> 0PNFV

SDN VPN user guide
Release draft (fd6f067)

OPNFV

August 23, 2016

Introduction
SDN VPN feature description

Hardware requirements

3.1 Bare metal deployment on PharosLab
3.2 Virtual deployment hardware requirements

Preparing the host to install Fuel by script

4.1 Installation of required packages
4.2 Download the source code and artifact

Simplified scenario deployment procedure using Fuel

5.1 Scenario Preparation
5.2 Installation procedureso

Feature and API usage guidelines and example

6.1 Example

Troubleshooting

CONTENTS

9]

RN |

CHAPTER
ONE

INTRODUCTION

This document will provide an overview of how to work with the SDN VPN features in OPNFV.

SDN VPN user guide, Release draft (fd6f067)

2 Chapter 1. Introduction

CHAPTER
TWO

SDN VPN FEATURE DESCRIPTION

A high-level description of the scenarios is provided in this section. For details of the scenarios and their provided
capabilities refer to the scenario description document: http://artifacts.opnfv.org/colorado/sdnpvn/scenarios/os-odl_12-
bgpvpn/index.html

The BGPVPN feature enables creation of BGP VPNs on the Neutron API according to the OpenStack BGPVPN
blueprint at https://blueprints.launchpad.net/neutron/+spec/neutron-bgp-vpn. In a nutshell, the blueprint defines a BG-
PVPN object and a number of ways how to associate it with the existing Neutron object model, as well as a unique
definition of the related semantics. The BGPVPN framework supports a backend driver model with currently available
drivers for Bagpipe, OpenContrail, Nuage and OpenDaylight. The OPNFV scenario makes use of the OpenDaylight
driver and backend implementation through the ODL VPNService project.

http://artifacts.opnfv.org/colorado/sdnpvn/scenarios/os-odl_l2-bgpvpn/index.html
http://artifacts.opnfv.org/colorado/sdnpvn/scenarios/os-odl_l2-bgpvpn/index.html
https://blueprints.launchpad.net/neutron/+spec/neutron-bgp-vpn

SDN VPN user guide, Release draft (fd6f067)

4 Chapter 2. SDN VPN feature description

CHAPTER
THREE

HARDWARE REQUIREMENTS

The SDNVPN scenarios can be deployed as a bare-metal or a virtual environment on a single host.

3.1 Bare metal deployment on Pharos Lab

Hardware requirements for bare-metal deployments of the OPNFV infrastructure are specified by the Pharos
project. The Pharos project provides an OPNFV hardware specification for configuring your hardware at:
http://artifacts.opnfv.org/pharos/docs/pharos-spec.html.

3.2 Virtual deployment hardware requirements

To perform a virtual deployment of an OPNFV scenario on a single host, that host has to meet the hardware require-
ments outlined in the <missing spec>.

When ODL is used as an SDN Controller in an OPNFV virtual deployment, ODL is running on the OpenStack
Controller VMs. It is therefore recommended to increase the amount of resources for these VMs.

Our recommendation is to have 2 additional virtual cores and 8GB additional virtual memory on top of the normally
recommended configuration.

Together with the commonly used recommendation this sums up to:

4 virtual cores
16 GB virtual memory

See in Installation section below how to configure this.

http://artifacts.opnfv.org/pharos/docs/pharos-spec.html

SDN VPN user guide, Release draft (fd6f067)

6 Chapter 3. Hardware requirements

CHAPTER
FOUR

PREPARING THE HOST TO INSTALL FUEL BY SCRIPT

Before starting the installation of the <scenario> scenario some preparation of the machine that will host the Fuel VM
must be done.

4.1 Installation of required packages

To be able to run the installation of the basic OPNFV fuel installation the Jumphost (or the host which serves the VMs
for the virtual deployment) needs to install the following packages:

sudo apt-get install -y git make curl libvirt-bin libpg-dev gemu-kvm \
gemu-system tightvncserver virt-manager sshpass \
fuseiso genisoimage blackbox xterm python-pip \
python-git python-dev python-oslo.config \
python-pip python-dev libffi-dev libxml2-dev \
libxsltl-dev libffi-dev libxml2-dev libxsltl-dev \
expect curl python-netaddr p7zip-full

sudo pip install GitPython pyyaml netaddr paramiko lxml scp \
python-novaclient python-neutronclient python-glanceclient \
python-keystoneclient debtcollector netifaces enum

4.2 Download the source code and artifact

To be able to install the scenario os-odl_I12-bgpvpn one can follow the way CI is deploying the scenario. First of all
the opnfv-fuel repository needs to be cloned:

git clone ssh://<user>Qgerrit.opnfv.org:29418/fuel

This command downloads the whole repository fuel. We need now to switch it to the stable Colorado branch:

cd fuel
git checkout stable/colorado

Now download the appropriate OPNFV Fuel ISO into an appropriate folder:

wget http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1l.0.1iso

The exact name of the ISO image may change. Check https://www.opnfv.org/opnfv-colorado-fuel-users to get the
latest ISO.

https://www.opnfv.org/opnfv-colorado-fuel-users

SDN VPN user guide, Release draft (fd6f067)

8 Chapter 4. Preparing the host to install Fuel by script

CHAPTER
FIVE

SIMPLIFIED SCENARIO DEPLOYMENT PROCEDURE USING FUEL

This section describes the installation of the os-odl_12-bgpvpn-ha or os-odl_12-bgpvpn-noha OPNFV reference plat-
form stack across a server cluster or a single host as a virtual deployment.

5.1 Scenario Preparation

dea.yaml and dha.yaml need to be copied and changed according to the lab-name/host where you deploy. Copy the
full lab config from:

cp <path-to-opnfv-fuel-repo>/deploy/config/labs/devel-pipeline/elx \
<path-to-opnfv-fuel-repo>/deploy/config/labs/devel-pipeline/<your-lab-name>

Add at the bottom of dha.yaml

disks:
fuel: 100G
controller: 100G
compute: 100G

define_vms:
controller:
vcpu:
value: 4
memory :
attribute_equlas:
unit: KiB
value: 16388608
currentMemory:
attribute_equlas:
unit: KiB
value: 16388608

Check if the default settings in dea.yaml are in line with your intentions and make changes as required.

5.2 Installation procedures

We describe several alternative procedures in the following. First, we describe several methods that are based on the
deploy.sh script, which is also used by the OPNFV CI system. It can be found in the Fuel repository.

In addition, the SDNVPN feature can also be configured manually in the Fuel GUI This is described in the last
subsection.

SDN VPN user guide, Release draft (fd6f067)

Before starting any of the following procedures, go to

‘cd <opnfv-fuel-repo>/ci

5.2.1 Full automatic virtual deployment High Availablity Mode

The following command will deploy the high-availability flavor of SDNVPN scenario os-odl_12-bgpvpn-ha in a fully
automatic way, i.e. all installation steps (Fuel server installation, configuration, node discovery and platform deploy-
ment) will take place without any further prompt for user input.

’sudo bash ./deploy.sh -b file://<path-to-opnfv-fuel-repo>/config/ -1 devel-pipeline -p #your—lab—name

5.2.2 Full automatic virtual deployment NO High Availability Mode

The following command will deploy the SDNVPN scenario in its non-high-availability flavor (note the different sce-
nario name for the -s switch). Otherwise it does the same as described above.

’sudo bash ./deploy.sh -b file://<path-to-opnfv-fuel-repo>/config/ -1 devel-pipeline -p %yourflabfname

5.2.3 Automatic Fuel installation and manual scenario deployment

A useful alternative to the full automatic procedure is to only autodeploy the Fuel host and to run host selection, role
assignment and SDNVPN scenario configuration manually.

sudo bash ./deploy.sh -b file://<path-to-opnfv-fuel-repo>/config/ -1 devel-pipeline -p #your—lab—name

With -e option the installer does not launch environment deployment, so a user can do some modification before the
scenario is really deployed. Another interesting option is the -f option which deploys the scenario using an existing
Fuel host.

The result of this installation is a fuel sever with the right config for BGPVPN. Now the deploy button on fuel dash-
board can be used to deploy the environment. It is as well possible to do the configuration manuell.

5.2.4 Feature configuration on existing Fuel

If a Fuel server is already provided but the fuel plugins for Opendaylight, Openvswitch and BGPVPN are not provided
install them by:

cd /opt/opnfv/

fuel plugins —-install fuel-plugin-ovs—=*.noarch.rpm
fuel plugins —--install opendaylight-*.noarch.rpm
fuel plugins --install bgpvpn-*.noarch.rpm

If plugins are installed and you want to update them use —force flag.

Now the feature can be configured. Create a new environment with “Neutron with ML?2 plugin” and in there “Neutron
with tunneling segmentation”. Then go to settings/other and check “OpenDaylight plugin”, “Install Openvswitch with
NSH/DPDK” and “BGPVPN plugin”. Then you should be able to check “BGPVPN extensions” in OpenDaylight
plugin section.

Now the deploy button on fuel dashboard can be used to deploy the environment.

10 Chapter 5. Simplified scenario deployment procedure using Fuel

CHAPTER
SIX

FEATURE AND API USAGE GUIDELINES AND EXAMPLE

For the details of wusing OpenStack BGPVPN API, please refer to the documentation at
http://docs.openstack.org/developer/networking-bgpvpn/.

6.1 Example

In the example we will show a BGPVPN associated to 2 neutron networks. The BGPVPN will have the import and
export routes in the way that it imports its own Route. The outcome will be that vms sitting on these two networks
will be able to have a full L3 connectivity.

Some defines:

net_1="Networkl"
net_2="Network2"
subnet_netl1="10.10.10.0/24"
subnet_net2="10.10.11.0/24"

Create neutron networks and save network IDs:

neutron net-create —--provider:network_type=local $net_1
export net_1_id="echo "$rv" | grep " id " |awk '{print $4}'"
neutron net-create --provider:network_type=local $net_2
export net_2_id="echo "$rv" | grep " id " |awk '{print $4}'"

Create neutron subnets:

neutron subnet-create $net_1 —--disable-dhcp $subnet_netl
neutron subnet-create $net_2 --disable-dhcp S$subnet_net2
Create BGPVPN:

neutron bgpvpn-create --route-distinguishers 100:100 —--route-targets 100:2530 —-name L3¢VPN

Start VMs on both networks:

nova boot --flavor 1 --image <some-image> —--nic net-id=$net_1_id wvml
nova boot --flavor 1 --image <some-image> —--nic net-id=$net_2_id vm2

The VMs should not be able to see each other.

Associate to Neutron networks:

neutron bgpvpn-net—-assoc-create L3_VPN --network $net_1_id
neutron bgpvpn-net-assoc-create L3_VPN --network $net_2_id

Now the VMs should be able to ping each other

11

http://docs.openstack.org/developer/networking-bgpvpn/

SDN VPN user guide, Release draft (fd6f067)

12 Chapter 6. Feature and API usage guidelines and example

CHAPTER
SEVEN

Check neutron logs on the controller:

TROUBLESHOOTING

’tail -f /var/log/neutron/server.log |grep -E "ERROR|TRACE"

Check Opendaylight logs:

’tail -f /opt/opendaylight/data/logs/karaf.log

Restart Opendaylight:

’service opendaylight restart

13

	Introduction
	SDN VPN feature description
	Hardware requirements
	Bare metal deployment on Pharos Lab
	Virtual deployment hardware requirements

	Preparing the host to install Fuel by script
	Installation of required packages
	Download the source code and artifact

	Simplified scenario deployment procedure using Fuel
	Scenario Preparation
	Installation procedures

	Feature and API usage guidelines and example
	Example

	Troubleshooting

