OPNFV features, listed in Yardstick Test
Cases.

The Yardstick framework is deployed in several OPNFV community labs. It is installer, infrastructure and application
independent.

See also:

Pharos for information on OPNFV community labs.

1.1 Contact Yardstick

Feedback? Contact us

1

https://wiki.opnfv.org/yardstick
https://wiki.opnfv.org/pharos
mailto:opnfv-users@lists.opnfv.org

Yardstick Overview, Release draft (e7e3490)

2 Chapter 1. Introduction

CHAPTER

TWO

METHODOLOGY

2.1 Abstract

This chapter describes the methodology implemented by the Yardstick project for verifying the NFV Infrastructure
from the perspective of a VNF.

2.2 ETSI-NFV

The document ETSI GS NFV-TST001, “Pre-deployment Testing; Report on Validation of NFV Environments and
Services”, recommends methods for pre-deployment testing of the functional components of an NFV environment.

The Yardstick project implements the methodology described in chapter 6, “Pre- deployment validation of NFV in-
frastructure”.

The methodology consists in decomposing the typical VNF work-load performance metrics into a number of charac-
teristics/performance vectors, which each can be represented by distinct test-cases.

The methodology includes five steps:

• Step1: Define Infrastruture - the HW, SW and corresponding configuration target for validation; the OP-
NFV infrastructure, in OPNFV community labs.

• Step2: Identify VNF type - the application for which the infrastructure is to be validated, and its require-
ments on the underlying infrastructure.

• Step3: Select test cases - depending on the workload that represents the application for which the infras-
truture is to be validated, the relevant test cases amongst the list of available Yardstick test cases.

• Step4: Execute tests - define the duration and number of iterations for the selected test cases, tests runs
are automated via OPNFV Jenkins Jobs.

• Step5: Collect results - using the common API for result collection.

2.3 Metrics

The metrics, as defined by ETSI GS NFV-TST001, are shown in Table1, Table2 and Table3.

In OPNFV Brahmaputra release, generic test cases covering aspects of the listed metrics are available; further OPNFV
releases will provide extended testing of these metrics. The view of available Yardstick test cases cross ETSI defini-
tions in Table1, Table2 and Table3 is shown in Table4. It shall be noticed that the Yardstick test cases are examples,
the test duration and number of iterations are configurable, as are the System Under Test (SUT) and the attributes (or,
in Yardstick nomemclature, the scenario options). Table 1 - Performance/Speed Metrics

3

https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-deployment_Validation/

Yardstick Overview, Release draft (e7e3490)

Category Performance/Speed
Compute

• Latency for random memory access
• Latency for cache read/write operations
• Processing speed (instructions per second)
• Throughput for random memory access (bytes per

second)

Network
• Throughput per NFVI node (frames/byte per sec-

ond)
• Throughput provided to a VM (frames/byte per

second)
• Latency per traffic flow
• Latency between VMs
• Latency between NFVI nodes
• Packet delay variation (jitter) between VMs
• Packet delay variation (jitter) between NFVI

nodes

Storage
• Sequential read/write IOPS
• Random read/write IOPS
• Latency for storage read/write operations
• Throughput for storage read/write operations

Table 2 - Capacity/Scale Metrics

4 Chapter 2. Methodology

Yardstick Overview, Release draft (e7e3490)

Category Capacity/Scale
Compute

• Number of cores and threads- Available memory
size

• Cache size
• Processor utilization (max, average, standard de-

viation)
• Memory utilization (max, average, standard devi-

ation)
• Cache utilization (max, average, standard devia-

tion)

Network
• Number of connections
• Number of frames sent/received
• Maximum throughput between VMs (frames/byte

per second)
• Maximum throughput between NFVI nodes

(frames/byte per second)
• Network utilization (max, average, standard devi-

ation)
• Number of traffic flows

Storage
• Storage/Disk size
• Capacity allocation (block-based, object-based)
• Block size
• Maximum sequential read/write IOPS
• Maximum random read/write IOPS
• Disk utilization (max, average, standard devia-

tion)

Table 3 - Availability/Reliability Metrics

Category Availability/Reliability
Compute

• Processor availability (Error free processing time)
• Memory availability (Error free memory time)
• Processor mean-time-to-failure
• Memory mean-time-to-failure
• Number of processing faults per second

Network
• NIC availability (Error free connection time)
• Link availability (Error free transmission time)
• NIC mean-time-to-failure
• Network timeout duration due to link failure
• Frame loss rate

Storage
• Disk availability (Error free disk access time)
• Disk mean-time-to-failure
• Number of failed storage read/write operations

per second

Table 4 - Yardstick Generic Test Cases

2.3. Metrics 5

Yardstick Overview, Release draft (e7e3490)

Cate-
gory

Performance/Speed Capacity/Scale Availability/Reliability

Com-
pute

TC003 TC004 TC014
TC024

TC003 TC004 TC010
TC012

TC013 1 TC015 1

Net-
work

TC002 TC011 TC001 TC008 TC009 TC016 1 TC018 1

Storage TC005 TC005 TC017 1

Note: The description in this OPNFV document is intended as a reference for users to understand the scope of the
Yardstick Project and the deliverables of the Yardstick framework. For complete description of the methodology, refer
to the ETSI document.

1To be included in future deliveries.

6 Chapter 2. Methodology

CHAPTER

THREE

YARDSTICK TEST CASES

3.1 Abstract

This chapter lists available Yardstick test cases. Yardstick test cases are divided in two main categories:

• Generic NFVI Test Cases - Test Cases developed to realize the methodology

described in Methodology

• OPNFV Feature Test Cases - Test Cases developed to verify one or more

aspect of a feature delivered by an OPNFV Project.

7

Yardstick Overview, Release draft (e7e3490)

3.2 Generic NFVI Test Case Descriptions

3.2.1 Yardstick Test Case Description TC001

Network Performance
test case id OPNFV_YARDSTICK_TC001_NW PERF
metric Number of flows and throughput
test purpose To evaluate the IaaS network performance with regards

to flows and throughput, such as if and how different
amounts of flows matter for the throughput between
hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of
flows running through it. Also performance of other
equipment or entities can depend on the number of flows
or the packet sizes used. The purpose is also to be able
to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution un-
derstanding between different OPNFV versions and/or
configurations.

configuration file: opnfv_yardstick_tc001.yaml
Packet size: 60 bytes Number of ports: 10, 50, 100,
500 and 1000, where each runs for 20 seconds. The
whole sequence is run twice. The client and server are
distributed on different HW. For SLA max_ppm is set to
1000. The amount of configured ports map to between
110 up to 1001000 flows, respectively.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

references pktgen
ETSI-NFV-TST001

applicability Test can be configured with different packet sizes,
amount of flows and test duration. Default values ex-
ist.
SLA (optional): max_ppm: The number of packets per million

packets sent that are acceptable to loose, not re-
ceived.

pre-test conditions The test case image needs to be installed into Glance
with pktgen included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The hosts are installed, as server and client. pktgen is

invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

8 Chapter 3. Yardstick Test Cases

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (e7e3490)

3.2.2 Yardstick Test Case Description TC002

Network Latency
test case id OPNFV_YARDSTICK_TC002_NW LATENCY
metric RTT, Round Trip Time
test
purpose

To do a basic verification that network latency is within acceptable boundaries when packets travel
between hosts located on same or different compute blades. The purpose is also to be able to spot
trends. Test results, graphs and similar shall be stored for comparison reasons and product evolution
understanding between different OPNFV versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc002.yaml
Packet size 100 bytes. Total test duration 600 seconds. One ping each 10 seconds. SLA RTT is set
to maximum 10 ms.

test tool ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part
of the Yardstick Docker image. (For example also a Cirros image can be downloaded from
cirros-image, it includes ping)

references Ping man page
ETSI-NFV-TST001

applicabil-
ity

Test case can be configured with different packet sizes, burst sizes, ping intervals and test duration.
SLA is optional. The SLA in this test case serves as an example. Considerably lower RTT is
expected, and also normal to achieve in balanced L2 environments. However, to cover most
configurations, both bare metal and fully virtualized ones, this value should be possible to achieve
and acceptable for black box testing. Many real time applications start to suffer badly if the RTT
time is higher than this. Some may suffer bad also close to this RTT, while others may not suffer at
all. It is a compromise that may have to be tuned for different configuration purposes.

pre-test
conditions

The test case image needs to be installed into Glance with ping included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. Ping is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

3.2. Generic NFVI Test Case Descriptions 9

https://download.cirros-cloud.net

Yardstick Overview, Release draft (e7e3490)

3.2.3 Yardstick Test Case Description TC008

Packet Loss Extended Test
test case id OPNFV_YARDSTICK_TC008_NW PERF, Packet loss Extended Test
metric Number of flows, packet size and throughput
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of packet sizes and flows matter for the throughput between VMs on different
compute blades. Typically e.g. the performance of a vSwitch depends on the number of flows
running through it. Also performance of other equipment or entities can depend on the number of
flows or the packet sizes used. The purpose is also to be able to spot trends. Test results, graphs ans
similar shall be stored for comparison reasons and product evolution understanding between
different OPNFV versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc008.yaml
Packet size: 64, 128, 256, 512, 1024, 1280 and 1518 bytes.
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each packet_size/port_amount combination is run ten times, for 20
seconds each. Then the next packet_size/port_amount combination is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

10 Chapter 3. Yardstick Test Cases

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (e7e3490)

3.2.4 Yardstick Test Case Description TC009

Packet Loss
test case id OPNFV_YARDSTICK_TC009_NW PERF, Packet loss
metric Number of flows, packets lost and throughput
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between VMs on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc009.yaml
Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to
1001000 flows, respectively. Each port amount is run ten times, for 20 seconds each. Then the next
port_amount is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)

references pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

3.2. Generic NFVI Test Case Descriptions 11

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (e7e3490)

3.2.5 Yardstick Test Case Description TC010

Memory Latency
test case id OPNFV_YARDSTICK_TC010_Memory Latency
metric Latency in nanoseconds
test purpose Measure the memory read latency for varying memory

sizes and strides. Whole memory hierarchy is measured
including all levels of cache.

configuration File: opnfv_yardstick_tc010.yaml
• SLA (max_latency): 30 nanoseconds
• Stride - 128 bytes
• Stop size - 64 megabytes
• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.

test tool Lmbench
Lmbench is a suite of operating system microbench-
marks. This test uses lat_mem_rd tool from that suite.
Lmbench is not always part of a Linux distribution,
hence it needs to be installed in the test image

references man-pages
McVoy, Larry W.,and Carl Staelin. “lmbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference 1996.

applicability Test can be configured with different:
• strides;
• stop_size;
• iterations and intervals.

There are default values for each above-mentioned op-
tion.
SLA (optional) : max_latency: The maximum memory
latency that is accepted.

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. Lmbench’s lat_mem_rd

tool is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Test fails if the measured memory latency is above the
SLA value or if there is a test case execution problem.

12 Chapter 3. Yardstick Test Cases

http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

Yardstick Overview, Release draft (e7e3490)

3.2.6 Yardstick Test Case Description TC012

Memory Bandwidth
test case id OPNFV_YARDSTICK_TC012_Memory Bandwidth
metric Megabyte per second (MBps)
test purpose Measure the rate at which data can be read from and

written to the memory (this includes all levels of mem-
ory).

configuration File: opnfv_yardstick_tc012.yaml
• SLA (optional): 15000 (MBps) min_bw: The

minimum amount of memory bandwidth that is
accepted.

• Size: 10 240 kB - test allocates twice that size
(20 480kB) zeros it and then measures the time it
takes to copy from one side to another.

• Benchmark: rdwr - measures the time to read data
into memory and then write data to the same lo-
cation.

• Warmup: 0 - the number of iterations to perform
before taking actual measurements.

• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.

test tool Lmbench
Lmbench is a suite of operating system microbench-
marks. This test uses bw_mem tool from that suite. Lm-
bench is not always part of a Linux distribution, hence it
needs to be installed in the test image.

references man-pages
McVoy, Larry W., and Carl Staelin. “lmbench: Portable
Tools for Performance Analysis.” USENIX annual tech-
nical conference. 1996.

applicability Test can be configured with different:
• memory sizes;
• memory operations (such as rd, wr, rdwr, cp, frd,

fwr, fcp, bzero, bcopy);
• number of warmup iterations;
• iterations and intervals.

There are default values for each above-mentioned op-
tion.

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. Lmbench’s bw_mem tool

is invoked and logs are produced and stored.
Result: logs are stored.

test verdict Test fails if the measured memory bandwidth is below
the SLA value or if there is a test case execution prob-
lem.

3.2. Generic NFVI Test Case Descriptions 13

http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

Yardstick Overview, Release draft (e7e3490)

3.2.7 Yardstick Test Case Description TC037

Latency, CPU Load, Throughput, Packet Loss
test case id OPNFV_YARDSTICK_TC037_Latency,CPU Load,Throughput,Packet Loss
metric Number of flows, latency, throughput, CPU load, packet loss
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc037.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

14 Chapter 3. Yardstick Test Cases

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (e7e3490)

3.2.8 Yardstick Test Case Description TC038

Latency, CPU Load, Throughput, Packet Loss (Extended measurements)
test case id OPNFV_YARDSTICK_TC038_Latency,CPU Load,Throughput,Packet Loss
metric Number of flows, latency, throughput, CPU load, packet loss
test
purpose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it.
Also performance of other equipment or entities can depend on the number of flows or the packet
sizes used. The purpose is also to be able to spot trends. Test results, graphs ans similar shall be
stored for comparison reasons and product evolution understanding between different OPNFV
versions and/or configurations.

configura-
tion

file: opnfv_yardstick_tc038.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount
configured ports map from 2 up to 1001000 flows, respectively. Each port amount is run ten times,
for 20 seconds each. Then the next port_amount is run, and so on. During the test CPU load on both
client and server, and the network latency between the client and server are measured. The client
and server are distributed on different HW. For SLA max_ppm is set to 1000.

test tool pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image. As an example see the /yardstick/tools/ directory for how to generate a
Linux image with pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of
the Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the
Yardstick Glance image.

references Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

applicabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values
exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to
loose, not received.

pre-test
conditions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
sequence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

3.2. Generic NFVI Test Case Descriptions 15

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick Overview, Release draft (e7e3490)

3.3 OPNFV Feature Test Cases

3.4 Templates

3.4.1 Yardstick Test Case Description TCXXX

test case slogan e.g. Network Latency
test case id e.g. OPNFV_YARDSTICK_TC001_NW Latency
metric what will be measured, e.g. latency
test
purpose

describe what is the purpose of the test case

configura-
tion

what .yaml file to use, state SLA if applicable, state test duration, list and describe the scenario
options used in this TC and also list the options using default values.

test tool e.g. ping
references e.g. RFCxxx, ETSI-NFVyyy
applicabil-
ity

describe variations of the test case which can be performend, e.g. run the test for different packet
sizes

pre-test
conditions

describe configuration in the tool(s) used to perform the measurements (e.g. fio, pktgen),
POD-specific configuration required to enable running the test

test
sequence

description and expected result

step 1 use this to describe tests that require sveveral steps e.g collect logs.
Result: what happens in this step e.g. logs collected

step 2 remove interface
Result: interface down.

step N what is done in step N
Result: what happens

test verdict expected behavior, or SLA, pass/fail criteria

3.4.2 Task Template Syntax

Basic template syntax

A nice feature of the input task format used in Yardstick is that it supports the template syntax based on Jinja2. This
turns out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this
task in some way. For example, imagine your input task file (task.yaml) runs a set of Ping scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
-

type: Ping
options:
packetsize: 200

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60

16 Chapter 3. Yardstick Test Cases

Yardstick Overview, Release draft (e7e3490)

interval: 1

sla:
max_rtt: 10
action: monitor

context:
...

Let’s say you want to run the same set of scenarios with the same runner/ context/sla, but you want to try another
packetsize to compare the performance. The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
-

type: Ping
options:
packetsize: {{packetsize}}

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10
action: monitor

context:
...

and then pass the argument value for {{packetsize}} when starting a task with this configuration file. Yardstick
provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
--task-args'{"packetsize":"200"}'

2.Refer to a file that specifies the argument values (JSON/YAML):

yardstick task start samples/ping-template.yaml --task-args-file args.yaml

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be
set using the {% set ... %} clause (task.yaml). For example:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

3.4. Templates 17

Yardstick Overview, Release draft (e7e3490)

{% set packetsize = packetsize or "100" %}
scenarios:
-

type: Ping
options:
packetsize: {{packetsize}}
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

...

If you don’t pass the value for {{packetsize}} while starting a task, the default one will be used.

Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in func-
tions. As an example, let us make up a task file that will do a block storage performance test. The input task file
(fio-template.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

scenarios:
{% for bs in ['4k', '8k', '64k', '1024k'] %}

{% for rw in ['read', 'write', 'randwrite', 'randread', 'rw'] %}
-

type: Fio
options:
filename: /home/ec2-user/data.raw
bs: {{bs}}
rw: {{rw}}
ramp_time: 10

host: fio.demo
runner:
type: Duration
duration: 60
interval: 60

{% endfor %}
{% endfor %}
context

...

18 Chapter 3. Yardstick Test Cases

CHAPTER

FOUR

YARDSTICK GLOSSARY

NFVI Network Function Virtualization Infrastructure

VNF Virtual Network Function

VTC Virtual Traffic Classifier

19

Yardstick Overview, Release draft (e7e3490)

20 Chapter 4. Yardstick Glossary

INDEX

N
NFVI, 19

V
VNF, 19
VTC, 19

21

	Introduction
	Contact Yardstick

	Methodology
	Abstract
	ETSI-NFV
	Metrics

	Yardstick Test Cases
	Abstract
	Generic NFVI Test Case Descriptions
	OPNFV Feature Test Cases
	Templates

	Yardstick Glossary
	Index

