2. Integration tests

VSPERF includes a set of integration tests defined in conf/integration. These tests can be run by specifying –integration as a parameter to vsperf. Current tests in conf/integration include switch functionality and Overlay tests.

Tests in the conf/integration can be used to test scaling of different switch configurations by adding steps into the test case.

For the overlay tests VSPERF supports VXLAN, GRE and GENEVE tunneling protocols. Testing of these protocols is limited to unidirectional traffic and P2P (Physical to Physical scenarios).

NOTE: The configuration for overlay tests provided in this guide is for unidirectional traffic only.

2.1. Executing Integration Tests

To execute integration tests VSPERF is run with the integration parameter. To view the current test list simply execute the following command:

./vsperf --integration --list

The standard tests included are defined inside the conf/integration/01_testcases.conf file.

2.2. Test Steps

Execution of integration tests are done on a step by step work flow starting with step 0 as defined inside the test case. Each step of the test increments the step number by one which is indicated in the log.

(testcases.integration) - Step 1 - 'vswitch add_switch ['int_br1']' ... OK

Each step in the test case is validated. If a step does not pass validation the test will fail and terminate. The test will continue until a failure is detected or all steps pass. A csv report file is generated after a test completes with an OK or FAIL result.

2.3. Test Macros

Test profiles can include macros as part of the test step. Each step in the profile may return a value such as a port name. Recall macros use #STEP to indicate the recalled value inside the return structure. If the method the test step calls returns a value it can be later recalled, for example:

{
    "Name": "vswitch_add_del_vport",
    "Deployment": "clean",
    "Description": "vSwitch - add and delete virtual port",
    "TestSteps": [
            ['vswitch', 'add_switch', 'int_br0'],               # STEP 0
            ['vswitch', 'add_vport', 'int_br0'],                # STEP 1
            ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],  # STEP 2
            ['vswitch', 'del_switch', 'int_br0'],               # STEP 3
         ]
}

This test profile uses the vswitch add_vport method which returns a string value of the port added. This is later called by the del_port method using the name from step 1.

Also commonly used steps can be created as a separate profile.

STEP_VSWITCH_PVP_INIT = [
    ['vswitch', 'add_switch', 'int_br0'],           # STEP 0
    ['vswitch', 'add_phy_port', 'int_br0'],         # STEP 1
    ['vswitch', 'add_phy_port', 'int_br0'],         # STEP 2
    ['vswitch', 'add_vport', 'int_br0'],            # STEP 3
    ['vswitch', 'add_vport', 'int_br0'],            # STEP 4
]

This profile can then be used inside other testcases

{
    "Name": "vswitch_pvp",
    "Deployment": "clean",
    "Description": "vSwitch - configure switch and one vnf",
    "TestSteps": STEP_VSWITCH_PVP_INIT +
                 [
                    ['vnf', 'start'],
                    ['vnf', 'stop'],
                 ] +
                 STEP_VSWITCH_PVP_FINIT
}

2.4. HelloWorld and other basic Testcases

The following examples are for demonstration purposes. You can run them by copying and pasting into the conf/integration/01_testcases.conf file. A command-line instruction is shown at the end of each example.

2.4.1. HelloWorld

The first example is a HelloWorld testcase. It simply creates a bridge with 2 physical ports, then sets up a flow to drop incoming packets from the port that was instantiated at the STEP #1. There’s no interaction with the traffic generator. Then the flow, the 2 ports and the bridge are deleted. ‘add_phy_port’ method creates a ‘dpdk’ type interface that will manage the physical port. The string value returned is the port name that will be referred by ‘del_port’ later on.

{
    "Name": "HelloWorld",
    "Description": "My first testcase",
    "Deployment": "clean",
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],   # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'actions': ['drop'], 'idle_timeout': '0'}],
        ['vswitch', 'del_flow', 'int_br0'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
    ]

}

To run HelloWorld test:

./vsperf --conf-file user_settings.py --integration HelloWorld

2.4.2. Specify a Flow by the IP address

The next example shows how to explicitly set up a flow by specifying a destination IP address. All packets received from the port created at STEP #1 that have a destination IP address = 90.90.90.90 will be forwarded to the port created at the STEP #2.

{
    "Name": "p2p_rule_l3da",
    "Description": "Phy2Phy with rule on L3 Dest Addr",
    "Deployment": "clean",
    "biDirectional": "False",
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],   # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['trafficgen', 'send_traffic', {'traffic_type' : 'continuous'}],
        ['vswitch', 'dump_flows', 'int_br0'],   # STEP 5
        ['vswitch', 'del_flow', 'int_br0'],     # STEP 7 == del-flows
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
    ]
},

To run the test:

./vsperf --conf-file user_settings.py --integration p2p_rule_l3da

2.4.3. Multistream feature

The next testcase uses the multistream feature. The traffic generator will send packets with different UDP ports. That is accomplished by using “Stream Type” and “MultiStream” keywords. 4 different flows are set to forward all incoming packets.

{
    "Name": "multistream_l4",
    "Description": "Multistream on UDP ports",
    "Deployment": "clean",
    "Stream Type": "L4",
    "MultiStream": 4,
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],   # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
        # Setup Flows
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '2', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '3', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        # Send mono-dir traffic
        ['trafficgen', 'send_traffic', {'traffic_type' : 'continuous', \
            'bidir' : 'False'}],
        # Clean up
        ['vswitch', 'del_flow', 'int_br0'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
     ]
},

To run the test:

./vsperf --conf-file user_settings.py --integration multistream_l4

2.4.4. PVP with a VM Replacement

This example launches a 1st VM in a PVP topology, then the VM is replaced by another VM. When VNF setup parameter in ./conf/04_vnf.conf is “QemuDpdkVhostUser” ‘add_vport’ method creates a ‘dpdkvhostuser’ type port to connect a VM.

{
    "Name": "ex_replace_vm",
    "Description": "PVP with VM replacement",
    "Deployment": "clean",
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],       # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 2
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 3    vm1
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 4

        # Setup Flows
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[2][1]', \
            'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[3][1]', \
            'actions': ['output:#STEP[1][1]'], 'idle_timeout': '0'}],

        # Start VM 1
        ['vnf1', 'start'],
        # Now we want to replace VM 1 with another VM
        ['vnf1', 'stop'],

        ['vswitch', 'add_vport', 'int_br0'],        # STEP 11    vm2
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 12
        ['vswitch', 'del_flow', 'int_br0'],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'actions': ['output:#STEP[11][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[12][1]', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],

        # Start VM 2
        ['vnf2', 'start'],
        ['vnf2', 'stop'],
        ['vswitch', 'dump_flows', 'int_br0'],

        # Clean up
        ['vswitch', 'del_flow', 'int_br0'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'],    # vm1
        ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[11][0]'],   # vm2
        ['vswitch', 'del_port', 'int_br0', '#STEP[12][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
    ]
},

To run the test:

./vsperf --conf-file user_settings.py --integration ex_replace_vm

2.4.5. VM with a Linux bridge

In this example a command-line parameter allows to set up a Linux bridge into the guest VM. That’s one of the available ways to specify the guest application. Packets matching the flow will be forwarded to the VM.

{
    "Name": "ex_pvp_rule_l3da",
    "Description": "PVP with flow on L3 Dest Addr",
    "Deployment": "clean",
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],       # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 2
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 3    vm1
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 4
        # Setup Flows
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
            'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
        # Each pkt from the VM is forwarded to the 2nd dpdk port
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        # Start VMs
        ['vnf1', 'start'],
        ['trafficgen', 'send_traffic', {'traffic_type' : 'continuous', \
            'bidir' : 'False'}],
        ['vnf1', 'stop'],
        # Clean up
        ['vswitch', 'dump_flows', 'int_br0'],       # STEP 10
        ['vswitch', 'del_flow', 'int_br0'],         # STEP 11
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'],  # vm1 ports
        ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
    ]
},

To run the test:

./vsperf --conf-file user_settings.py --test-params
        "guest_loopback=linux_bridge" --integration ex_pvp_rule_l3da

2.4.6. Forward packets based on UDP port

This examples launches 2 VMs connected in parallel. Incoming packets will be forwarded to one specific VM depending on the destination UDP port.

{
    "Name": "ex_2pvp_rule_l4dp",
    "Description": "2 PVP with flows on L4 Dest Port",
    "Deployment": "clean",
    "Stream Type": "L4",    # loop UDP ports
    "MultiStream": 2,
    "TestSteps": [
        ['vswitch', 'add_switch', 'int_br0'],       # STEP 0
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 1
        ['vswitch', 'add_phy_port', 'int_br0'],     # STEP 2
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 3    vm1
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 4
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 5    vm2
        ['vswitch', 'add_vport', 'int_br0'],        # STEP 6
        # Setup Flows to reply ICMPv6 and similar packets, so to
        # avoid flooding internal port with their re-transmissions
        ['vswitch', 'add_flow', 'int_br0', \
            {'priority': '1', 'dl_src': '00:00:00:00:00:01', \
            'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', \
            {'priority': '1', 'dl_src': '00:00:00:00:00:02', \
            'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', \
            {'priority': '1', 'dl_src': '00:00:00:00:00:03', \
            'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', \
            {'priority': '1', 'dl_src': '00:00:00:00:00:04', \
            'actions': ['output:#STEP[6][1]'], 'idle_timeout': '0'}],
        # Forward UDP packets depending on dest port
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
            'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
            'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
            'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
        # Send VM output to phy port #2
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[6][1]', \
            'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
        # Start VMs
        ['vnf1', 'start'],                          # STEP 16
        ['vnf2', 'start'],                          # STEP 17
        ['trafficgen', 'send_traffic', {'traffic_type' : 'continuous', \
            'bidir' : 'False'}],
        ['vnf1', 'stop'],
        ['vnf2', 'stop'],
        ['vswitch', 'dump_flows', 'int_br0'],
        # Clean up
        ['vswitch', 'del_flow', 'int_br0'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'],  # vm1 ports
        ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
        ['vswitch', 'del_port', 'int_br0', '#STEP[5][0]'],  # vm2 ports
        ['vswitch', 'del_port', 'int_br0', '#STEP[6][0]'],
        ['vswitch', 'del_switch', 'int_br0'],
    ]
},

To run the test:

./vsperf --conf-file user_settings.py --integration ex_2pvp_rule_l4dp

2.5. Executing Tunnel encapsulation tests

The VXLAN OVS DPDK encapsulation tests requires IPs, MAC addresses, bridge names and WHITELIST_NICS for DPDK.

NOTE: Only Ixia traffic generators currently support the execution of the tunnel encapsulation tests. Support for other traffic generators may come in a future release.

Default values are already provided. To customize for your environment, override the following variables in you user_settings.py file:

# Variables defined in conf/integration/02_vswitch.conf
# Tunnel endpoint for Overlay P2P deployment scenario
# used for br0
VTEP_IP1 = '192.168.0.1/24'

# Used as remote_ip in adding OVS tunnel port and
# to set ARP entry in OVS (e.g. tnl/arp/set br-ext 192.168.240.10 02:00:00:00:00:02
VTEP_IP2 = '192.168.240.10'

# Network to use when adding a route for inner frame data
VTEP_IP2_SUBNET = '192.168.240.0/24'

# Bridge names
TUNNEL_INTEGRATION_BRIDGE = 'br0'
TUNNEL_EXTERNAL_BRIDGE = 'br-ext'

# IP of br-ext
TUNNEL_EXTERNAL_BRIDGE_IP = '192.168.240.1/24'

# vxlan|gre|geneve
TUNNEL_TYPE = 'vxlan'

# Variables defined conf/integration/03_traffic.conf
# For OP2P deployment scenario
TRAFFICGEN_PORT1_MAC = '02:00:00:00:00:01'
TRAFFICGEN_PORT2_MAC = '02:00:00:00:00:02'
TRAFFICGEN_PORT1_IP = '1.1.1.1'
TRAFFICGEN_PORT2_IP = '192.168.240.10'

To run VXLAN encapsulation tests:

./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=vxlan' overlay_p2p_tput

To run GRE encapsulation tests:

./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=gre' overlay_p2p_tput

To run GENEVE encapsulation tests:

./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=geneve' overlay_p2p_tput

To run OVS NATIVE tunnel tests (VXLAN/GRE/GENEVE):

  1. Install the OVS kernel modules
cd src/ovs/ovs
sudo -E make modules_install
  1. Set the following variables:
VSWITCH = 'OvsVanilla'
# Specify vport_* kernel module to test.
VSWITCH_VANILLA_KERNEL_MODULES = ['vport_vxlan',
                                  'vport_gre',
                                  'vport_geneve',
                                  os.path.join(OVS_DIR_VANILLA,
                                  'datapath/linux/openvswitch.ko')]
  1. Run tests:
./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=vxlan' overlay_p2p_tput

2.6. Executing VXLAN decapsulation tests

To run VXLAN decapsulation tests:

  1. Set the variables used in “Executing Tunnel encapsulation tests”
  2. Set dstmac of DUT_NIC2_MAC to the MAC adddress of the 2nd NIC of your DUT
DUT_NIC2_MAC = '<DUT NIC2 MAC>'
  1. Run test:
./vsperf --conf-file user_settings.py --integration overlay_p2p_decap_cont

If you want to use different values for your VXLAN frame, you may set:

VXLAN_FRAME_L3 = {'proto': 'udp',
                  'packetsize': 64,
                  'srcip': TRAFFICGEN_PORT1_IP,
                  'dstip': '192.168.240.1',
                 }
VXLAN_FRAME_L4 = {'srcport': 4789,
                  'dstport': 4789,
                  'vni': VXLAN_VNI,
                  'inner_srcmac': '01:02:03:04:05:06',
                  'inner_dstmac': '06:05:04:03:02:01',
                  'inner_srcip': '192.168.0.10',
                  'inner_dstip': '192.168.240.9',
                  'inner_proto': 'udp',
                  'inner_srcport': 3000,
                  'inner_dstport': 3001,
                 }

2.7. Executing GRE decapsulation tests

To run GRE decapsulation tests:

  1. Set the variables used in “Executing Tunnel encapsulation tests”
  2. Set dstmac of DUT_NIC2_MAC to the MAC adddress of the 2nd NIC of your DUT
DUT_NIC2_MAC = '<DUT NIC2 MAC>'
  1. Run test:
./vsperf --conf-file user_settings.py --test-params 'tunnel_type=gre'
         --integration overlay_p2p_decap_cont

If you want to use different values for your GRE frame, you may set:

GRE_FRAME_L3 = {'proto': 'gre',
                'packetsize': 64,
                'srcip': TRAFFICGEN_PORT1_IP,
                'dstip': '192.168.240.1',
               }

GRE_FRAME_L4 = {'srcport': 0,
                'dstport': 0
                'inner_srcmac': '01:02:03:04:05:06',
                'inner_dstmac': '06:05:04:03:02:01',
                'inner_srcip': '192.168.0.10',
                'inner_dstip': '192.168.240.9',
                'inner_proto': 'udp',
                'inner_srcport': 3000,
                'inner_dstport': 3001,
               }

2.8. Executing GENEVE decapsulation tests

IxNet 7.3X does not have native support of GENEVE protocol. The template, GeneveIxNetTemplate.xml_ClearText.xml, should be imported into IxNET for this testcase to work.

To import the template do:

  1. Run the IxNetwork TCL Server
  2. Click on the Traffic menu
  3. Click on the Traffic actions and click Edit Packet Templates
  4. On the Template editor window, click Import. Select the template tools/pkt_gen/ixnet/GeneveIxNetTemplate.xml_ClearText.xml and click import.
  5. Restart the TCL Server.

To run GENEVE decapsulation tests:

  1. Set the variables used in “Executing Tunnel encapsulation tests”
  2. Set dstmac of DUT_NIC2_MAC to the MAC adddress of the 2nd NIC of your DUT
DUT_NIC2_MAC = '<DUT NIC2 MAC>'
  1. Run test:
./vsperf --conf-file user_settings.py --test-params 'tunnel_type=geneve'
         --integration overlay_p2p_decap_cont

If you want to use different values for your GENEVE frame, you may set:

GENEVE_FRAME_L3 = {'proto': 'udp',
                   'packetsize': 64,
                   'srcip': TRAFFICGEN_PORT1_IP,
                   'dstip': '192.168.240.1',
                  }

GENEVE_FRAME_L4 = {'srcport': 6081,
                   'dstport': 6081,
                   'geneve_vni': 0,
                   'inner_srcmac': '01:02:03:04:05:06',
                   'inner_dstmac': '06:05:04:03:02:01',
                   'inner_srcip': '192.168.0.10',
                   'inner_dstip': '192.168.240.9',
                   'inner_proto': 'udp',
                   'inner_srcport': 3000,
                   'inner_dstport': 3001,
                  }

2.9. Executing Native/Vanilla OVS VXLAN decapsulation tests

To run VXLAN decapsulation tests:

  1. Set the following variables in your user_settings.py file:
VSWITCH_VANILLA_KERNEL_MODULES = ['vport_vxlan',
                                  os.path.join(OVS_DIR_VANILLA,
                                  'datapath/linux/openvswitch.ko')]

DUT_NIC1_MAC = '<DUT NIC1 MAC ADDRESS>'

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

VXLAN_FRAME_L2 = {'srcmac':
                  '01:02:03:04:05:06',
                  'dstmac': DUT_NIC1_MAC
                 }

VXLAN_FRAME_L3 = {'proto': 'udp',
                  'packetsize': 64,
                  'srcip': TRAFFICGEN_PORT1_IP,
                  'dstip': '172.16.1.1',
                 }

VXLAN_FRAME_L4 = {
                  'srcport': 4789,
                  'dstport': 4789,
                  'protocolpad': 'true',
                  'vni': 99,
                  'inner_srcmac': '01:02:03:04:05:06',
                  'inner_dstmac': '06:05:04:03:02:01',
                  'inner_srcip': '192.168.1.2',
                  'inner_dstip': TRAFFICGEN_PORT2_IP,
                  'inner_proto': 'udp',
                  'inner_srcport': 3000,
                  'inner_dstport': 3001,
                 }
  1. Run test:
./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=vxlan' overlay_p2p_decap_cont

2.10. Executing Native/Vanilla OVS GRE decapsulation tests

To run GRE decapsulation tests:

  1. Set the following variables in your user_settings.py file:
VSWITCH_VANILLA_KERNEL_MODULES = ['vport_gre',
                                  os.path.join(OVS_DIR_VANILLA,
                                  'datapath/linux/openvswitch.ko')]

DUT_NIC1_MAC = '<DUT NIC1 MAC ADDRESS>'

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

GRE_FRAME_L2 = {'srcmac':
                '01:02:03:04:05:06',
                'dstmac': DUT_NIC1_MAC
               }

GRE_FRAME_L3 = {'proto': 'udp',
                'packetsize': 64,
                'srcip': TRAFFICGEN_PORT1_IP,
                'dstip': '172.16.1.1',
               }

GRE_FRAME_L4 = {
                'srcport': 4789,
                'dstport': 4789,
                'protocolpad': 'true',
                'inner_srcmac': '01:02:03:04:05:06',
                'inner_dstmac': '06:05:04:03:02:01',
                'inner_srcip': '192.168.1.2',
                'inner_dstip': TRAFFICGEN_PORT2_IP,
                'inner_proto': 'udp',
                'inner_srcport': 3000,
                'inner_dstport': 3001,
               }
  1. Run test:
./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=gre' overlay_p2p_decap_cont

2.11. Executing Native/Vanilla OVS GENEVE decapsulation tests

To run GENEVE decapsulation tests:

  1. Set the following variables in your user_settings.py file:
VSWITCH_VANILLA_KERNEL_MODULES = ['vport_geneve',
                                  os.path.join(OVS_DIR_VANILLA,
                                  'datapath/linux/openvswitch.ko')]

DUT_NIC1_MAC = '<DUT NIC1 MAC ADDRESS>'

TRAFFICGEN_PORT1_IP = '172.16.1.2'
TRAFFICGEN_PORT2_IP = '192.168.1.11'

VTEP_IP1 = '172.16.1.2/24'
VTEP_IP2 = '192.168.1.1'
VTEP_IP2_SUBNET = '192.168.1.0/24'
TUNNEL_EXTERNAL_BRIDGE_IP = '172.16.1.1/24'
TUNNEL_INT_BRIDGE_IP = '192.168.1.1'

GENEVE_FRAME_L2 = {'srcmac':
                   '01:02:03:04:05:06',
                   'dstmac': DUT_NIC1_MAC
                  }

GENEVE_FRAME_L3 = {'proto': 'udp',
                   'packetsize': 64,
                   'srcip': TRAFFICGEN_PORT1_IP,
                   'dstip': '172.16.1.1',
                  }

GENEVE_FRAME_L4 = {'srcport': 6081,
                   'dstport': 6081,
                   'protocolpad': 'true',
                   'geneve_vni': 0,
                   'inner_srcmac': '01:02:03:04:05:06',
                   'inner_dstmac': '06:05:04:03:02:01',
                   'inner_srcip': '192.168.1.2',
                   'inner_dstip': TRAFFICGEN_PORT2_IP,
                   'inner_proto': 'udp',
                   'inner_srcport': 3000,
                   'inner_dstport': 3001,
                  }
  1. Run test:
./vsperf --conf-file user_settings.py --integration
         --test-params 'tunnel_type=geneve' overlay_p2p_decap_cont

2.12. Executing Tunnel encapsulation+decapsulation tests

The OVS DPDK encapsulation_decapsulation tests requires IPs, MAC addresses, bridge names and WHITELIST_NICS for DPDK.

The test cases can test the tunneling encap and decap without using any ingress overlay traffic as compared to above test cases. To achieve this the OVS is configured to perform encap and decap in a series on the same traffic stream as given below.

TRAFFIC-IN –> [ENCAP] –> [MOD-PKT] –> [DECAP] –> TRAFFIC-OUT

Default values are already provided. To customize for your environment, override the following variables in you user_settings.py file:

# Variables defined in conf/integration/02_vswitch.conf

# Bridge names
TUNNEL_EXTERNAL_BRIDGE1 = 'br-phy1'
TUNNEL_EXTERNAL_BRIDGE2 = 'br-phy2'
TUNNEL_MODIFY_BRIDGE1 = 'br-mod1'
TUNNEL_MODIFY_BRIDGE2 = 'br-mod2'

# IP of br-mod1
TUNNEL_MODIFY_BRIDGE_IP1 = '10.0.0.1/24'

# Mac of br-mod1
TUNNEL_MODIFY_BRIDGE_MAC1 = '00:00:10:00:00:01'

# IP of br-mod2
TUNNEL_MODIFY_BRIDGE_IP2 = '20.0.0.1/24'

#Mac of br-mod2
TUNNEL_MODIFY_BRIDGE_MAC2 = '00:00:20:00:00:01'

# vxlan|gre|geneve, Only VXLAN is supported for now.
TUNNEL_TYPE = 'vxlan'

To run VXLAN encapsulation+decapsulation tests:

./vsperf --conf-file user_settings.py --integration
         overlay_p2p_mod_tput