Promise: Resource Management
Release 1.0.2

November 20, 2015

7

8

Introduction

1.1 Problemdescription e

Use cases and scenarios

2.1 Resource capacity management e e e e e e
2.2 Resource reservation for immediateuseo
2.3 Resource reservation for futureuseo oL
2.4 Co-existence of reservations and allocation requests without reservation

High level architecture and general features

3.1 Architecture OVErview
3.2 General Features
3.3 High level northbound interface specification
3.4 Informationelements

Gap analysis in upstream projects

4.1 0penStack e e e e e e e

Detailed architecture and message flows

5.1 Detailed northbound interface specification
5.2 Detailed Message Flows

Summary and conclusion
ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE

ANNEX B: DOCUMENT REVISION

Bibliography

CONTENTS

w W

13

............ 13

15

............ 15
............ 28

31

33

39

41

Promise: Resource Management, Release 1.0.2

> 0PNFV

Project Promise, https://wiki.opnfv.org/promise
Editors Ashiq Khan (NTT DOCOMO), Bertrand Souville (NTT DOCOMO)

Authors Ravi Chunduru (ClearPath Networks), Peter Lee (ClearPath Networks), Gerald Kunzmann
(NTT DOCOMO), Ryota Mibu (NEC), Carlos Goncalves (NEC), Arturo Martin De Nicolas (Er-

Description

Project creation

Initial version of the deliverable uploaded to gerrit

icsson)
Date
. 04.12.2014
History |5 543015
19.06.2015

Stable version of the Promise deliverable

Abstract Promise is an OPNFV requirement project. Its objective is to realize ETSI NFV defined re-
source reservation and NFVI capacity features within the scope of OPNFV. Promise provides the
details of the requirements on resource reservation, NFVI capacity management at VIM, specifica-
tion of the northbound interfaces from VIM relevant to these features, and implementation plan to
realize these features in OPNFV.

CONTENTS

https://wiki.opnfv.org/promise

Promise: Resource Management, Release 1.0.2

Definition of terms

Different SDOs and communities use different terminology related to NFV/Cloud/SDN. This list tries to define an
OPNFV terminology, mapping/translating the OPNFV terms to terminology used in other contexts.

Administrator Administrator of the system, e.g. OAM in Telco context.

Consumer User-side Manager; consumer of the interfaces produced by the VIM; VNFM, NFVO, or Orchestrator in
ETSINFV [NFV003] terminology.

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure; totality of all hardware and software components which build
up the environment in which VNFs are deployed.

NFVO Network Functions Virtualization Orchestrator; functional block that manages the Network Service (NS)
lifecycle and coordinates the management of NS lifecycle, VNF lifecycle (supported by the VNFM) and NFVI
resources (supported by the VIM) to ensure an optimized allocation of the necessary resources and connectivity.

Physical resource Actual resources in NFVI; not visible to Consumer.

Resource zone A set of NFVI hardware and software resources logically grouped according to physical isolation and
redundancy capabilities or to certain administrative policies for the NFVI /[NFVIFA010]

VIM Virtualized Infrastructure Manager; functional block that is responsible for controlling and managing the NFVI
compute, storage and network resources, usually within one operator’s Infrastructure Domain, e.g. NFVI Point
of Presence (NFVI-PoP).

Virtual Machine (VM) Virtualized computation environment that behaves very much like a physical com-
puter/server.

Virtual network Virtual network routes information among the network interfaces of VM instances and physical
network interfaces, providing the necessary connectivity.

Virtual resource A Virtual Machine (VM), a virtual network, or virtualized storage; Offered resources to “Con-
sumer” as result of infrastructure virtualization; visible to Consumer.

Virtual Storage Virtualized non-volatile storage allocated to a VM.

VNF Virtualized Network Function. Implementation of an Network Function that can be deployed on a Network
Function Virtualization Infrastructure (NFVI).

VNFM Virtualized Network Function Manager; functional block that is responsible for the lifecycle management of
VNE.

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Resource reservation is a basic function for the operation of a virtualized telecom network. In resource reservation,
VIM reserves resources for a certain period as requested by the NFVO. A resource reservation will have a start time
which could be into the future. Therefore, the reserved resources shall be available for the NFVO requested purpose
(e.g. for a VNF) at the start time for the duration asked by NFVO. Resources include all three resource types in an
NFVIi.e. compute, storage and network.

Besides, NFVO requires abstracted NFVI resource capacity information in order to take decisions on VNF placement
and other operations related to the virtual resources. VIM is required to inform the NFVO of NFVI resource state
information for this purpose. Promise project aims at delivering the detailed requirements on these two features defined
in ETSI NFV MAN GS [NFVMAN], the list of gaps in upstream projects, potential implementation architecture and
plan, and the VIM northbound interface specification for resource reservation and capacity management.

1.1 Problem description

OpenStack, a prominent candidate for the VIM, cannot reserve resources for future use. OpenStack requires immediate
instantiation of Virtual Machines (VMs) in order to occupy resources intended to be reserved. Blazar can reserve
compute resources for future by keeping the VMs in shelved mode. However, such reserved resources can also be used
for scaling out rather than new VM instantiation. Blazar does not support network and storage resource reservation
yet.

Besides, OpenStack does not provide a northbound interface through which it can notify an upper layer management
entity e.g. NFVO about capacity changes in its NFVI, periodically or in an event driven way. Capacity management
is a feature defined in ETSI NFV MAN GS [NFVMAN] and is required in network operation.

Promise: Resource Management, Release 1.0.2

4 Chapter 1. Introduction

CHAPTER
TWO

USE CASES AND SCENARIOS

Resource reservation is a basic feature in any virtualization-based network operation. In order to perform such resource
reservation from NFVO to VIM, NFVI capacity information is also necessary at the NFVO side. Below, four use cases
to show typical requirements and solutions for capacity management and resource reservation is presented.

1. Resource capacity management

2. Resource reservation for immediate use
3. Resource reservation for future use
4

. Co-existence of reservations and allocation requests without reservation

2.1 Resource capacity management

NFVO takes the first decision on in which NFVI it would instantiate a VNF. Along with NFVIs resource attributes
(e.g. availability of hardware accelerators, particular CPU architectures etc.), NFVO needs to know available capacity
of an NFVI in order to make an informed decision on selecting a particular NFVI. Such capacity information shall be
in a coarser granularity than the respective VIM, as VIM maintains capacity information of its NFVI in fine details.
However a very coarse granularity, like simply the number of available virtual CPU cores, may not be sufficient. In or-
der to allow the NFVO to make well founded allocation decisions, an appropriate level to expose the available capacity
may be per flavor. Capacity information may be required for the complete NFVI, or per partition or availability zone,
or other granularities. Therefore, VIM requires to inform the NFVO about available capacity information regarding
its NFVI at a pre-determined abstraction, either by a query-response, or in an event-based, or in a periodical way.

2.2 Resource reservation for immediate use

Reservation is inherently for the future. Even if some reserved resources are to be consumed instantly, there is a
network latency between the issuance of a resource reservation request from the NFVO, a response from the VIM,
and actual allocation of the requested resources to a VNF/VNFM. Within such latency, resource capacity in the NFVI
in question could change, e.g., due to failure, allocation to a different request. Therefore, the response from a VIM
to the NFVO to a resource reservation request for immediate use should have a validity period which shows until
when this VIM can hold the requested resources. During this time, the NFVO should proceed to allocation if it
wishes to consume the reserved requested. If allocation is not performed within the validity period, the response from
VIM for a particular resource reservation request becomes invalid and VIM is not liable to provide those resources to
NFVO/VNEFM anymore. Reservations requests for immediate use do not have a start time but may have an end time.

Promise: Resource Management, Release 1.0.2

2.3 Resource reservation for future use

Network operators may want to reserve extra resources for future use. Such necessity could arise from predicted
congestion in telecom nodes e.g. due to local traffic spikes for concerts, natural disasters etc. In such a case, the NFVO,
while sending a resource reservation request to the VIM, shall include a start time (and an end time if necessary). The
start time indicates at what time the reserved resource shall be available to a designated consumer e.g. a VNF/VNFM.
Here, the requirement is that the reserved resources shall be available when the start time arrives. After the start
time has arrived, the reserved resources are allocated to the designated consumer(s). An explicit allocation request
is needed. How actually these requested resources are held by the VIM for the period in between the arrival of the
resource reservation request and the actual allocation is outside the scope of this requirement project.

2.4 Co-existence of reservations and allocation requests without
reservation

In a real environment VIM will have to handle allocation requests without any time reference, i.e. time-unbound,
together with time-bound reservations and allocation requests with an explicitly indicated end-time. A granted reser-
vation for the future will effectively reduce the available capacity for any new time-unbound allocation request. The
consequence is that reservations, even those far in the future, may result in denial of service for new allocation requests.

To alleviate this problem several approaches can be taken. They imply an implicit or explicit priority scheme:

* Allocation requests without reservation and which are time-unbound will be granted resources in a best-effort
way: if there is instant capacity, but the resources may be later withdrawn due to the start time of a previously
granted reservation

* Both allocation requests and reservation requests contain a priority which may be related to SLAs and contrac-
tual conditions between the tenant and the NFVI provider. Interactions may look like:

— A reservation request for future use may cancel another, not yet started, reservation with lower priority

— An allocation request without reservations and time-unbound ' may be granted resources and prevent a
future reservation with lower priority from getting resources at start time

— A reservation request may result in terminating resources allocated to a request with no reservation, if the
latter has lower priority

! In this case, the consumer (VNFM or NFVO) requests to immediately instantiate and assign virtualized resources without having reserved the
resources beforehand

6 Chapter 2. Use cases and scenarios

CHAPTER
THREE

HIGH LEVEL ARCHITECTURE AND GENERAL FEATURES

3.1 Architecture Overview

User/Client

J

Resource Reservation Request
Amount: Compute, Storage, Network
Start time: xxxx
or-vi End time: yy:yy
Other resource attributes:

type e.g. DPDK, link bandwidth, affinity

NFV Infrastructure

rules... etc.
Compute
Virtualized Infrastructure Manager (VIM)
Storage
Network

Fig. 3.1: Resource Reservation Architecture

Fig. 3.1 shows the high level architecture for the resource reservation use cases. Reserved resources are guaranteed
for a given user/client for the period expressed by start and end time. User/client represents the requestor and the
consequent consumer of the reserved resources and correspond to the NFVO or VNFM in ETSI NFV terminology.

Note: in this document only reservation requests from NFVO are considered.

3.2 General Features

This section provides a list of features that need to be developed in the Promise project.
* Resource capacity management
— Discovery of available resource capacity in resource providers
— Monitoring of available resource capacity in resource providers

— Update available resource capacity as a result of new or expired reservations, addition/removal of re-
sources. Note: this is a VIM internal function, not an operation in the VIM northbound interface.

¢ Resource reservation

Promise: Resource Management, Release 1.0.2

Set start time and end time for allocation

Increase/decrease reserved resource’s capacity

Update resource reservations, e.g. add/remove reserved resources

Terminate an allocated resource due to the end time of a reservation

¢ VIM northbound interfaces

Receive/Reply resource reservation requests

Receive/Reply resource capacity management requests

Receive/Reply resource allocation requests for reserved resources when start time arrives

Subscribe/Notify resource reservation event
* Notify reservation error or process completion prior to reservation start
Notify remaining time until termination of a resource due to the end time of a reservation

% Notify termination of a resource due to the end time of a reservation

Receive/Reply queries on available resource capacity

Subscribe/Notify changes in available resource capacity

3.3 High level northbound interface specification

3.3.1 Resource Capacity Management

Fig. 3.2 shows a high level flow for a use case of resource capacity management. In this example, the VIM notifies
the NFVO of capacity change after having received an event regarding a change in capacity (e.g. a fault notification)
from the NFVI. The NFVO can also retrieve detailed capacity information using the Query Capacity Request interface
operation.

Fig. 3.3 shows a high level flow for another use case of resource capacity management. In this example, the NFVO
queries the VIM about the actual capacity to instantiate a certain resource according to a certain template, for example
a VM according to a certain flavor. In this case the VIM responds with the number of VMs that could be instantiated
according to that flavor with the currently available capacity.

3.3.2 Resource Reservation

Fig. 3.4 shows a high level flow for a use case of resource reservation. The main steps are:

e The NFVO sends a resource reservation request to the VIM using the Create Resource Reservation Request
interface operation.

* The NFVO gets a reservation identifier reservation associated with this request in the reply message

» Using the reservation identifier reservation, the NFVO can query/update/terminate a resource reservation using
the corresponding interface operations

¢ The NFVO is notified that the resource reservation is terminated due to the end time of the reservation

8 Chapter 3. High level architecture and general features

Promise: Resource Management, Release 1.0.2

VIM

NFVO VNFM (GpenStack)

Fault Notification
(physical_machine)

Notify Capacity Change
(zone, notification,
used/reserved/total capacity)

Query Capacity Request
(zone, attributes, resources)

Query Capacity Reply
(zone, used/reserved/total capacit\!)

Fig. 3.2: Resource capacity management message flow: notification of capacity change

VIM

NV (OpenStack)

Query Capacity Request
(zone, flavor)

Y

_ Query Capacity Reply
"~ (Number of resources)

Fig. 3.3: Resource capacity management message flow: query of capacity density

3.3. High level northbound interface specification 9

Promise: Resource Management, Release 1.0.2

NFVO

Create Resource R

VNFM

V

IM

(OpenStack)

eservation Request

(start, end, expiry,
zone, attributes, reg

Create Resource R

amount,
sources)

eservation Reply

(reservation, mess

Query/Update/Te

age)

Allocate/redeive
reserved resqurces

Reserve resources so that
the resources are
available at start time

D

o

equest

(reservation, ...)

Query/Update/Te

minate Resource Réservation R
1

minate Resource Réservation R

eply

(message, ...)

Notify Reservati

End

on Event I

" (reservation, not

ification, message) :

Fig. 3.4: Resource re

servation flow

10

Chapter 3. High level architecture and general features

Promise: Resource Management, Release 1.0.2

3.4 Information elements

3.4.1 Resource Capacity Management

Notify Capacity Change Event

The notification change message shall include the following information elements:

Name Type | Description
Notification Iden- | Identifier issued by the VIM for the capacity change event notification
tifier
Zone Iden- | Identifier of the zone where capacity has changed
tifier
Used/Reserved/Total List Used, reserved and total capacity information regarding the resource items
Capacity subscribed for notification for which capacity change event occurred

Query Resource Capacity Request

The capacity management query request message shall include the following information elements:

Name | Type | Description
Zone | Iden- | Identifier of the zone where capacity is requested
tifier
At- List Attributes of resource items to be notified regarding capacity change events
tributes
Re- List Identifiers of existing resource items to be queried regarding capacity info (such as images,
sources flavors, virtual containers, networks, physical machines, etc.)

The capacity management query request message may also include the following information element:

Name Type | Description
Fla- | Iden- | Identifier that is passed in the request to obtain information of the number of virtual resources that
vor | tifier | can be instantiated according to this flavor with the available capacity

Query Resource Capacity Reply

The capacity management query reply message shall include the following information elements:

Name Type | Description
Zone Iden- | Identifier of the zone where capacity is requested
tifier
Used/Reserved/Total | List Used, reserved and total capacity information regarding each of the resource
Capacity items requested to check for capacity

The detailed specification of the northbound interface for Capacity Management in provided in section 5.1.1.

3.4.2 Resource Reservation

Create Resource Reservation Request

The create resource reservation request message shall include the following information elements:

3.4. Information elements 11

Promise: Resource Management, Release 1.0.2

Name| Type | Description
Start | Times- | Start time for consumption of the reserved resources
tamp
End Times- | End time for consumption of the reserved resources
tamp
Ex- Times- | If not all reserved resources are allocated between start time and expiry, the VIM shall release
piry tamp | the corresponding resources '
Amount Num- | Amount of the resources per resource item type (i.e. compute/network/storage) that need to be
ber reserved
Zone | Iden- The zone where the resources need(s) to be reserved
tifier
At- List Attributes of the resources to be reserved such as DPDK support, hypervisor, network link
tributes bandwidth, affinity rules, etc.
Re- List Identifiers of existing resource items to be reserved (such as images, flavors, virtual containers,
sources networks, physical machines, etc.)

Create Resource Reservation Reply

The create resource reservation reply message shall include the following information elements:

Name | Type | Description

Reser- | Iden- | Identification of the reservation instance. It can be used by a consumer to modify the reservation
vation | tifier | later, and to request the allocation of the reserved resources.

Mes- Text | Output message that provides additional information about the create resource reservation

sage request (e.g. may be a simple ACK if the request is being background processed by the VIM)

Notify Reservation Event

The notification reservation event message shall include the following information elements:

Name Type Description

Reservation | Identifier | Identification of the reservation instance triggering the event
Notification | Identifier | Identification of the resource event notification issued by the VIM
Message Text Message describing the event

The detailed specification of the northbound interface for Resource Reservation is provided in section 5.1.2.

Expiry is a period around start time within which, the allocation process must take place. If allocation process does not start within the expiry
period, the reservation becomes invalid and VIM should release the resources

12 Chapter 3. High level architecture and general features

CHAPTER
FOUR

GAP ANALYSIS IN UPSTREAM PROJECTS

This section provides a list of gaps in upstream projects for realizing resource reservation and management. The gap
analysis work focuses on the current OpenStack Blazar project [BLAZAR] in this first release.

4.1 OpenStack

4.1.1 Resource reservation for future use

* Category: Blazar
* Type: ‘missing’ (lack of functionality)
* Description:
— To-be: To reserve a whole set of compute/storage/network resources in the future

— As-is: Blazar currently can do only compute resource reservation by using “Shelved VM”

Related blueprints:
— https://blueprints.launchpad.net/blazar/+spec/basic-volume-plugin
— https://blueprints.launchpad.net/blazar/+spec/basic-network-plugin

— It was planned in Blazar to implement volume and network/fixed ip reservations

4.1.2 Resource reservation update

» Category: Blazar
* Type: ‘missing’ (lack of functionality)
* Description:

— To-be: Have the possibility of adding/removing resources to an existing reservation, e..g in case of NFVI
failure

— As-is: Currently in Blazar, a reservation can only be modified in terms of start/end time

Related blueprints: N/A

13

https://blueprints.launchpad.net/blazar/+spec/basic-volume-plugin
https://blueprints.launchpad.net/blazar/+spec/basic-network-plugin

Promise: Resource Management, Release 1.0.2

4.1.3 Give me an offer

» Category: Blazar
* Type: ‘missing’ (lack of functionality)
* Description:

— To-be: To have the possibility of giving a quotation to a requesting user and an expiration time. Reserved
resources shall be released if they are not claimed before this expiration time.

— As-is: Blazar can already send notification e.g. to inform a given user that a reservation is about to expire

Related blueprints: N/A

4.1.4 StormStack StormForge

Stormify

» Stormify enables rapid web applications construction

* Based on Ember.js style Data stores

* Developed on Node.js using coffeescript/javascript

* Auto RESTful API generation based on Data Models

* Development starts with defining Data Models

* Code hosted at github : http://github.com/stormstack/stormify

StormForge

Data Model driven management of Resource Providers
* Based on Stormify Framework and implemented as per the OPNFV Promise requirements
» Data Models are auto generated and RESTful API code from YANG schema

 Currently planned key services include Resource Capacity Management Service and Resource Reservation Ser-
vice

List of YANG schemas for Promise project is attached in the Appendix

Code hosted at github: http://github.com/stormstack/stormforge

Resource Discovery

» Category: StormForge
* Type: ‘planning’ (lack of functionality)
* Description

— To-be: To be able to discover resources in real time from OpenStack components. Planning to add Open-
Stack Project to interface with Promise for real time updates on capacity or any failures

— As-is: Currently, resource capacity is learnt using NB APIs related to quota

Related Blueprints: N/A

14 Chapter 4. Gap analysis in upstream projects

http://github.com/stormstack/stormify
http://github.com/stormstack/stormforge

CHAPTER
FIVE

5.1 Detailed northbound interface specification

DETAILED ARCHITECTURE AND MESSAGE FLOWS

Note: This is Work in Progress.

5.1.1 ETSI NFV IFA Information Models

Compute Flavor

A compute flavor includes information about number of virtual CPUs, size of virtual memory, size of virtual storage,
and virtual network interfaces /[NFVIFA00S5]

<OpenMadelClass,
=]

Experimentals

<Undefined> [0.1]
«OpenModelAttributes + virtualCpuPinning: irtualCpuPinning 0.1]

51 <OpenModelAttribute
a

5 «OpenModelAttribute, Faulty» + numaEnabled: Boolean [0.1]

1

0.1

<OpenladelClass, Experimentals
E VirtualCpuPi

VitualCpuPinnin 9

5.1.2 Virtualised Compute Resources

Compute Capacity Management

Subscribe Compute Capacity Change Event

Subscription from Consumer to VIM to be notified about compute capacity changes

POST /capacity/compute/subscribe
Example request:

15

Promise: Resource Management, Release 1.0.2

POST /capacity/compute/subscribe HTTP/1.1
Accept: application/json

"zoneId": "12345",
"resourceDescriptor": [

{

"computeResourceTypelId": "vcInstances"
}
J 14
"threshold": [
{
"capacity_info": "available",
"condition": "1t",
"value": 5

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"created": "2015-09-21T00:00:00z",
"capacityChangeSubscriptionId": "abcdef-ghijkl-123456789"

Status Codes

* 400 Bad Request — resourceDescriptor is missing

Query Compute Capacity

Request to find out about available, reserved, total and allocated compute capacity.

GET /capacity/compute/query
Example request:

GET /capacity/compute/query HTTP/1.1
Accept: application/json

"zoneId": "12345",

"resourceDescriptor": {
"computeResourceTypeId": "vclInstances"

}o

"timePeriod": {
"startTime": "2015-09-21T00:00:002",
"stopTime": "2015-09-21T00:05:302"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

16 Chapter 5. Detailed architecture and message flows

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Promise: Resource Management, Release 1.0.2

"zoneId": "12345",
"lastUpdate": "2015-09-21T00:03:202",
"capacityInformation": {

"available": 4,
"reserved": 17,
"total": 50,

"allocated": 29

Query Parameters
e limit — Defaultis 10.
Status Codes

¢ 404 Not Found — resource zone unknown

Notify Compute Capacity Change Event

Notification about compute capacity changes

POST /capacity/compute/notification
Example notification:

Content-Type: application/json

"zoneId": "12345",
"notificationId": "zyxwvu-tsrqgpo-987654321",
"capacityChangeTime": "2015-09-21T00:03:20zZ2",
"resourceDescriptor": {
"computeResourceTypeId": "vcInstances"
}I
"capacityInformation”: {
"available": 4,

"reserved": 17,
"total": 50,
"allocated": 29

Compute Resource Reservation

Create Compute Resource Reservation

Request the reservation of compute resource capacity

POST /reservation/compute/create
Example request:

POST /reservation/compute/create HTTP/1.1

Accept: application/json

5.1. Detailed northbound interface specification

17

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Promise: Resource Management, Release 1.0.2

"startTime": "2015-09-21T01:00:00z",

"computePoolReservation": {
"numCpuCores": 20,
"numVcInstances": 5,
"virtualMemSize": 10

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-21T01:00:00z2",
"reservationStatus": "initialized",
"reservationId": "xxxx-yyyy-zzzz",
"computePoolReserved": {
"numCpuCores": 20,
"numVcInstances": 5,
"virtualMemSize": 10,
"zoneId": "23456"

and/or virtualized containers

POST reservation/compute/create
Example request:

POST /reservation/compute/create HTTP/1.1
Accept: application/json

"startTime": "2015-10-05T15:00:002",
"virtualizationContainerReservation": |

{

"containerId": "myContainer",
"containerFlavor": {
"flavorId": "myFlavor",

"wvirtualCpu": {
"numVirtualCpu": 2,
"cpuArchitecture": "x86"
}I
"virtualMemory": {
"numaEnabled": "False",
"virtualMemSize": 16

}I

"virtualStorage": {
"typeOfStorage": "volume",
"sizeOfStorage": 16

18 Chapter 5.

Detailed architecture and message flows

Promise: Resource Management, Release 1.0.2

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {

"startTime": "2015-10-05T15:00:00z2",
"reservationId": "aaaa-bbbb-cccc",
"reservationStatus": "initialized",
"virtualizationContainerReserved": |

{

"containerId": "myContainer",

"containerFlavor": {

"flavorId": "myFlavor",

"virtualCpu": {
"numVirtualCpu":

s
"virtualMemory": {

2,
"cpuArchitecture":

"y8e"

"numaEnabled": "False",

"virtualMemSize":

by
"virtualStorage": {

"typeOfStorage":
"sizeOfStorage":

16

"volume",
16

Query Compute Resource Reservation

Request to find out about reserved compute resources that the consumer has access to.

GET /reservation/compute/query
Example request:

GET /reservation/compute/query HTTP/1.1
Accept: application/json

"queryReservationFilter": |
{

"reservationId": "xxxx-yyyy-zzzz"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

5.1. Detailed northbound interface specification 19

Promise: Resource Management, Release 1.0.2

"reservationData":

{
"startTime": "2015-09-21T01:00:00z",
"reservationStatus": "active",
"reservationId": "xxxx-yyyy-zzzz",
"computePoolReserved":
{

"numCpuCores": 20,

"numVcInstances": 5,
"virtualMemSize": 10,
"zoneId": "23456"
}
}
}
Status Codes

¢ 404 Not Found — reservation id unknown

Update Compute Resource Reservation

Request to update compute resource reservation

POST /reservation/compute/update
Example request:

POST /reservation/compute/update HTTP/1.1
Accept: application/Jjson

"startTime": "2015-09-14T16:00:002",
"reservationId": "xxxx-yyyy-zzzz"

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-14TT16:00:002",
"reservationStatus": "active",
"reservationId": "xxxx-yyyy-zzzz",
"computePoolReserved": {
"numCpuCores": 20,
"numVcInstances": 5,
"virtualMemSize": 10,
"zoneId": "23456"

Terminate Compute Resource Reservation

Request to terminate a compute resource reservation

20 Chapter 5. Detailed architecture and message flows

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Promise: Resource Management, Release 1.0.2

DELETE /reservation/compute/ (reservation_id)

5.1.3 Virtualised Network Resources
Network Capacity Management

Subscribe Network Capacity Change Event

Susbcription from Consumer to VIM to be notified about network capacity changes

POST /capacity/network/subscribe
Example request:

POST /capacity/network/subscribe HTTP/1.1
Accept: application/json

{
"resourceDescriptor": [

{

"networkResourceTypeId": "publicIps"
}
]l
"threshold": |
{

"capacity_info": "available",

"condition": "1t",

"value": 5

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"created": "2015-09-28T00:00:00z",
"capacityChangeSubscriptionId": "bcdefg-hijklm-234567890"

Query Network Capacity

Request to find out about available, reserved, total and allocated network capacity.

GET /capacity/network/query
Example request:

GET /capacity/network/query HTTP/1.1
Accept: application/json

{
"resourceDescriptor": {
"networkResourceTypeId": "publicIps"
by

5.1. Detailed northbound interface specification 21

Promise: Resource Management, Release 1.0.2

"timePeriod": {
"startTime": "2015-09-28T00:00:002",
"stopTime": "2015-09-28T00:05:30z2"

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"lastUpdate": "2015-09-28T00:02:10z2",
"capacityInformation": {

"available": 4,

"reserved": 10,

"total": 64,

"allocated": 50

Notify Network Capacity Change Event

Notification about network capacity changes

POST /capacity/network/notification
Example notification:

Content-Type: application/json

"notificationId": "yxwvut-srgpon-876543210",
"capacityChangeTime": "2015-09-28T00:02:102Z",
"resourceDescriptor": {
"networkResourceTypeId": "publicIps"
}I
"capacityInformation": {
"available": 4,
"reserved": 10,

"total": 64,
"allocated": 50

Network Resource Reservation

Create Network Resource Reservation

Request the reservation of network resource capacity and/or virtual networks, network ports

POST /reservation/network/create
Example request:

POST /reservation/network/create HTTP/1.1
Accept: application/json

22 Chapter 5. Detailed architecture and message flows

Promise: Resource Management, Release 1.0.2

"startTime": "2015-09-28T01:00:002",
"networkReservation": {
"numPublicIps": 2

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-28T01:00:002",
"reservationStatus": "initialized",
"reservationId": "wwww-xxxx-yyyy",
"networkReserved": {
"publicIps": [
"10.2.91.60",
"10.2.91.61"

Query Network Resource Reservation

Request to find out about reserved network resources that the consumer has access to.

GET /reservation/network/query
Example request:

GET /reservation/network/query HTTP/1.1
Accept: application/json

"queryReservationFilter": |

{

"reservationId": "wwww-xxxx-yyyy"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"reservationData": {

"startTime": "2015-09-28T01:00:00z2",
"reservationStatus": "active",
"reservationId": "wwww-xxxx-yyyy",
"networkReserved": "publicIps": [
"10.2.91.60",
"10.2.91.61"

5.1. Detailed northbound interface specification

23

Promise: Resource Management, Release 1.0.2

Update Network Resource Reservation

Request to update network resource reservation

POST /reservation/network/update
Example request:

POST /reservation/network/update HTTP/1.1
Accept: application/json

"startTime": "2015-09-21T16:00:002",
"reservationId": "wwww-xxxx-yyyy"

}

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-21T16:00:002",
"reservationStatus": "active",
"reservationId": "wwww-xxxx-yyyy",
"networkReserved": {
"publicIps": |
"10.2.91.60",
"10.2.91.61"

Terminate Network Resource Reservation

Request to terminate a network resource reservation
DELETE /reservation/network/ (reservation_id)
5.1.4 Virtualised Storage Resources
Storage Capacity Management

Subscribe Storage Capacity Change Event

Subscription from Consumer to VIM to be notified about storage capacity changes

POST /capacity/storage/subscribe
Example request:

24 Chapter 5. Detailed architecture and message flows

Promise: Resource Management, Release 1.0.2

POST /capacity/storage/subscribe HTTP/1.1
Accept: application/Jjson

"resourceDescriptor": [

{

"storageResourceTypeId": "volumes"
}
]l
"threshold": |
{
"capacity_info": "available",
"condition": "1t",

"value": 3

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"created": "2015-09-28T12:00:00z2",
"capacityChangeSubscriptionId": "cdefgh-ijklmn-345678901"

Query Storage Capacity

Request to find out about available, reserved, total and allocated storage capacity.

GET /capacity/storage/query
Example request:

GET /capacity/storage/query HTTP/1.1
Accept: application/Jjson

"resourceDescriptor": {
"storageResourceTypeId": "volumes"

}I

"timePeriod": {
"startTime": "2015-09-28T12:00:002",
"stopTime": "2015-09-28T12:04:452"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"lastUpdate": "2015-09-28T12:01:352",
"capacityInformation": {

"available": 2,

"reserved": 4,

5.1. Detailed northbound interface specification

25

Promise: Resource Management, Release 1.0.2

"total": 10,
"allocated": 4

Notify Storage Capacity Change Event

Notification about storage capacity changes

POST /capacity/storage/notification
Example notification:

Content-Type: application/json

"notificationId": "xwvuts-rgponm-765432109",
"capacityChangeTime": "2015-09-28T12:01:352",
"resourceDescriptor": {
"storageResourceTypeId": "volumes"

}I
"capacityInformation": {

"available": 2,

"reserved": 4,

"total": 10,

"allocated": 4

Storage Resource Reservation

Create Storage Resource Reservation

Request the reservation of storage resource capacity

POST /reservation/storage/create
Example request:

POST /reservation/storage/create HTTP/1.1
Accept: application/json

"startTime": "2015-09-28T13:00:002",
"storagePoolReservation": {
"storageSize": 10,
"numSnapshots": 3,
"numVolumes": 2

}

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {

26 Chapter 5. Detailed architecture and message flows

Promise: Resource Management, Release 1.0.2

"startTime": "2015-09-28T13:00:00z",
"reservationStatus": "initialized",
"reservationId": "vvvv-wwww-xxxx'",
"storagePoolReserved": {
"storageSize": 10,
"numSnapshots": 3,
"numVolumes": 2

Query Storage Resource Reservation

Request to find out about reserved storage resources that the consumer has access to.

GET /reservation/storage/query
Example request:

GET /reservation/storage/query HTTP/1.1
Accept: application/Jjson

"queryReservationFilter": |

{

"reservationId": "vvvv-wwww-xxxx"

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-28T13:00:002",
"reservationStatus": "active",
"reservationId": "vvvv-wwww-xxxx",
"storagePoolReserved": {
"storageSize": 10,
"numSnapshots": 3,

"numVolumes": 2

Update Storage Resource Reservation

Request to update storage resource reservation

POST /reservation/storage/update
Example request:

POST /reservation/storage/update HTTP/1.1
Accept: application/json

5.1. Detailed northbound interface specification 27

Promise: Resource Management, Release 1.0.2

"startTime": "2015-09-20T23:00:002z2",
"reservationId": "vvvv-wwww-xxxx"

}

Example response:

HTTP/1.1 201 CREATED
Content-Type: application/json

"reservationData": {
"startTime": "2015-09-20T23:00:00z",
"reservationStatus": "active",
"reservationId": "vvvv-wwww-xxxx",
"storagePoolReserved": ({
"storageSize": 10,
"numSnapshots": 3,
"numVolumes": 2

Terminate Storage Resource Reservation

Request to terminate a storage resource reservation

DELETE /reservation/storage/ (reservation_id)

5.2 Detailed Message Flows

Fig. 5.1 shows a detailed message flow between the consumers and the functional blocks inside the VIM and has the
following steps:

Step 1: The consumer subscribes to capacity change notifications

Step 2: The Capacity Manager monitors the capacity information for the various types of resources by querying the
various Controllers (e.g. Nova, Neutron, Cinder), either periodically or on demand and updates capacity information
in the Capacity Map

Step 3: Capacity changes are notified to the consumer
Step 4: The consumer queries the Capacity Manager to retrieve capacity detailed information

Fig. 5.2 shows a detailed message flow between the consumers and the functional blocks inside the VIM and has the
following steps:

Step 1: The consumer creates a resource reservation request for future use by setting a start and end time for the
allocation

Step 2: The consumer gets an immediate reply with a reservation status message “reservationStatus” and an identifier
to be used with this reservation instance “reservationID”

Step 3: The consumer subscribes to reservation notification events

Step 4: The Resource Reservation Manager checks the feasibility of the reservation request by consulting the Capacity
Manager

28 Chapter 5. Detailed architecture and message flows

Promise: Resource Management, Release 1.0.2

VNF 1 VNF 2 VNF 3

Virtualized Infrastructure

Virtual
Network

Virtual
Storage

Virtual
Compute

Consumer

NFVO

= =

™

1.Subscribe’ 3. Notification 4. Query Capacity

Virtualization Layer

Hardware Resources

VNF 1 VNF 2 VNF3 K

Ailocalté

Allocation

Controller

' Change

™,

Resource .
Capacity

. Manager
Manager Capacity

Resource
Reservation
Manager

OpensStack (VIM)

7. Request-” 8. Reply r:\

- s
Fig. 5.1: Capacity Management Scenario
Consumer
NFVO
|7 A w ™
Alloca;te 9. Sub‘scribe i‘l. Notify /I 2, Reply 3. SuBscribe\‘\\
Reserved Notification ajjocation , Resource Notification ',

Rese rv\ed

Virtualized Infrastructure

Virtual Virtual Virtual
Compute Storage Network |

Resources Resources
L !

T

Virtualization Layer

Hardware Resources

.

10. Allocate’”

Reso

=

.
Resource

Allocation
Manager

3
<
Controller

I’:Jivents Cémpletion , Reservation

7 = T
- !

| ;
i l}equest Capacity v
Resource ! Manager L
Resources Reservation 6, Notify
Map ‘\\ ‘ Reservation
Compute/Network/Storage R Cortypletion
! \
N H ,/
5.Reserve ‘| %4
Resource e
,,,,,, Compute/ . 3
--------- Reservation 5
Network/ Minaser
Storage g
Resources Reservation

Map
OpenStack (VIM)

Fig. 5.2: Resource Reservation for Future Use Scenario

5.2. Detailed Message Flows

29

Promise: Resource Management, Release 1.0.2

Step 5: The Resource Reservation Manager reserves the resources and stores the list of reservations IDs generated by
the Controllers (e.g. Nova, Neutron, Cinder) in the Reservation Map

Step 6: Once the reservation process is completed, the VIM sends a notification message to the consumer with infor-
mation on the reserved resources

Step 7: When start time arrives, the consumer creates a resource allocation request.
Step 8: The consumer gets an immediate reply with an allocation status message “allocationStatus”.
Step 9: The consumer subscribes to allocation notification events

Step 10: The Resource Allocation Manager allocates the reserved resources. If not all reserved resources are allocated
before expiry, the reserved resources are released and a notification is sent to the consumer

Step 11: Once the allocation process is completed, the VIM sends a notification message to the consumer with infor-
mation on the allocated resources

30 Chapter 5. Detailed architecture and message flows

CHAPTER
SIX

SUMMARY AND CONCLUSION

Resource Reservation and Resource Capacity Management are features to be supported by the VIM and exposed to
the consumer via the VIM NBI. These features have been specified by ETSI NFV.

This document has described several use cases and corresponding high level flows where Resource Reservation and
Capacity Management are of great benefit for the consumer of the virtualised resource management interface: the
NFVO or the VNFM. The use cases include:

* Notification of changes in capacity in the NFVI

* Query of available resource capacity

¢ Reservation of a resource or set of resources for immediate use
¢ Reservation of a resource or set of resources for future use

The Promise project has performed a gap analysis in order to fulfil the required functionality. Based on the gap analysis
an implementation plan and way forward has been proposed, including a possible design architecture and high level
information model. Immediate next steps of this project is to deliver a working Proof-of-Concepts (PoC) and engage
upstream communities to fill out the gaps identified by Promise.

31

Promise: Resource Management, Release 1.0.2

32

Chapter 6. Summary and conclusion

CHAPTER
SEVEN

ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE

module opnfv-promise {
namespace "urn:opnfv:promise";
prefix promise;

import complex-types { prefix ct; }
import iana-crypt-hash { prefix ianach; }
import ietf-inet-types { prefix inet; }
import ietf-yang-types { prefix yang; }
import opnfv-promise-vim { prefix vim; }

feature multi-provider ({
description "";

description
"OPNFV Promise Resource Reservation/Allocation controller module";

revision 2015-04-16 {
description "Initial revision.";

revision 2015-08-06 {
description "Updated to incorporate YangForge framework";

grouping resource-capacity {
container capacity {

container quota { description 'Conceptual container that should be extended'; }

container usage { description 'Conceptual container that should be extended';
config false; }

container reserved { description 'Conceptual container that should be extended';
config false; }

container available { description 'Conceptual container that should be extended';
config false; }

grouping compute-capacity {
leaf cores { type number; }
leaf ram { type number; }
leaf instances { type number; }

grouping networking-capacity {

33

Promise: Resource Management, Release 1.0.2

leaf network { type number; }
leaf port { type number; }
leaf router { type number; }
leaf subnet { type number; }
leaf address { type number; }

ct:complex-type ResourceReservation {
ct:extends vim:ResourceElement;

description
"Contains the capacities of various resource services being reserved
along with any resource elements needed to be available at
the time of allocation(s).";

reference "OPNFV-PROMISE, Section 3.4.1";

leaf start { type yang:date-and-time; }
leaf end { type vang:date-and-time; }
leaf expiry {
description "Duration in seconds from start when unallocated reserved resources
will be released back into the pool";
type number; units "seconds";
}
leaf zone { type instance-identifier { ct:instance-type vim:AvailabilityZone; } }
container capacity {
uses vim:compute-capacity;
uses vim:networking-capcity;
uses vim:storage-capacity;
}
leaf-1list resources {
description
"Reference to a collection of existing resource elements required by
this reservation. It can contain any instance derived from
ResourceElement, such as ServerInstances or even other
ResourceReservations. If the ResourceReservation request is
accepted, the ResourceElement (s) listed here will be placed
into 'protected' mode as to prevent accidental delete.";
type instance-identifier {
ct:instance-type vim:ResourceElement;
}
// following 'must' statement applies to each element
must "boolean (/provider/elements/*[@id=1d])" {
error-message "One or more of the ResourceElement (s) does not exist in
the provider to be reserved";

leaf provider {
if-feature multi-provider;
config false;

description
"Reference to a specified existing provider from which this reservation
will be drawn if used in the context of multi-provider
environment.";
type instance-identifier {
ct:instance-type vim:ResourceProvider;

34 Chapter 7. ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE

Promise: Resource Management, Release 1.0.2

require-instance true;

container remaining {
config false;
description
"Provides visibility into total remaining capacity for this
reservation based on allocations that took effect utilizing
this reservation ID as a reference.";

uses vim:compute-capacity;
uses vim:networking-capcity;
uses vim:storage-capacity;

leaf-1list allocations {
config false;
description
"Reference to a collection of consumed allocations referencing
this reservation.";
type instance-identifier {
ct:instance-type ResourceAllocation;

ct:complex-type ResourceAllocation {
ct:extends vim:ResourceElement;

description
"Contains a list of resources to be allocated with optional reference
to an existing reservation.

If reservation is specified but this request is received prior
to reservation start timestamp, then it will be rejected unless

'allocate-on-start' is set to true. 'allocate-on—-start' allows
the allocation to be auto-initiated and scheduled to run in the
future.

The 'priority' state indicates the classification for dealing
with resource starvation scenarios. Lower priority allocations
will be forcefully terminated to allow for higher priority
allocations to be fulfilled.

Allocations without reference to an existing reservation will
receive the lowest priority.";

reference "OPNFV-PROMISE, Section 3.4.3";

leaf reservation {
description "Reference to an existing reservation identifier";

type instance-identifier {
ct:instance-type ResourceReservation;
require—-instance true;

35

Promise: Resource Management, Release 1.0.2

leaf allocate-on-start {
description
"If 'allocate-on-start' is set to true, the 'planned' allocations will
take effect automatically at the reservation 'start' date/time.";
type boolean; default false;

ct:instance-1list resources {
description "Contains list of new ResourceElements that will be allocated";
ct:instance-type vim:ResourceElement;

leaf priority {
description
"Reflects current priority level of the allocation according to classification rul
type number;
config false;

// MAIN CONTAINER
container promise {
ct:instance-list providers {
description "Aggregate collection of all registered ResourceProvider instances";
ct:instance-type vim:ResourceProvider;
config false;

// augment compute container with capacity elements
augment "compute" {
uses resource-capacity {
augment "capacity/quota" { uses compute-capacity; }
augment "capacity/usage" { uses compute-capacity; }
augment "capacity/reserved" { uses compute-capacity; }
augment "capacity/available" { uses compute-capacity; }

// augment networking container with capacity elements
augment "networking" {
uses resource-capacity {

if-feature has-networking-capacity;
augment "capacity/quota" { uses networking-capacity; }
augment "capacity/usage" { uses networking-capacity; }
augment "capacity/reserved" { uses networking-capacity; }
augment "capacity/available" { uses networking-capacity; }

// track references to reservations for this resource provider
leaf-1list reservations {
type instance-identifier {
ct:instance-type ResourceReservation;

ct:instance—-list reservations {
description "Aggregate collection of all registered ResourceReservation instances";

36 Chapter 7. ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE

es";

Promise: Resource Management, Release 1.0.2

ct:instance-type ResourceReservation;

ct:instance-list allocations {

description "Aggregate collection of all active ResourceAllocation instances";
ct:instance-type ResourceAllocation;

rpc add-provider {
description "This operation allows you to register a new ResourceProvider
into promise management service";
input {
leaf provider {
description "Select a specific resource provider";
mandatory true;
type enumeration {
enum openstack;
enum hp;
enum rackspace;
enum amazon {
status planned;
}
enum joyent {
status planned;
}
enum azure {
status planned;

}
leaf username {
type string;
mandatory true;
}
leaf password {
type ianach:crypt-hash;
mandatory true;
}
leaf endpoint {
type inet:uri;
description "The target URL endpoint for the resource provider";
mandatory true;
}
leaf region {
type string;
description "Optional specified regsion for the provider";

}
output {
leaf id {
description "Unique identifier for the newly added provider found in /promise/proy
type instance-identifier {
ct:instance-type ResourceProvider;

}
leaf result {
type enumeration {

riders";

37

Promise: Resource Management, Release 1.0.2

enum success;
enum errory;

}
rpc remove-provider;
rpc list-providers;

rpc check-capacity;

rpc list-reservations;

rpc create-reservation;
rpc update-reservation;
rpc cancel-reservation;

rpc list-allocations;
rpc create-allocation;

notification reservation-event;
notification capacity-event;
notification allocation-event;

}

38 Chapter 7. ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE

CHAPTER
EIGHT

ANNEX B: DOCUMENT REVISION

Version Description
1.0.1
JIRA: PROMISE-23
» Reference to YangForge Framework
* Corrections to figure 3.1
1.0.2

JIRA: PROMISE-11
* OPNFV Logo Added
» Alignment to ETSI NFV Specs

39

Promise: Resource Management, Release 1.0.2

40

Chapter 8. ANNEX B: DOCUMENT REVISION

BIBLIOGRAPHY

PROMISE] OPNFV, “Promise” requirements project, [Online]. Available at https://wiki.opnfv.org/promise
BLAZAR] OpenStack Blazar Project, [Online]. Available at https://wiki.openstack.org/wiki/Blazar

PROMOSS] Promise reference implementation, [Online]. Available at https://github.com/opnfv/promise

NFVMAN] ETSI GS NFV MAN 001, “Network Function Virtualisation (NFV); Management and Orchestration”
NFV003] ETSI GS NFV 003, “Network Function Virtualisation (NFV); Terminology for Main Concepts in NFV”

NFVIFAO010] ETSI GS NFV IFA 010, “Network Function Virtualisation (NFV); Management and Orchestration;
Functional Requirements Specification”

[NFVIFA005] ETSI GS NFV IFA 005, “Network Function Virtualisation (NFV); Management and Orchestration;
Or-Vi reference point - Interface and Information Model Specification”

[NFVIFA006] ETSI GS NFV IFA 006 “Network Function Virtualisation (NFV); Management and Orchestration;
Vi-Vnfm reference point - Interface and Information Model Specification”

[ETSINFV] ETSI NFYV, [Online]. Available at http://www.etsi.org/technologies-clusters/technologies/nfv

[
[
[
[YANGFO] Yangforge Project, [Online]. Available at https://github.com/opnfv/yangforge
[
[
[

41

https://wiki.opnfv.org/promise
https://wiki.openstack.org/wiki/Blazar
https://github.com/opnfv/promise
https://github.com/opnfv/yangforge
http://www.etsi.org/technologies-clusters/technologies/nfv

	Introduction
	Problem description

	Use cases and scenarios
	Resource capacity management
	Resource reservation for immediate use
	Resource reservation for future use
	Co-existence of reservations and allocation requests without reservation

	High level architecture and general features
	Architecture Overview
	General Features
	High level northbound interface specification
	Information elements

	Gap analysis in upstream projects
	OpenStack

	Detailed architecture and message flows
	Detailed northbound interface specification
	Detailed Message Flows

	Summary and conclusion
	ANNEX A: PROMISE YANG SCHEMA BASED ON YANGFORGE
	ANNEX B: DOCUMENT REVISION
	Bibliography

