
OPNFV Configuration Guide
Release arno.2015.1.0 (22cdec3)

OPNFV

July 06, 2016

CONTENTS

1 Abstract 1

2 Configuration Options 3
2.1 OPNFV Scenarios . 3

3 Installer Configuration 7
3.1 Lab Setup Guide . 7
3.2 Apex configuration . 9
3.3 Compass4nfv configuration . 13
3.4 Fuel configuration . 18
3.5 JOID Configuration . 22

4 Feature Configuration 29
4.1 Copper configuration . 29
4.2 Doctor Configuration . 30
4.3 IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 31
4.4 Installing OVSNFV Fuel Plugin . 43
4.5 Promise Feature Configuration Overview . 44
4.6 Configuring SDNVPN features . 46

5 Post Configuration Activities 47
5.1 Scenario validation activities . 47
5.2 Feature validation activities . 48
5.3 Additional testing and validation activities . 50

i

ii

CHAPTER

ONE

ABSTRACT

This document provides guidance and instructions for the configuration of the Brahmaputra release of OPNFV.

The release includes four installer tools leveraging different technologies; Apex, Compass4nfv, Fuel and JOID, which
deploy components of the platform.

This document provides a guide for the selection of tools and components including guidelines for how to deploy and
configure the platform to an operational state.

1

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

2 Chapter 1. Abstract

CHAPTER

TWO

CONFIGURATION OPTIONS

OPNFV provides a variety of virtual infrastructure deployments called scenarios designed to host virtualised network
functions (VNF’s). Each scenario provide specific capabilities and/or components aimed to solve specific problems
for the deployment of VNF’s. A scenario may include components such as OpenStack, OpenDaylight, OVS, KVM
etc. where each scenario will include different source components or configurations.

2.1 OPNFV Scenarios

Each OPNFV scenario provides unique features and capabilities, it is important to understand your target platform
capabilities before installing and configuring your target scenario. This configuration guide outlines how to install and
configure components in order to enable the features you require.

Scenarios are implemented as deployable compositions through integration with an installation tool. OPNFV supports
multiple installation tools and for any given release not all tools will support all scenarios. While our target is to
establish parity across the installation tools to ensure they can provide all scenarios, the practical challenge of achieving
that goal for any given feature and release results in some disparity.

2.1.1 Brahmaputra scenario overeview

The following table provides an overview of the installation tools and available scenario’s in the Brahmaputra release
of OPNFV.

3

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Scenario status is indicated by a weather pattern icon. All scenarios listed with a weather pattern are possible to deploy
and run in your environment or a Pharos lab, however they may have known limitations or issues as indicated by the
icon.

Weather pattern icon legend:

Weather Icon Scenario Status

Stable, no known issues

Stable, documented limitations

Deployable, stability or feature limitations

Not deployed with this installer

Scenarios that are not yet in a state of “Stable, no known issues” will continue to be stabilised and updates will be
made on the stable/brahmaputra branch. While we intend that all Brahmaputra scenarios should be stable it is worth

4 Chapter 2. Configuration Options

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

checking regularly to see the current status. Due to our dependency on upstream communities and code some issues
may not be resolved prior to the C release.

2.1.2 Scenario Naming

In OPNFV scenarios are identified by short scenario names, these names follow a scheme that identifies the key
components and behaviours of the scenario. The rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

Details of the fields are

• os: mandatory

– Refers to the platform type used

– possible value: os (OpenStack)

• [controller]: mandatory

– Refers to the SDN controller integrated in the platform

– example values: nosdn, ocl, odl, onos

– [feature]: mandatory

* Refers to the feature projects supported by the scenario

* example values: nofeature, kvm, ovs, sfc

– [mode]: mandatory

* Refers to the deployment type, which may include for instance high availability

* possible values: ha, noha

– [option]: optional

* Used for the scenarios those do not fit into naming scheme.

* The optional field in the short scenario name should not be included if there is no optional scenario.

Some examples of supported scenario names are:

• os-nosdn-kvm-noha

– This is an OpenStack based deployment using neutron including the OPNFV enhanced KVM hypervisor

• os-onos-nofeature-ha

– This is an OpenStack deployment in high availability mode including ONOS as the SDN controller

• os-odl_l2-sfc

– This is an OpenStack deployment using OpenDaylight and OVS enabled with SFC features

2.1.3 Installing your scenario

There are two main methods of deploying your target scenario, one method is to follow this guide which will walk you
through the process of deploying to your hardware using scripts or ISO images, the other method is to set up a Jenkins
slave and connect your infrastructure to the OPNFV Jenkins master.

For the purposes of evaluation and development a number of Brahmaputra scenarios are able to be deployed virtually
to mitigate the requirements on physical infrastructure. Details and instructions on performing virtual deployments
can be found in the installer specific installation instructions.

2.1. OPNFV Scenarios 5

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

To set up a Jenkins slave for automated deployment to your lab, refer to the Jenkins slave connect guide.

This document will describe how to install and configure your target OPNFV scenarios. Remember to check the
associated validation procedures section following your installation for details of the use cases and tests that have been
run.

6 Chapter 2. Configuration Options

http://artifacts.opnfv.org/brahmaputra.1.0/docs/opnfv-jenkins-slave-connection.brahmaputra.1.0.html

CHAPTER

THREE

INSTALLER CONFIGURATION

Installing the OPNFV platform requires either a physical environment as defined in the Pharos lab specification,
or a virtual infrastructure. When configuring a physical infrastructure it is strongly advised to follow the Pharos
configuration material.

3.1 Lab Setup Guide

Provides an overview for setting up a Pharos lab. A full set of pharos_master documents are maintained in the pharos
repo.

When setting up an OPNFV community lab ...

• Provide the Pharos community with details of the intended setup, including ...

– Overview of resources are being offered to the community, intended purpose and known limitations

– Lab owner name with contacts

– Timelines for availablity for development, test, release production, ...

• Update the Pharos Wiki with lab details

– Lab map, organization, contacts, status, location, resources, role, etc.

– https://wiki.opnfv.org/pharos#community_labs

– pharos_wiki

• Update the Pharos project information file “Current Labs”

– pharos_information

• Create new Wiki pages for lab and POD specific information

– Access procedures

– Usage guidelines for developers

– Update infomtation as PODs are re-assigned or usage/availability changes

• Fill Lab and POD templates ... pharos_lab ... pharos_pod

– Note that security sensitive lab information should be stored in the secure Pharos repo

• Connect PODs to Jenkins/CI

7

https://wiki.opnfv.org/pharos#community_labs

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

3.1.1 Jump Server Configuration

Jump server install procedures are maintained by each installer project. Addional Jump server configuraton BKMs
will be maintained here. The below install information was used for Fuel however may be outdated (please refer to
Fuel Installer documents).

Procedure

1. Obtain CentOS 7 Minimal ISO and install

wget http://mirrors.kernel.org/centos/7/isos/x86_64/CentOS-7-x86_64-Minimal-1503-01.iso

2. Set parameters appropriate for your environment during installation

3. Disable NetworkManager

systemctl disable NetworkManager

4. Configure your /etc/sysconfig/network-scripts/ifcfg-* files for your network

5. Restart networking

service network restart

6. Edit /etc/resolv.conf and add a nameserver

vi /etc/resolv.conf

7. Install libvirt & kvm

yum -y update yum -y install kvm qemu-kvm libvirt systemctl enable
libvirtd

8. Reboot:

shutdown -r now

9. If you wish to avoid annoying delay when use ssh to log in, disable DNS lookups:

vi /etc/ssh/sshd_config

Uncomment “UseDNS yes”, change ‘yes’ to ‘no’.

Save

10. Restart sshd

systemctl restart sshd

11. Install virt-install

yum -y install virt-install

12. Visit artifacts.opnfv.org and D/L the OPNFV Fuel ISO

13. Create a bridge using the interface on the PXE network, for example: br0

14. Make a directory owned by qemu:

mkdir /home/qemu; mkdir -p /home/qemu/VMs/fuel-6.0/disk

chown -R qemu:qemu /home/qemu

15. Copy the ISO to /home/qemu

cd /home/qemu

virt-install -n opnfv-2015-05-22_18-34-07-fuel -r 4096
--vcpus=4 --cpuset=0-3 -c opnfv-2015-05-22_18-34-07.iso

8 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

--os-type=linux --os-variant=rhel6 --boot hd,cdrom --disk
path=/home/qemu/VMs/mirantis-fuel-6.0/disk/fuel-vhd0.qcow2,bus=virtio,size=50,format=qcow2
-w bridge=br0,model=virtio --graphics vnc,listen=0.0.0.0

16. Temporarily flush the firewall rules to make things easier:

iptables -F

17. Connect to the console of the installing VM with your favorite VNC client.

18. Change the IP settings to match the pod, use an IP in the PXE/Admin network for the Fuel Master

The following sections describe the per installer configuration options. Further details for each installer are captured
in the referred project documentation.

3.2 Apex configuration

3.2.1 Introduction

This document describes the steps to install an OPNFV Colorado reference platform, as defined by the Genesis Project
using the Apex installer.

The audience is assumed to have a good background in networking and Linux administration.

3.2.2 Preface

Apex uses Triple-O from the RDO Project OpenStack distribution as a provisioning tool. The Triple-O image based
life cycle installation tool provisions an OPNFV Target System (3 controllers, n number of compute nodes) with
OPNFV specific configuration provided by the Apex deployment tool chain.

The Apex deployment artifacts contain the necessary tools to deploy and configure an OPNFV target sys-
tem using the Apex deployment toolchain. These artifacts offer the choice of using the Apex bootable ISO
(opnfv-apex-colorado.iso) to both install CentOS 7 and the necessary materials to deploy or the Apex RPMs
(opnfv-apex*.rpm), and their associated dependencies, which expects installation to a CentOS 7 libvirt enabled
host. The RPM contains a collection of configuration files, prebuilt disk images, and the automatic deployment script
(opnfv-deploy).

An OPNFV install requires a “Jumphost” in order to operate. The bootable ISO will allow you to install a cus-
tomized CentOS 7 release to the Jumphost, which includes the required packages needed to run opnfv-deploy.
If you already have a Jumphost with CentOS 7 installed, you may choose to skip the ISO step and simply install the
(opnfv-apex*.rpm) RPMs. The RPMs are the same RPMs included in the ISO and include all the necessary disk
images and configuration files to execute an OPNFV deployment. Either method will prepare a host to the same ready
state for OPNFV deployment.

opnfv-deploy instantiates a Triple-O Undercloud VM server using libvirt as its provider. This VM is then config-
ured and used to provision the OPNFV target deployment (3 controllers, n compute nodes). These nodes can be either
virtual or bare metal. This guide contains instructions for installing either method.

3.2.3 Installation High-Level Overview - Bare Metal Deployment

The setup presumes that you have 6 or more bare metal servers already setup with network connectivity on at least 2
interfaces for all servers via a TOR switch or other network implementation.

3.2. Apex configuration 9

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

The physical TOR switches are not automatically configured from the OPNFV reference platform. All the networks
involved in the OPNFV infrastructure as well as the provider networks and the private tenant VLANs needs to be
manually configured.

The Jumphost can be installed using the bootable ISO or by other means including the (opnfv-apex*.rpm) RPMs,
their dependencies and virtualization capabilities. The Jumphost should then be configured with an IP gateway on its
admin or public interface and configured with a working DNS server. The Jumphost should also have routable access
to the lights out network.

opnfv-deploy is then executed in order to deploy the Undercloud VM. opnfv-deploy uses three
configuration files in order to know how to install and provision the OPNFV target system. The in-
formation gathered under section Execution Requirements (Bare Metal Only) is put into the YAML file
/etc/opnfv-apex/inventory.yaml configuration file. Deployment options are put into the YAML file
/etc/opnfv-apex/deploy_settings.yaml. Alternatively there are pre-baked deploy_settings files avail-
able in /etc/opnfv-apex/. These files are named with the naming convention os-sdn_controller-enabled_feature-
[no]ha.yaml. These files can be used in place of the /etc/opnfv-apex/deploy_settings.yaml file if one
suites your deployment needs. Networking definitions gathered under section Network Requirements are put into
the YAML file /etc/opnfv-apex/network_settings.yaml. opnfv-deploy will boot the Undercloud
VM and load the target deployment configuration into the provisioning toolchain. This includes MAC address, IPMI,
Networking Environment and OPNFV deployment options.

Once configuration is loaded and the Undercloud is configured it will then reboot the nodes via IPMI. The nodes
should already be set to PXE boot first off the admin interface. The nodes will first PXE off of the Undercloud PXE
server and go through a discovery/introspection process.

Introspection boots off of custom introspection PXE images. These images are designed to look at the properties of
the hardware that is booting off of them and report the properties of it back to the Undercloud node.

After introspection Undercloud will execute a Heat Stack Deployment to being node provisioning and configuration.
The nodes will reboot and PXE again off the Undercloud PXE server to provision each node using the Glance disk
images provided by Undercloud These disk images include all the necessary packages and configuration for an OPNFV
deployment to execute. Once the node’s disk images have been written to disk the nodes will boot off the newly written
disks and execute cloud-init which will execute the final node configuration. This configuration is largly completed by
executing a puppet apply on each node.

3.2.4 Installation High-Level Overview - VM Deployment

The VM nodes deployment operates almost the same way as the bare metal deployment with a few differences.
opnfv-deploy still deploys an Undercloud VM. In addition to the Undercloud VM a collection of VMs (3 control
nodes + 2 compute for an HA deployment or 1 control node and 1 compute node for a Non-HA Deployment) will
be defined for the target OPNFV deployment. The part of the toolchain that executes IPMI power instructions calls
into libvirt instead of the IPMI interfaces on baremetal servers to operate the power managment. These VMs are then
provisioned with the same disk images and configuration that baremetal would be.

To Triple-O these nodes look like they have just built and registered the same way as bare metal nodes, the main
difference is the use of a libvirt driver for the power management.

3.2.5 Installation Guide - Bare Metal Deployment

This section goes step-by-step on how to correctly install and provision the OPNFV target system to bare metal nodes.

Install Bare Metal Jumphost

1a. If your Jumphost does not have CentOS 7 already on it, or you would like to do a fresh install, then down-
load the Apex bootable ISO from OPNFV artifacts <http://artifacts.opnfv.org/>. There have been isolated

10 Chapter 3. Installer Configuration

http://artifacts.opnfv.org/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

reports of problems with the ISO having trouble completing installation successfully. In the unexpected
event the ISO does not work please workaround this by downloading the CentOS 7 DVD and perform-
ing a “Virtualization Host” install. If you perform a “Minimal Install” or install type other than “Virtu-
alization Host” simply run sudo yum groupinstall "Virtualization Host" && chkconfig
libvirtd on && reboot to install virtualzation support and enable libvirt on boot. If you use the CentOS
7 DVD proceed to step 1b once the CentOS 7 with “Virtualzation Host” support is completed.

1b. If your Jump host already has CentOS 7 with libvirt running on it then install the install the RDO Release
RPM:

sudo yum install -y https://www.rdoproject.org/repos/rdo-release.rpm
opnfv-apex-{version}.rpm

The RDO Project release repository is needed to install OpenVSwitch, which is a dependency of opnfv-apex. If
you do not have external connectivity to use this repository you need to download the OpenVSwitch RPM from
the RDO Project repositories and install it with the opnfv-apex RPM.

2a. Boot the ISO off of a USB or other installation media and walk through installing OPNFV CentOS 7. The
ISO comes prepared to be written directly to a USB drive with dd as such:

dd if=opnfv-apex.iso of=/dev/sdX bs=4M

Replace /dev/sdX with the device assigned to your usb drive. Then select the USB device as the boot media on
your Jumphost

2b. If your Jump host already has CentOS 7 with libvirt running on it then install the opnfv-apex RPMs from
OPNFV artifacts <http://artifacts.opnfv.org/>. The following RPMS are available for installation:

• opnfv-apex - OpenDaylight L2 / L3 and ONOS support **

• opnfv-apex-onos - ONOS support **

• opnfv-apex-opendaylight-sfc - OpenDaylight SFC support **

• opnfv-apex-undercloud - (required) Undercloud Image

• opnfv-apex-common - (required) Supporting config files and scripts

• python34-markupsafe - (required) Dependency of opnfv-apex-common ***

• python3-jinja2 - (required) Dependency of opnfv-apex-common ***

** One or more of these RPMs is required Only one of opnfv-apex, opnfv-apex-onos and opnfv-apex-
opendaylight-sfc is required. It is safe to leave the unneeded SDN controller’s RPMs uninstalled if you do
not intend to use them.

*** These RPMs are not yet distributed by CentOS or EPEL. Apex has built these for distribution with Apex
while CentOS and EPEL do not distribute them. Once they are carried in an upstream channel Apex will no
longer carry them and they will not need special handling for installation.

To install these RPMs download them to the local disk on your CentOS 7 install and pass the
file names directly to yum: sudo yum install python34-markupsafe-<version>.rpm
python3-jinja2-<version>.rpm sudo yum install opnfv-apex-<version>.rpm
opnfv-apex-undercloud-<version>.rpm opnfv-apex-common-<version>.rpm

3. After the operating system and the opnfv-apex RPMs are installed, login to your Jumphost as root.

4. Configure IP addresses on the interfaces that you have selected as your networks.

5. Configure the IP gateway to the Internet either, preferably on the public interface.

6. Configure your /etc/resolv.conf to point to a DNS server (8.8.8.8 is provided by Google).

3.2. Apex configuration 11

http://artifacts.opnfv.org/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Creating a Node Inventory File

IPMI configuration information gathered in section Execution Requirements (Bare Metal Only) needs to be added to
the inventory.yaml file.

1. Copy /usr/share/doc/opnfv/inventory.yaml.example as your inventory file template to
/etc/opnfv-apex/inventory.yaml.

2. The nodes dictionary contains a definition block for each baremetal host that will be deployed. 1 or more
compute nodes and 3 controller nodes are required. (The example file contains blocks for each of these already).
It is optional at this point to add more compute nodes into the node list.

3. Edit the following values for each node:

• mac_address: MAC of the interface that will PXE boot from Undercloud

• ipmi_ip: IPMI IP Address

• ipmi_user: IPMI username

• ipmi_password: IPMI password

• pm_type: Power Management driver to use for the node

• cpus: (Introspected*) CPU cores available

• memory: (Introspected*) Memory available in Mib

• disk: (Introspected*) Disk space available in Gb

• arch: (Introspected*) System architecture

• capabilities: (Optional**) Intended node role (profile:control or profile:compute)

• Introspection looks up the overcloud node’s resources and overrides these value. You can

leave default values and Apex will get the correct values when it runs introspection on the nodes.

** If capabilities profile is not specified then Apex will select node’s roles in the OPNFV cluster in a non-deterministic
fashion.

Creating the Settings Files

Edit the 2 settings files in /etc/opnfv-apex/. These files have comments to help you customize them.

1. deploy_settings.yaml This file includes basic configuration options deployment. Alternatively, there
are pre-built deploy_settings files available in (/etc/opnfv-apex/). These files are named
with the naming convention os-sdn_controller-enabled_feature-[no]ha.yaml. These files can be used
in place of the (/etc/opnfv-apex/deploy_settings.yaml) file if one suites your deploy-
ment needs. If a pre-built deploy_settings file is choosen there is no need to customize
(/etc/opnfv-apex/deploy_settings.yaml). The pre-built file can be used in place of the
(/etc/opnfv-apex/deploy_settings.yaml) file.

2. network_settings.yaml This file provides Apex with the networking information that satisfies the prerequisite
Network Requirements. These are specific to your environment.

Running opnfv-deploy

You are now ready to deploy OPNFV using Apex! opnfv-deploy will use the inventory and settings files to deploy
OPNFV.

Follow the steps below to execute:

12 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

1. Execute opnfv-deploy sudo opnfv-deploy [--flat] -n network_settings.yaml -i
inventory.yaml -d deploy_settings.yaml If you need more information about the options that
can be passed to opnfv-deploy use opnfv-deploy --help –flat collapses all networks to a single nic, only
uses the admin network from the network settings file. -n network_settings.yaml allows you to customize your
networking topology.

2. Wait while deployment is executed. If something goes wrong during this part of the process, it is most likely
a problem with the setup of your network or the information in your configuration files. You will also notice
different outputs in your shell.

3. The message “Overcloud Deployed” will display when When the deployment is complete. Just above this
message there will be a URL that ends in port http://<host>:5000. This url is also the endpoint for the OPNFV
Horizon Dashboard if connected to on port 80.

3.3 Compass4nfv configuration

This document describes providing guidelines on how to install and configure the Brahmaputra release of OPNFV
when using Compass as a deployment tool including required software and hardware configurations.

Installation and configuration of host OS, OpenStack, OpenDaylight, ONOS, Ceph etc. can be supported by Compass
on VMs or Bare Metal nodes.

The audience of this document is assumed to have good knowledge in networking and Unix/Linux administration.

3.3.1 Preconditions

Before starting the installation of the Brahmaputra release of OPNFV, some planning must be done.

Retrieving the installation ISO image

First of all, The installation ISO is needed for deploying your OPNFV environment, it included packages of Compass,
OpenStack, OpenDaylight, ONOS and so on.

The stable release ISO can be retrieved via OPNFV software download page

The daily build ISO can be retrieved via OPNFV artifacts repository:

http://artifacts.opnfv.org/

NOTE: Search the keyword “Compass4nfv/Brahmaputra” to locate the ISO image.

E.g. compass4nfv/brahmaputra/opnfv-2016-01-16_15-03-18.iso compass4nfv/brahmaputra/opnfv-2016-01-16_15-
03-18.properties

The name of iso image includes the time of iso building, you can get the daily ISO according the building time. The git
url and sha1 of Compass4nfv are recorded in properties files, According these, the corresponding deployment scripts
can be retrieved.

Getting the deployment scripts

To retrieve the repository of Compass4nfv on Jumphost use the following command:

• git clone https://gerrit.opnfv.org/gerrit/compass4nfv

To get stable/brahmaputra release, you can use the following command:

3.3. Compass4nfv configuration 13

http:/
https://www.opnfv.org/software/
http://artifacts.opnfv.org/
https://gerrit.opnfv.org/gerrit/compass4nfv

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

• git checkout brahmaputra.1.0

NOTE: PLEASE DO NOT GIT CLONE COMPASS4NFV IN root DIRECTORY.

If you don’t have a Linux foundation user id, get it first by the url:

https://wiki.opnfv.org/developer/getting_started

If you want to use a daily release ISO, please checkout the corresponding sha1 to get the deployment scripts:

E.g. Git sha1 in file “opnfv-2016-01-16_15-03-18.properties” is d5a13ce7cc2ce89946d34b0402ecf33c1d291851

• git checkout d5a13ce7cc2ce89946d34b0402ecf33c1d291851

Preparing the installation environment

If you have only 1 Bare Metal server, Virtual deployment is recommended. if more than or equal 3 servers, the
Bare Metal deployment is recommended. The minimum number of servers for Bare metal deployment is 3, 1 for
JumpServer(Jumphost), 1 for controller, 1 for compute.

3.3.2 Setup Requirements

Jumphost Requirements

The Jumphost requirements are outlined below:

1. Ubuntu 14.04 (Pre-installed).

2. Root access.

3. libvirt virtualization support.

4. Minimum 2 NICs.

• PXE installation Network (Receiving PXE request from nodes and providing OS provisioning)

• IPMI Network (Nodes power control and set boot PXE first via IPMI interface)

• External Network (Optional: Internet access)

5. 16 GB of RAM for a Bare Metal deployment, 64 GB of RAM for a VM deployment.

6. Minimum 100G storage.

Bare Metal Node Requirements

Bare Metal nodes require:

1. IPMI enabled on OOB interface for power control.

2. BIOS boot priority should be PXE first then local hard disk.

3. Minimum 3 NICs.

• PXE installation Network (Broadcasting PXE request)

• IPMI Network (Receiving IPMI command from Jumphost)

• External Network (OpenStack mgmt/external/storage/tenant network)

14 Chapter 3. Installer Configuration

https://wiki.opnfv.org/developer/getting_started

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Network Requirements

Network requirements include:

1. No DHCP or TFTP server running on networks used by OPNFV.

2. 2-6 separate networks with connectivity between Jumphost and nodes.

• PXE installation Network

• IPMI Network

• Openstack mgmt Network*

• Openstack external Network*

• Openstack tenant Network*

• Openstack storage Network*

3. Lights out OOB network access from Jumphost with IPMI node enabled (Bare Metal deployment only).

4. External network has Internet access, meaning a gateway and DNS availability.

The networks with(*) can be share one NIC(Default configuration) or use an exclusive NIC(Reconfigurated in
network.yml).

Execution Requirements (Bare Metal Only)

In order to execute a deployment, one must gather the following information:

1. IPMI IP addresses for the nodes.

2. IPMI login information for the nodes (user/pass).

3. MAC address of Control Plane / Provisioning interfaces of the Bare Metal nodes.

3.3.3 Installation Guide (BM Deployment)

Nodes Configuration (BM Deployment)

The bellow file is the inventory template of deployment nodes:

“compass4nfv/deploy/conf/hardware_environment/huawei_us_lab/pod1/dha.yml”

You can write your own IPMI IP/User/Password/Mac address/roles reference to it.

• ipmiVer – IPMI interface version for deployment node support. IPMI 1.0 or IPMI 2.0 is available.

• ipmiIP – IPMI IP address for deployment node. Make sure it can access from Jumphost.

• ipmiUser – IPMI Username for deployment node.

• ipmiPass – IPMI Password for deployment node.

• mac – MAC Address of deployment node PXE NIC .

• name – Host name for deployment node after installation.

• roles – Components deployed.

Assignment of different roles to servers

E.g. Openstack only deployment roles setting

3.3. Compass4nfv configuration 15

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

hosts:
- name: host1
roles:

- controller
- ha

- name: host2
roles:

- compute

NOTE: IF YOU SELECT MUTIPLE NODES AS CONTROLLER, THE ‘ha’ role MUST BE SELECT, TOO.

E.g. Openstack and ceph deployment roles setting

hosts:
- name: host1
roles:

- controller
- ha
- ceph-adm
- ceph-mon

- name: host2
roles:

- compute
- ceph-osd

E.g. Openstack and ODL deployment roles setting

hosts:
- name: host1
roles:

- controller
- ha
- odl

- name: host2
roles:

- compute

E.g. Openstack and ONOS deployment roles setting

hosts:
- name: host1
roles:

- controller
- ha
- onos

- name: host2
roles:

- compute

Network Configuration (BM Deployment)

Before deployment, there are some network configuration to be checked based on your network topology. Com-
pass4nfv network default configuration file is “compass4nfv/deploy/conf/network_cfg.yaml”. You can write your
own reference to it.

16 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

The following figure shows the default network configuration.

+--+ +--+ +--+
	+------------+				
+------+ Jumphost +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host1 +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host2 +------+					
	+------+-----+				
	+------------+ +-----+				
	+------------+				
+------+ host3 +------+					
	+------+-----+				
	+------------+ +-----+				
+-++ ++-+ +-++

^ ^ ^
| | |
| | |

+-+-------------------------+ | |
| External Network | | |
+---------------------------+ | |

+-----------------------+---+ |
| IPMI Network | |
+---------------------------+ |

+-------------------------+-+
| PXE(Installation) Network |
+---------------------------+

Start Deployment (BM Deployment)

1. Set PXE/Installation NIC for Jumphost. (set eth1 E.g.)

export INSTALL_NIC=eth1

2. Set OS version for nodes provisioning. (set Ubuntu14.04 E.g.)

export OS_VERSION=trusty

3. Set OpenStack version for deployment nodes. (set liberty E.g.)

export OPENSTACK_VERSION=liberty

4. Set ISO image that you want to deploy

3.3. Compass4nfv configuration 17

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

export ISO_URL=file:///${YOUR_OWN}/compass.iso
or
export ISO_URL=http://artifacts.opnfv.org/compass4nfv/brahmaputra/opnfv-release.iso

5. Run deploy.sh with inventory and network configuration

./deploy.sh --dha ${YOUR_OWN}/dha.yml --network ${YOUR_OWN}/network.yml

3.4 Fuel configuration

This section provides guidelines on how to install and configure the Brahmaputra release of OPNFV when using Fuel
as a deployment tool including required software and hardware configurations.

For detailed instructions on how to install the Brahmaputra release using Fuel, see Reference 13 in section “Fuel
associated references” below.

3.4.1 Pre-configuration activities

Planning the deployment

Before starting the installation of the Brahmaputra release of OPNFV when using Fuel as a deployment tool, some
planning must be done.

Familiarize yourself with the Fuel by reading the following documents:

• Fuel planning guide, please see Reference: 8 in section “Fuel associated references” below.

• Fuel quick start guide, please see Reference: 9 in section “Fuel associated references” below.

• Fuel operations guide, please see Reference: 10 in section “Fuel associated references” below.

• Fuel Plugin Developers Guide, please see Reference: 11 in section “Fuel associated references” below.

Before the installation can start, a number of deployment specific parameters must be collected, those are:

1. Provider sub-net and gateway information

2. Provider VLAN information

3. Provider DNS addresses

4. Provider NTP addresses

5. Network overlay you plan to deploy (VLAN, VXLAN, FLAT)

6. Monitoring Options you want to deploy (Ceilometer, Syslog, etc.)

7. How many nodes and what roles you want to deploy (Controllers, Storage, Computes)

8. Other options not covered in the document are available in the links above

Retrieving the ISO image

First of all, the Fuel deployment ISO image needs to be retrieved, the Fuel .iso image of the Brahmaputra release can
be found at Reference: 2

Alternatively, you may build the .iso from source by cloning the opnfv/fuel git repository. Detailed instructions on
how to build a Fuel OPNFV .iso can be found in Reference: 14 at section “Fuel associated references” below.

18 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

3.4.2 Hardware requirements

Following high level hardware requirements must be met:

HW Aspect Requirement
of nodes Minimum 5 (3 for non redundant deployment):

• 1 Fuel deployment master (may be virtualized)
• 3(1) Controllers (1 colocated mongo/ceilometer

role, 2 Ceph-OSD roles)
• 1 Compute (1 co-located Ceph-OSD role)

CPU Minimum 1 socket x86_AMD64 with Virtualization
support

RAM Minimum 16GB/server (Depending on VNF work load)
Disk Minimum 256GB 10kRPM spinning disks
Networks 4 Tagged VLANs (PUBLIC, MGMT, STORAGE, PRI-

VATE)
1 Un-Tagged VLAN for PXE Boot - ADMIN Network
note: These can be run on single NIC - or spread out
over other nics as your hardware supports

For information on compatible hardware types available for use, please see Reference: 11 in section “Fuel associated
references” below.

Top of the rack (TOR) Configuration requirements

The switching infrastructure provides connectivity for the OPNFV infrastructure operations, tenant networks
(East/West) and provider connectivity (North/South); it also provides needed connectivity for the Storage Area Net-
work (SAN). To avoid traffic congestion, it is strongly suggested that three physically separated networks are used,
that is: 1 physical network for administration and control, one physical network for tenant private and public networks,
and one physical network for SAN. The switching connectivity can (but does not need to) be fully redundant, in such
case it and comprises a redundant 10GE switch pair for each of the three physically separated networks.

The physical TOR switches are not automatically configured from the OPNFV reference platform. All the networks
involved in the OPNFV infrastructure as well as the provider networks and the private tenant VLANs needs to be
manually configured.

3.4.3 Jumphost configuration

The Jumphost server, also known as the “Fuel master” provides needed services/functions to deploy an OP-
NFV/OpenStack cluster as well functions for cluster life-cycle management (extensions, repair actions and upgrades).

The Jumphost server requires 2 (4 if redundancy is required) Ethernet interfaces - one for external management of the
OPNFV installation, and another for jump-host communication with the OPNFV cluster.

Install the Fuel jump-host

Mount the Fuel Brahmaputra ISO file as a boot device to the jump host server, reboot it, and install the Fuel Jumphost
in accordance with installation instructions, see Reference 13 in section “Fuel associated references” below.

3.4. Fuel configuration 19

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

3.4.4 Platform components configuration

Fuel-Plugins

Fuel plugins enable you to install and configure additional capabilities for your Fuel OPNFV based cloud, such as
additional storage types, networking functionality, or NFV features developed by OPNFV.

Fuel offers an open source framework for creating these plugins, so there’s a wide range of capabilities that you can
enable Fuel to add to your OpenStack clouds.

The OPNFV Brahmaputra version of Fuel provides a set of pre-packaged plugins developed by OPNFV:

Plugin
name

Short description

Open-
Daylight

OpenDaylight provides an open-source SDN Controller providing networking features such as L2
and L3 network control, “Service Function Chaining”, routing, networking policies, etc. More
information on OpenDaylight in the OPNFV Brahmaputra release can be found in a separate section
in this document.

ONOS ONOS is another open-source SDN controller which in essense fill the same role as OpenDaylight.
More information on ONOS in the OPNFV Brahmaputra release can be found in a separate section in
this document.

BGP-
VPN

BGP-VPN provides an BGP/MPLS VPN service More information on BGP-VPN in the OPNFV
Brahmaputra release can be found in a separate section in this document.

OVS-
NSH

OVS-NSH provides a variant of Open-vSwitch which supports “Network Service Headers” needed
for the “Service function chaining” feature More information on “Service Function Chaining” in the
OPNFV Brahmaputra release can be found in a in a separate section in this document.

OVS-
NFV

OVS-NFV provides a variant of Open-vSwitch with carrier grade characteristics essential for NFV
workloads. More information on OVS-NFV in the OPNFV Brahmaputra release can be found in a in
a separate section in this document.

KVM-
NFV

KVM-NFV provides a variant of KVM with improved virtualization characteristics essential for NFV
workloads. More information on KVM-NFV in the OPNFV Brahmaputra release can be found in a in
a separate section in this document.

VSPERF VSPERF provides a networking characteristics test bench that facilitates characteristics/performance
evaluation of vSwithches More information on VSPERF in the OPNFV Brahmaputra release can be
found in a in a separate section in this document.

Additional third-party plugins can be found here: https://www.mirantis.com/products/openstack-drivers-and-
plugins/fuel-plugins/ Note: Plugins are not necessarilly compatible with each other, see section “Configuration
options, OPNFV scenarios” for compatibility information

The plugins come prepackaged, ready to install. To do so follow the installation instructions provided in Reference 13
provided in section “Fuel associated references” below.

Fuel environment

A Fuel environment is an OpenStack instance managed by Fuel, one Fuel instance can manage several OpenStack
instances/environments with different configurations, etc.

To create a Fuel instance, follow the instructions provided in the installation instructions, see Reference 13 in section
“Fuel associated references” below.

Provisioning of aditional features and services

Although the plugins have already previously been installed, they are not per default enabled for the environment we
just created. The plugins of your choice need to be enabled and configured.

20 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

To enable a plugin, follow the installation instructions found in Reference 13, provided in section “Fuel associated
references” below.

For configuration of the plugins, please see section “Feature Configuration”.

Networking

All the networking aspects need to be configured in terms of: - Interfaces/NICs - VLANs - Sub-nets - Gateways - User
network segmentation (VLAN/VXLAN) - DNS - NTP - etc.

For guidelines on how to configure networking, please refer to the installation instructions found in Reference 13
provided in section “Fuel associated references” below.

Node allocation

Now, it is time to allocate the nodes in your OPNFV cluster to OpenStack-, SDN-, and other feature/service roles.
Some roles may require redundancy, while others don’t; Some roles may be co-located with other roles, while others
may not. The Fuel GUI will guide you in the allocation of roles and will not permit you to perform invalid allocations.

For detailed guide-lines on node allocation, please refer to the installation instructions found in Reference 13, provided
in section “Fuel associated references” below.

Off-line deployment

The OPNFV Brahmaputra version of Fuel can be deployed using on-line upstream repositories (default) or off-line
using built-in local repositories on the Fuel jump-start server.

For instructions on how to configure Fuel for off-line deployment, please refer to the installation instructions found in,
Reference 13, provided in section “Fuel associated references” below.

Deployment

You should now be ready to deploy your OPNFV Brahmaputra environment - but before doing so you may want to
verify your network settings.

For further details on network verification and deployment, please refer to the installation instructions found in, Ref-
erence 13, provided in section “Fuel associated references” below.

3.4.5 Fuel associated references

1. OPNFV Home Page

2. OPNFV documentation- and software downloads

3. OpenStack Liberty Release artifacts

4. OpenStack documentation

5. OpenDaylight artifacts

6. The Fuel OpenStack project

7. Fuel documentation overview

8. Fuel planning guide

9. Fuel quick start guide

3.4. Fuel configuration 21

https://www.opnfv.org/software/download
http://www.openstack.org/software/liberty
http://docs.openstack.org
http://www.opendaylight.org/software/downloads
https://wiki.openstack.org/wiki/Fuel
https://docs.fuel-infra.org/openstack/fuel/fuel-8.0/
https://docs.fuel-infra.org/openstack/fuel/fuel-8.0/mos-planning-guide.html
https://docs.mirantis.com/openstack/fuel/fuel-8.0/quickstart-guide.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

10. Fuel operations guide

11. Fuel Plugin Developers Guide

12. Fuel OpenStack Hardware Compatibility List

13. OPNFV Installation instruction for the Brahmaputra release of OPNFV when using Fuel as a deployment tool

14. OPNFV Build instruction for the Brahmaputra release of OPNFV when using Fuel as a deployment tool

15. OPNFV Release Note for the Brahmaputra release of OPNFV when using Fuel as a deployment tool

3.5 JOID Configuration

3.5.1 Bare Metal Installations:

3.5.2 Requirements as per Pharos:

3.5.3 Networking:

Minimum 2 networks

1. First for Admin network with gateway to access external network

2. Second for public network to consume by tenants for floating ips

NOTE: JOID support multiple isolated networks for data as well as storage. Based on your network options
for Openstack.

Minimum 6 physical servers

1. Jump host server:

Minimum H/W Spec needed

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(250 GB)

NIC: eth0(Admin, Management), eth1 (external network)

2. Control node servers (minimum 3):

Minimum H/W Spec

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(500 GB)

NIC: eth0(Admin, Management), eth1 (external network)

3. Compute node servers (minimum 2):

22 Chapter 3. Installer Configuration

https://docs.mirantis.com/openstack/fuel/fuel-8.0/operations.html
https://wiki.openstack.org/wiki/Fuel/Plugins
https://www.mirantis.com/products/openstack-drivers-and-plugins/hardware-compatibility-list
http://artifacts.opnfv.org/fuel/brahmaputra/docs/installation-instruction.html
http://artifacts.opnfv.org/fuel/brahmaputra/docs/build-instruction.html
http://artifacts.opnfv.org/fuel/brahmaputra/docs/release-notes.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Minimum H/W Spec

CPU cores: 16

Memory: 32 GB

Hard Disk: 1(1 TB) this includes the space for ceph as well

NIC: eth0(Admin, Management), eth1 (external network)

NOTE: Above configuration is minimum and for better performance and usage of the Openstack please con-
sider higher spec for each nodes.

Make sure all servers are connected to top of rack switch and configured accord-
ingly. No DHCP server should be up and configured. Only gateway at eth0 and eth1 network should be con-
figure to access the network outside your lab.

Jump node configuration:

1. Install Ubuntu 14.04 LTS server version of OS on the nodes. 2. Install the git and bridge-utils pack-
ages on the server and configure minimum two bridges on jump host:

brAdm and brPublic cat /etc/network/interfaces

The loopback network interface

auto lo

iface lo inet loopback

iface eth0 inet manual

auto brAdm

iface brAdm inet static

address 10.4.1.1

netmask 255.255.248.0

network 10.4.0.0

broadcast 10.4.7.255

gateway 10.4.0.1

dns-* options are implemented by the resolvconf package, if installed

dns-nameservers 10.4.0.2

bridge_ports eth0

auto brPublic

iface brPublic inet static

address 10.2.66.2

netmask 255.255.255.0

bridge_ports eth2

NOTE: If you choose to use the separate network for management, data and storage then you need to create
bridge for each interface. In case of VLAN tags use the appropriate network on jump-host depend upon VLAN
ID on the interface.

3.5.4 Configure JOID for your lab

Get the joid code from gerritt

3.5. JOID Configuration 23

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

git clone https://gerrit.opnfv.org/gerrit/p/joid.git

cd joid/ci

Enable MAAS

• Create a directory in maas/<company name>/<pod number>/ for example

mkdir maas/intel/pod7/

• Copy files from pod5 to pod7

cp maas/intel/pod5/* maas/intel/pod7/

4 files will get copied: deployment.yaml environments.yaml interfaces.host lxc-add-more-interfaces

3.5.5 deployment.yaml file

Prerequisite:

1. Make sure Jump host node has been configured with bridges on each interface, so that appropriate MAAS and JUJU
bootstrap VM can be created. For example if you have three network admin, data and public then I would suggest
to give names like brAdm, brData and brPublic. 2. You have information about the node MAC address and power
management details (IPMI IP, username, password) of the nodes used for control and compute node.

3.5.6 modify deployment.yaml

This file has been used to configure your maas and bootstrap node in a VM. Comments in the file are self explanatory
and we expect fill up the information according to match lab infrastructure information. Sample deployment.yaml can
be found at https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=blob;f=ci/maas/intel/pod5/deployment.yaml

modify joid/ci/01-deploybundle.sh

under section case $3 add the intelpod7 section and make sure you have information provided correctly. Before
example consider your network has 192.168.1.0/24 your default network. and eth1 is on public network which will be
used to assign the floating ip.

’intelpod7’)

As per your lab vip address list be deafult uses 10.4.1.11 - 10.4.1.20

sed -i -- ’s/10.4.1.1/192.168.1.2/g’ ./bundles.yaml

Choose the external port to go out from gateway to use.

sed -i -- ’s/# "ext-port": "eth1"/ "ext-port": "eth1"/g’ ./bundles.yaml

;;

NOTE: If you are using seprate data network then add this line below also along with other changes. which represents
network 10.4.9.0/24 will be used for data network for openstack

sed -i -- ’s/#os-data-network: 10.4.8.0\/21/os-data-network: 10.4.9.0\/24/g’ ./bundles.yaml

24 Chapter 3. Installer Configuration

https://gerrit.opnfv.org/gerrit/gitweb?p=joid.git;a=blob;f=ci/maas/intel/pod5/deployment.yaml

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

modify joid/ci/02-maasdeploy.sh

under section case $1 add the intelpod7 section and make sure you have information provided correctly.

’intelpod7’)

cp maas/intel/pod7/deployment.yaml ./deployment.yaml

;;

NOTE: If you are using VLAN tags or more network for data and storage then make sure you modify the case $1
section under Enable vlan interface with maas appropriately. In the example below eth2 has been used as separate data
network for tenants in openstack with network 10.4.9.0/24 on compute and control nodes.

’intelpod7’)

maas refresh

enableautomodebyname eth2 AUTO "10.4.9.0/24" compute || true

enableautomodebyname eth2 AUTO "10.4.9.0/24" control || true

;;

MAAS Install

After integrating the changes as mentioned above run the MAAS install. Suppose you name the integration lab as
intelpod7 then run the below commands to start the MAAS deployment.

./02-maasdeploy.sh intelpod7

This will take approximately 40 minutes to couple hours depending on your environment. This script will do the
following:

1. Create 2 VMs (KVM).

2. Install MAAS in one of the VMs.

3. Configure the MAAS to enlist and commission a VM for Juju bootstrap node.

4. Configure the MAAS to enlist and commission bare metal servers.

When it’s done, you should be able to view MAAS webpage (http://<MAAS IP>/MAAS) and see 1 bootstrap node
and bare metal servers in the ‘Ready’ state on the nodes page.

Virtual deployment

By default, just running the script ./02-maasdeploy.sh will automatically create the KVM VMs on a single machine
and configure everything for you.

OPNFV Install

JOID allows you to deploy different combinations of OpenStack release and SDN solution in HA or non-HA mode.

For OpenStack, it supports Juno and Liberty. For SDN, it supports Openvswitch, OpenContrail, OpenDayLight and
ONOS.

In addition to HA or non-HA mode, it also supports to deploy the latest from the development tree (tip).

3.5. JOID Configuration 25

http:/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

The deploy.sh in the joid/ci directoy will do all the work for you. For example, the following deploy OpenStack Libery
with OpenDayLight in a HA mode in the Intelpod7.

./deploy.sh -o liberty -s odl -t ha -l intelpod7 -f none

By default, the SDN is Openvswitch, non-HA, Liberty, Intelpod5, OPNFV Brahmaputra release and ODL_L2 for the
OPNFV feature.

Possible options for each choice are as follows:

[-s]

nosdn: openvswitch only and no other SDN.

odl: OpenDayLight Lithium version.

opencontrail: OpenContrail SDN.

onos: ONOS framework as SDN.

[-t]

nonha: NO HA mode of Openstack.

ha: HA mode of openstack.

tip: the tip of the development.

[-o]

juno: OpenStack Juno version.

liberty: OpenStack Liberty version.

[-l] etc...

default: For virtual deployment where installation will be done on KVM created using ./02-maasdeploy.sh

intelpod5: Install on bare metal OPNFV pod5 of Intel lab.

intelpod6

orangepod2

..

(other pods)

Note: if you make changes as per your pod above then please use your pod.

[-f]

none: no special feature will be enabled.

ipv6: ipv6 will be enabled for tenant in openstack.

By default debug is enabled in script and error messages will be printed on the SSH terminal where you are running
the scripts. It could take an hour to couple hours (max) to complete.

26 Chapter 3. Installer Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Is the deployment done successfully?

Once juju-deployer is complete, use juju status to verify that all deployed unit are in the ready state.

juju status --format tabular

Find the Openstack-dashboard IP address from the juju status output, and see if you can log in via browser. The
username and password is admin/openstack.

Optionall, see if you can log in Juju GUI. Juju GUI is on the Juju bootstrap node which is the second VM you define
in the 02-maasdeploy.sh. The username and password is admin/admin.

If you deploy ODL, OpenContrail or ONOS, find the IP address of the web UI and login. Please refer to each SDN
bundle.yaml for username/password.

Troubleshoot

To access to any deployed units, juju ssh for example to login into nova-compute unit and look for /var/log/juju/unit-
<of interest> for more info.

juju ssh nova-compute/0

Example:

ubuntu@R4N4B1:~$ juju ssh nova-compute/0

Warning: Permanently added ’172.16.50.60’ (ECDSA) to the list of known
hosts.

Warning: Permanently added ’3-r4n3b1-compute.maas’ (ECDSA) to the list of
known hosts.

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-77-generic x86_64)

* Documentation: https://help.ubuntu.com/

<skipped>

Last login: Tue Feb 2 21:23:56 2016 from bootstrap.maas

ubuntu@3-R4N3B1-compute:~$ sudo -i

root@3-R4N3B1-compute:~# cd /var/log/juju/

root@3-R4N3B1-compute:/var/log/juju# ls

machine-2.log unit-ceilometer-agent-0.log unit-ceph-osd-0.log
unit-neutron-contrail-0.log unit-nodes-compute-0.log unit-nova-compute-0.log
unit-ntp-0.log

root@3-R4N3B1-compute:/var/log/juju#

By default juju will add the Ubuntu user keys for authentication into the deployed server and only ssh access
will be available.

Once you resolve the error, go back to the jump host to rerun the charm hook with:

3.5. JOID Configuration 27

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

juju resolved --retry <unit>

28 Chapter 3. Installer Configuration

CHAPTER

FOUR

FEATURE CONFIGURATION

The following sections describe the configuration options for specific platform features provided in Brahmaputra.
Further details for each feature are captured in the referred project documentation.

4.1 Copper configuration

This release focused on use of the OpenStack Congress service for managing configuration policy. The Congress install
procedure described here is largely manual. This procedure, as well as the longer-term goal of automated installer
support, is a work in progress. The procedure is further specific to one OPNFV installer (JOID, i.e. MAAS/JuJu)
based environment. Support for other OPNFV installer deployed environments is also a work in progress.

4.1.1 Pre-configuration activities

This procedure assumes OPNFV has been installed via the JOID installer.

4.1.2 Hardware configuration

There is no specific hardware configuration required for the Copper project.

4.1.3 Feature configuration

Following are instructions for installing Congress on an Ubuntu 14.04 LXC container in the OPNFV Controller node,
as installed by the JOID installer. This guide uses instructions from the Congress intro guide on readthedocs. Specific
values below will need to be modified if you intend to repeat this procedure in your JOID-based install environment.

Install Procedure

The install currently occurs via four bash scripts provided in the copper repo. See these files for the detailed steps:

• install_congress_1.sh * creates and starts the linux container for congress on the controller node * copies
install_congress_2.sh to the controller node and invokes it via ssh

• install_congress_2.sh * installs congress on the congress server.

29

http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress
https://git.opnfv.org/cgit/copper/tree/components/congress/joid/install_congress_1.sh
https://git.opnfv.org/cgit/copper/tree/components/congress/joid/install_congress_2.sh

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Cleanup Procedure

If there is an error during installation, use the bash script clean_congress.sh which stops the congress server if running,
and removes the congress user and service from the controller database.

Restarting after server power loss etc

Currently this install procedure is manual. Automated install and restoral after host recovery is TBD. For now, this
procedure will get the Congress service running again.

On jumphost, SSH to Congress server
source ~/env.sh
juju ssh ubuntu@$CONGRESS_HOST
If that fails

On jumphost, SSH to controller node
juju ssh ubuntu@node1-control
Start the Congress container
sudo lxc-start -n juju-trusty-congress -d
Verify the Congress container status
sudo lxc-ls -f juju-trusty-congress
NAME STATE IPV4 IPV6 GROUPS AUTOSTART
--
juju-trusty-congress RUNNING 192.168.10.117 - - NO
exit back to the Jumphost, wait a minute, and go back to the "SSH to Congress server" step above

On the Congress server that you have logged into
source ~/admin-openrc.sh
cd ~/git/congress
source bin/activate
bin/congress-server &
disown -h %1

4.2 Doctor Configuration

4.2.1 Doctor Inspector

Doctor Inspector is suggested to be placed in one of the controller nodes, but it can be put on any host where Doctor
Monitor can reach and accessible to the OpenStack Controller (Nova).

Make sure OpenStack env parameters are set properly, so that Doctor Inspector can issue admin actions such as
compute host force-down and state update of VM.

Then, you can configure Doctor Inspector as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests
INSPECTOR_PORT=12345
python inspector.py $INSPECTOR_PORT > inspector.log 2>&1 &

4.2.2 Doctor Monitor

Doctor Monitors are suggested to be placed in one of the controller nodes, but those can be put on any host which
is reachable to target compute host and accessible to the Doctor Inspector. You need to configure Monitors for all
compute hosts one by one.

30 Chapter 4. Feature Configuration

https://git.opnfv.org/cgit/copper/tree/components/congress/joid/clean_congress.sh

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Make sure OpenStack env parameters are set properly, so that Doctor Inspector can issue admin actions such as
compute host force-down and state update of VM.

Then, you can configure Doctor Monitor as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests
INSPECTOR_PORT=12345
COMPUTE_HOST='overcloud-novacompute-0'
sudo python monitor.py "$COMPUTE_HOST" \

"http://127.0.0.1:$INSPECTOR_PORT/events" > monitor.log 2>&1 &

4.3 IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter

This section provides instructions to set up a service VM as an IPv6 vRouter using OPNFV Brahmaputra Release
installers. The environment may be pure OpenStack option or Open Daylight L2-only option. The deployment model
may be HA or non-HA. The infrastructure may be bare metal or virtual environment.

For complete instructions and documentations of setting up service VM as an IPv6 vRouter using ANY method, please
refer to:

1. IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

2. IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

4.3.1 Pre-configuration Activities

The configuration will work in 2 environments:

1. OpenStack-only environment

2. OpenStack with Open Daylight L2-only environment

Depending on which installer will be used to deploy OPNFV, each environment may be deployed on bare metal or
virtualized infrastructure. Each deployment may be HA or non-HA.

Refer to the previous installer configuration chapters, installations guide and release notes.

4.3.2 Setup Manual in OpenStack-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in OpenStack-only environment of OPNFV Brahmaputra
Release, please NOTE that:

• Because the anti-spoofing rules of Security Group feature in OpenStack prevents a VM from forwarding packets,
we need to disable Security Group feature in the OpenStack-only environment.

• The hostnames, IP addresses, and username are for exemplary purpose in instructions. Please change as needed
to fit your environment.

• The instructions apply to both deployment model of single controller node and HA (High Availability) deploy-
ment model where multiple controller nodes are used.

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 31

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html
http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Install OPNFV and Preparation

OPNFV-NATIVE-INSTALL-1: To install OpenStack-only environment of OPNFV Brahmaputra Release:

Apex Installer:

HA deployment in OpenStack-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-nosdn-nofeature-ha.yaml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Apex installer.

Compass Installer:

HA deployment in OpenStack-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-nosdn-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack-only environment
./deploy.sh -s os-nosdn-nofeature-ha

Non-HA deployment in OpenStack-only environment
./deploy.sh -s os-nosdn-nofeature-noha

Joid Installer:

HA deployment in OpenStack-only environment
./deploy.sh -o liberty -s nosdn -t ha -l default -f ipv6

Non-HA deployment in OpenStack-only environment
./deploy.sh -o liberty -s nosdn -t nonha -l default -f ipv6

Please NOTE that:

• You need to refer to installer’s documentation for other necessary parameters applicable to your deployment.

• You need to refer to Release Notes and installer’s documentation if there is any issue in installation.

OPNFV-NATIVE-INSTALL-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

OPNFV-NATIVE-SEC-1: Change the settings in /etc/neutron/plugins/ml2/ml2_conf.ini as follows

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
extension_drivers = port_security

32 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-2: Change the settings in /etc/nova/nova.conf as follows

/etc/nova/nova.conf
[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-NATIVE-SEC-3: After updating the settings, you will have to restart the Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary depending on the installer. Please
refer to relevant documentation of specific installers

Set Up Service VM as IPv6 vRouter

OPNFV-NATIVE-SETUP-1: Now we assume that OpenStack multi-node setup is up and running. We have to source
the tenant credentials in this step. Please NOTE that the method of sourcing tenant credentials may vary depending
on installers. For example:

Apex installer:

source the tenant credentials using Apex installer of OPNFV
you need to copy the file /home/stack/overcloudrc from the installer VM called "instack"
to a location in controller node, for example, in the directory /opt
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

OPNFV-NATIVE-SETUP-2: Download fedora22 image which would be used for vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

OPNFV-NATIVE-SETUP-3: Import Fedora22 image to glance

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 33

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

OPNFV-NATIVE-SETUP-4: This step is Informational. OPNFV Installer has taken care of this step during
deployment. You may refer to this step only if there is any issue, or if you are using other installers.

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving the public
IP address and setting up default route. Please refer to OS-NATIVE-SETUP-4 and OS-NATIVE-SETUP-5 in our
more complete instruction.

OPNFV-NATIVE-SETUP-5: Create Neutron routers ipv4-router and ipv6-router which need to provide
external connectivity.

neutron router-create ipv4-router
neutron router-create ipv6-router

OPNFV-NATIVE-SETUP-6: Create an external network/subnet ext-net using the appropriate values based on the
data-center physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers should have created
an external network during installation. You must use the same name of external network that installer creates when
you create the subnet. For example:

• Apex installer: external

• Compass installer: ext-net

• Fuel installer: net04_ext

• Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

OPNFV-NATIVE-SETUP-7: Create Neutron networks ipv4-int-network1 and ipv6-int-network2 with
port_security disabled

neutron net-create --port_security_enabled=False ipv4-int-network1
neutron net-create --port_security_enabled=False ipv6-int-network2

OPNFV-NATIVE-SETUP-8: Create IPv4 subnet ipv4-int-subnet1 in the internal network
ipv4-int-network1, and associate it to ipv4-router.

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

neutron router-interface-add ipv4-router ipv4-int-subnet1

OPNFV-NATIVE-SETUP-9: Associate the ext-net to the Neutron routers ipv4-router and ipv6-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net
neutron router-gateway-set ipv6-router ext-net

OPNFV-NATIVE-SETUP-10: Create two subnets, one IPv4 subnet ipv4-int-subnet2 and one IPv6 subnet
ipv6-int-subnet2 in ipv6-int-network2, and associate both subnets to ipv6-router

34 Chapter 4. Feature Configuration

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/5-ipv6-configguide-scenario-1-native-os.html#set-up-service-vm-as-ipv6-vrouter

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv6-int-network2 10.0.0.0/24

neutron subnet-create --name ipv6-int-subnet2 --ip-version 6 --ipv6-ra-mode slaac \
--ipv6-address-mode slaac ipv6-int-network2 2001:db8:0:1::/64

neutron router-interface-add ipv6-router ipv4-int-subnet2
neutron router-interface-add ipv6-router ipv6-int-subnet2

OPNFV-NATIVE-SETUP-11: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

OPNFV-NATIVE-SETUP-12: Create ports for vRouter (with some specific MAC address - basically for automation
- to know the IPv6 addresses that would be assigned to the port).

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv6-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1

OPNFV-NATIVE-SETUP-13: Create ports for VM1 and VM2.

neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

OPNFV-NATIVE-SETUP-14: Update ipv6-router with routing information to subnet 2001:db8:0:2::/64

neutron router-update ipv6-router --routes type=dict list=true \
destination=2001:db8:0:2::/64,nexthop=2001:db8:0:1:f816:3eff:fe11:1111

OPNFV-NATIVE-SETUP-15: Boot Service VM (vRouter), VM1 and VM2

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

nova list

Please wait for some 10 to 15 minutes so that necessary packages (like radvd)
are installed and vRouter is up.
nova console-log vRouter

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

nova list # Verify that all the VMs are in ACTIVE state.

OPNFV-NATIVE-SETUP-16: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 35

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

OPNFV-NATIVE-SETUP-17: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

4.3.3 Setup Manual in OpenStack with Open Daylight L2-Only Environment

If you intend to set up a service VM as an IPv6 vRouter in an environment of OpenStack and Open Daylight L2-only
of OPNFV Brahmaputra Release, please NOTE that:

• The hostnames, IP addresses, and username are for exemplary purpose in instructions. Please change as needed
to fit your environment.

• The instructions apply to both deployment model of single controller node and HA (High Availability) deploy-
ment model where multiple controller nodes are used.

• However, in case of HA, when ipv6-router is created in step SETUP-SVM-11, it could be created in any
of the controller node. Thus you need to identify in which controller node ipv6-router is created in order
to manually spawn radvd daemon inside the ipv6-router namespace in steps SETUP-SVM-24 through
SETUP-SVM-30.

Install OPNFV and Preparation

OPNFV-INSTALL-1: To install OpenStack with Open Daylight L2-only environment of OPNFV Brahmaputra Re-
lease:

Apex Installer:

36 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

HA deployment in OpenStack with Open Daylight L2-only environment
./opnfv-deploy -d /etc/opnfv-apex/os-odl_l2-nofeature-ha.yaml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Apex installer.

Compass Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
export ISO_URL=file://$BUILD_DIRECTORY/compass.iso
export OS_VERSION=${{COMPASS_OS_VERSION}}
export OPENSTACK_VERSION=${{COMPASS_OPENSTACK_VERSION}}
export CONFDIR=$WORKSPACE/deploy/conf/vm_environment
./deploy.sh --dha $CONFDIR/os-odl_l2-nofeature-ha.yml \
--network $CONFDIR/$NODE_NAME/network.yml

Non-HA deployment in OpenStack with Open Daylight L2-only environment
Non-HA deployment is currently not supported by Compass installer

Fuel Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -s os-odl_l2-nofeature-ha

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -s os-odl_l2-nofeature-noha

Joid Installer:

HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o liberty -s odl -t ha -l default -f ipv6

Non-HA deployment in OpenStack with Open Daylight L2-only environment
./deploy.sh -o liberty -s odl -t nonha -l default -f ipv6

Please NOTE that:

• You need to refer to installer’s documentation for other necessary parameters applicable to your deployment.

• You need to refer to Release Notes and installer’s documentation if there is any issue in installation.

OPNFV-INSTALL-2: Clone the following GitHub repository to get the configuration and metadata files

git clone https://github.com/sridhargaddam/opnfv_os_ipv6_poc.git \
/opt/stack/opnfv_os_ipv6_poc

Disable Security Groups in OpenStack ML2 Setup

Please NOTE that although Security Groups feature has been disabled automatically through local.conf configu-
ration file by some installers such as devstack, it is very likely that other installers such as Apex, Compass, Fuel
or Joid will enable Security Groups feature after installation.

Please make sure that Security Groups are disabled in the setup

OPNFV-SEC-1: Change the settings in /etc/neutron/plugins/ml2/ml2_conf.ini as follows

/etc/neutron/plugins/ml2/ml2_conf.ini
[securitygroup]
enable_security_group = False
firewall_driver = neutron.agent.firewall.NoopFirewallDriver

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 37

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

OPNFV-SEC-2: Change the settings in /etc/nova/nova.conf as follows

/etc/nova/nova.conf
[DEFAULT]
security_group_api = nova
firewall_driver = nova.virt.firewall.NoopFirewallDriver

OPNFV-SEC-3: After updating the settings, you will have to restart the Neutron and Nova services.

Please note that the commands of restarting Neutron and Nova would vary depending on the installer. Please
refer to relevant documentation of specific installers

Source the Credentials in OpenStack Controller Node

SETUP-SVM-1: Login in OpenStack Controller Node. Start a new terminal, and change directory to where Open-
Stack is installed.

SETUP-SVM-2: We have to source the tenant credentials in this step. Please NOTE that the method of sourcing
tenant credentials may vary depending on installers. For example:

Apex installer:

source the tenant credentials using Apex installer of OPNFV
you need to copy the file /home/stack/overcloudrc from the installer VM called "instack"
to a location in controller node, for example, in the directory /opt
source /opt/overcloudrc

Compass installer:

source the tenant credentials using Compass installer of OPNFV
source /opt/admin-openrc.sh

Fuel installer:

source the tenant credentials using Fuel installer of OPNFV
source /root/openrc

Joid installer:

source the tenant credentials using Joid installer of OPNFV
source $HOME/joid_config/admin-openrc

devstack:

source the tenant credentials in devstack
source openrc admin demo

Please refer to relevant documentation of installers if you encounter any issue.

Informational Note: Move Public Network from Physical Network Interface to br-ex

SETUP-SVM-3: Move the physical interface (i.e. the public network interface) to br-ex

SETUP-SVM-4: Verify setup of br-ex

Those 2 steps are Informational. OPNFV Installer has taken care of those 2 steps during deployment. You may
refer to this step only if there is any issue, or if you are using other installers.

38 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

We have to move the physical interface (i.e. the public network interface) to br-ex, including moving the public
IP address and setting up default route. Please refer to SETUP-SVM-3 and SETUP-SVM-4 in our more complete
instruction.

Create IPv4 Subnet and Router with External Connectivity

SETUP-SVM-5: Create a Neutron router ipv4-router which needs to provide external connectivity.

neutron router-create ipv4-router

SETUP-SVM-6: Create an external network/subnet ext-net using the appropriate values based on the data-center
physical network setup.

Please NOTE that you may only need to create the subnet of ext-net because OPNFV installers should have created
an external network during installation. You must use the same name of external network that installer creates when
you create the subnet. For example:

• Apex installer: external

• Compass installer: ext-net

• Fuel installer: net04_ext

• Joid installer: ext-net

Please refer to the documentation of installers if there is any issue

This is needed only if installer does not create an external work
Otherwise, skip this command "net-create"
neutron net-create --router:external ext-net

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron subnet-create --disable-dhcp --allocation-pool start=198.59.156.251,\
end=198.59.156.254 --gateway 198.59.156.1 ext-net 198.59.156.0/24

Please note that the IP addresses in the command above are for exemplary purpose. Please replace the IP addresses
of your actual network.

SETUP-SVM-7: Associate the ext-net to the Neutron router ipv4-router.

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv4-router ext-net

SETUP-SVM-8: Create an internal/tenant IPv4 network ipv4-int-network1

neutron net-create ipv4-int-network1

SETUP-SVM-9: Create an IPv4 subnet ipv4-int-subnet1 in the internal network ipv4-int-network1

neutron subnet-create --name ipv4-int-subnet1 --dns-nameserver 8.8.8.8 \
ipv4-int-network1 20.0.0.0/24

SETUP-SVM-10: Associate the IPv4 internal subnet ipv4-int-subnet1 to the Neutron router ipv4-router.

neutron router-interface-add ipv4-router ipv4-int-subnet1

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 39

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex
http://artifacts.opnfv.org/ipv6/docs/setupservicevm/4-ipv6-configguide-servicevm.html#add-external-connectivity-to-br-ex

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Create IPv6 Subnet and Router with External Connectivity

Now, let us create a second neutron router where we can “manually” spawn a radvd daemon to simulate an external
IPv6 router.

SETUP-SVM-11: Create a second Neutron router ipv6-router which needs to provide external connectivity

neutron router-create ipv6-router

SETUP-SVM-12: Associate the ext-net to the Neutron router ipv6-router

Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron router-gateway-set ipv6-router ext-net

SETUP-SVM-13: Create a second internal/tenant IPv4 network ipv4-int-network2

neutron net-create ipv4-int-network2

SETUP-SVM-14: Create an IPv4 subnet ipv4-int-subnet2 for the ipv6-router internal network
ipv4-int-network2

neutron subnet-create --name ipv4-int-subnet2 --dns-nameserver 8.8.8.8 \
ipv4-int-network2 10.0.0.0/24

SETUP-SVM-15: Associate the IPv4 internal subnet ipv4-int-subnet2 to the Neutron router ipv6-router.

neutron router-interface-add ipv6-router ipv4-int-subnet2

Prepare Image, Metadata and Keypair for Service VM

SETUP-SVM-16: Download fedora22 image which would be used as vRouter

wget https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud/x86_64/\
Images/Fedora-Cloud-Base-22-20150521.x86_64.qcow2

glance image-create --name 'Fedora22' --disk-format qcow2 --container-format bare \
--file ./Fedora-Cloud-Base-22-20150521.x86_64.qcow2

SETUP-SVM-17: Create a keypair

nova keypair-add vRouterKey > ~/vRouterKey

SETUP-SVM-18: Create ports for vRouter and both the VMs with some specific MAC addresses.

neutron port-create --name eth0-vRouter --mac-address fa:16:3e:11:11:11 ipv4-int-network2
neutron port-create --name eth1-vRouter --mac-address fa:16:3e:22:22:22 ipv4-int-network1
neutron port-create --name eth0-VM1 --mac-address fa:16:3e:33:33:33 ipv4-int-network1
neutron port-create --name eth0-VM2 --mac-address fa:16:3e:44:44:44 ipv4-int-network1

Boot Service VM (vRouter) with eth0 on ipv4-int-network2 and eth1 on ipv4-int-network1

Let us boot the service VM (vRouter) with eth0 interface on ipv4-int-network2 connecting to
ipv6-router, and eth1 interface on ipv4-int-network1 connecting to ipv4-router.

SETUP-SVM-19: Boot the vRouter using Fedora22 image on the OpenStack Compute Node with hostname
opnfv-os-compute

40 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

nova boot --image Fedora22 --flavor m1.small \
--user-data /opt/stack/opnfv_os_ipv6_poc/metadata.txt \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-vRouter | awk '{print $2}') \
--nic port-id=$(neutron port-list | grep -w eth1-vRouter | awk '{print $2}') \
--key-name vRouterKey vRouter

Please note that /opt/stack/opnfv_os_ipv6_poc/metadata.txt is used to enable the vRouter to au-
tomatically spawn a radvd, and

• Act as an IPv6 vRouter which advertises the RA (Router Advertisements) with prefix 2001:db8:0:2::/64
on its internal interface (eth1).

• Forward IPv6 traffic from internal interface (eth1)

SETUP-SVM-20: Verify that Fedora22 image boots up successfully and vRouter has ssh keys properly injected

nova list
nova console-log vRouter

Please note that it may take a few minutes for the necessary packages to get installed and ssh keys to be injected.

Sample Output
[762.884523] cloud-init[871]: ec2: ###
[762.909634] cloud-init[871]: ec2: -----BEGIN SSH HOST KEY FINGERPRINTS-----
[762.931626] cloud-init[871]: ec2: 2048 e3:dc:3d:4a:bc:b6:b0:77:75:a1:70:a3:d0:2a:47:a9 (RSA)
[762.957380] cloud-init[871]: ec2: -----END SSH HOST KEY FINGERPRINTS-----
[762.979554] cloud-init[871]: ec2: ###

Boot Two Other VMs in ipv4-int-network1

In order to verify that the setup is working, let us create two cirros VMs with eth1 interface on the
ipv4-int-network1, i.e., connecting to vRouter eth1 interface for internal network.

We will have to configure appropriate mtu on the VMs’ interface by taking into account the tunneling overhead and
any physical switch requirements. If so, push the mtu to the VM either using dhcp options or via meta-data.

SETUP-SVM-21: Create VM1 on OpenStack Controller Node with hostname opnfv-os-controller

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-controller \
--nic port-id=$(neutron port-list | grep -w eth0-VM1 | awk '{print $2}') \
--key-name vRouterKey VM1

SETUP-SVM-22: Create VM2 on OpenStack Compute Node with hostname opnfv-os-compute

nova boot --image cirros-0.3.4-x86_64-uec --flavor m1.tiny \
--user-data /opt/stack/opnfv_os_ipv6_poc/set_mtu.sh \
--availability-zone nova:opnfv-os-compute \
--nic port-id=$(neutron port-list | grep -w eth0-VM2 | awk '{print $2}') \
--key-name vRouterKey VM2

SETUP-SVM-23: Confirm that both the VMs are successfully booted.

nova list
nova console-log VM1
nova console-log VM2

4.3. IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter 41

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Spawn RADVD in ipv6-router

Let us manually spawn a radvd daemon inside ipv6-router namespace to simulate an external router. First of
all, we will have to identify the ipv6-router namespace and move to the namespace.

Please NOTE that in case of HA (High Availability) deployment model where multiple controller nodes are used,
ipv6-router created in step SETUP-SVM-11 could be in any of the controller node. Thus you need to iden-
tify in which controller node ipv6-router is created in order to manually spawn radvd daemon inside the
ipv6-router namespace in steps SETUP-SVM-24 through SETUP-SVM-30. The following command in Neu-
tron will display the controller on which the ipv6-router is spawned.

neutron l3-agent-list-hosting-router ipv6-router

Then you login to that controller and execute steps SETUP-SVM-24 through SETUP-SVM-30

SETUP-SVM-24: identify the ipv6-router namespace and move to the namespace

sudo ip netns exec qrouter-$(neutron router-list | grep -w ipv6-router | \
awk '{print $2}') bash

SETUP-SVM-25: Upon successful execution of the above command, you will be in the router namespace. Now let
us configure the IPv6 address on the <qr-xxx> interface.

export router_interface=$(ip a s | grep -w "global qr-*" | awk '{print $7}')
ip -6 addr add 2001:db8:0:1::1 dev $router_interface

SETUP-SVM-26: Update the sample file /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf
with $router_interface.

cp /opt/stack/opnfv_os_ipv6_poc/scenario2/radvd.conf /tmp/radvd.$router_interface.conf
sed -i 's/$router_interface/'$router_interface'/g' /tmp/radvd.$router_interface.conf

SETUP-SVM-27: Spawn a radvd daemon to simulate an external router. This radvd daemon advertises an IPv6
subnet prefix of 2001:db8:0:1::/64 using RA (Router Advertisement) on its $router_interface so that eth0
interface of vRouter automatically configures an IPv6 SLAAC address.

$radvd -C /tmp/radvd.$router_interface.conf -p /tmp/br-ex.pid.radvd -m syslog

SETUP-SVM-28: Add an IPv6 downstream route pointing to the eth0 interface of vRouter.

ip -6 route add 2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111

SETUP-SVM-29: The routing table should now look similar to something shown below.

ip -6 route show
2001:db8:0:1::1 dev qr-42968b9e-62 proto kernel metric 256
2001:db8:0:1::/64 dev qr-42968b9e-62 proto kernel metric 256 expires 86384sec
2001:db8:0:2::/64 via 2001:db8:0:1:f816:3eff:fe11:1111 dev qr-42968b9e-62 proto ra metric 1024 expires 29sec
fe80::/64 dev qg-3736e0c7-7c proto kernel metric 256
fe80::/64 dev qr-42968b9e-62 proto kernel metric 256

SETUP-SVM-30: If all goes well, the IPv6 addresses assigned to the VMs would be as shown as follows:

vRouter eth0 interface would have the following IPv6 address:
2001:db8:0:1:f816:3eff:fe11:1111/64
vRouter eth1 interface would have the following IPv6 address:
2001:db8:0:2::1/64
VM1 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe33:3333/64
VM2 would have the following IPv6 address:
2001:db8:0:2:f816:3eff:fe44:4444/64

42 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Testing to Verify Setup Complete

Now, let us SSH to those VMs, e.g. VM1 and / or VM2 and / or vRouter, to confirm that it has successfully configured
the IPv6 address using SLAAC with prefix 2001:db8:0:2::/64 from vRouter.

We use floatingip mechanism to achieve SSH.

SETUP-SVM-31: Now we can SSH to VMs. You can execute the following command.

1. Create a floatingip and associate it with VM1, VM2 and vRouter (to the port id that is passed).
Note that the name "ext-net" may work for some installers such as Compass and Joid
Change the name "ext-net" to match the name of external network that an installer creates
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM1 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth0-VM2 | \
awk '{print $2}') ext-net
neutron floatingip-create --port-id $(neutron port-list | grep -w eth1-vRouter | \
awk '{print $2}') ext-net

2. To know / display the floatingip associated with VM1, VM2 and vRouter.
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM1 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth0-VM2 | awk '{print $2}') | awk '{print $2}'
neutron floatingip-list -F floating_ip_address -F port_id | grep $(neutron port-list | \
grep -w eth1-vRouter | awk '{print $2}') | awk '{print $2}'

3. To ssh to the vRouter, VM1 and VM2, user can execute the following command.
ssh -i ~/vRouterKey fedora@<floating-ip-of-vRouter>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM1>
ssh -i ~/vRouterKey cirros@<floating-ip-of-VM2>

If everything goes well, ssh will be successful and you will be logged into those VMs. Run some commands to verify
that IPv6 addresses are configured on eth0 interface.

SETUP-SVM-32: Show an IPv6 address with a prefix of 2001:db8:0:2::/64

ip address show

SETUP-SVM-33: ping some external IPv6 address, e.g. ipv6-router

ping6 2001:db8:0:1::1

If the above ping6 command succeeds, it implies that vRouter was able to successfully forward the IPv6 traffic to
reach external ipv6-router.

4.4 Installing OVSNFV Fuel Plugin

• On the Fuel UI, create a new environment.

• In Settings > Userspace OVS support, check “Userspace OVS support”.

• Continue with environment configuration and deployment as normal.

4.4.1 Upgrading the plugin

From time to time new versions of the plugin may become available.

4.4. Installing OVSNFV Fuel Plugin 43

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

The plugin cannot be upgraded if an active environment is using the plugin.

In order to upgrade the plugin:

• Copy the updated plugin file to the fuel-master.

• On the Fuel UI, reset the environment.

• On the Fuel CLI “fuel plugins –update <fuel-plugin-file>”

• On the Fuel UI, re-deploy the environment.

4.5 Promise Feature Configuration Overview

4.5.1 Promise installation

Install nodejs, npm and promise

curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo npm -g install npm@latest
git clone https://github.com/opnfv/promise.git
cd promise
npm install

Please note that the last command ‘npm install’ will install all needed dependencies for promise (including yangforge
and mocha)

4.5.2 Testing

Please perform the following preparation steps:

1. Set OpenStack environment parameters properly (e.g. source openrc admin demo in DevStack)

2. Create OpenStack tenant (e.g. promise) and tenant user (e.g. promiser)

3. Create a flavor in Nova with 1 vCPU and 512 MB RAM

4. Create a private network, subnet and router in Neutron

5. Create an image in Glance

Once done, the promise test script can be invoked as follows (as a single line command):

NODE_ENV=mytest \
OS_TENANT_NAME=promise \
OS_USERNAME=promiser \
OS_PASSWORD=<user password from Step 2> \
OS_TEST_FLAVOR=<flavor ID from Step 3> \
OS_TEST_NETWORK=<network ID from Step 4> \
OS_TEST_IMAGE=<image ID from Step 5> \
npm run -s test -- --reporter json > promise-results.json

The results of the tests will be stored in the promise-results.json file.

The results can also be seen in the console (“npm run -s test”)

All 33 tests passing?! Congratulations, promise has been successfully installed and configured.

44 Chapter 4. Feature Configuration

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

4.5. Promise Feature Configuration Overview 45

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

4.6 Configuring SDNVPN features

Fuel installer configuration

In order to install the BGPVPN feature, the corresponding checkbox in Fuel has to be selected. This will trigger
installation of the OpenStack BGPVPN API extension for Neutron (set up for using the ODL driver).

In addition, ODL has to be installed, see the corresponding section in the respective installer documentation on how to
install ODL. If the BGPVPN feature is installed, ODL will automatically be installed with VPN Service karaf feature
activated.

No post-deploy configuration is necessary. The Fuel BGPVPN plugin and the ODL plugin should set up the cluster
ready for BGPVPNs being created. This includes the set-up of internal VxLAN transport tunnels between compute
nodes.

No post-configuration activities are required.

46 Chapter 4. Feature Configuration

CHAPTER

FIVE

POST CONFIGURATION ACTIVITIES

Once you have deployed and configured your scenario and features you should validate the state of the system using
the following guides.

5.1 Scenario validation activities

The following guides provide information on how to validate the installation of you scenario based on the tools and
test suites available for the installation tool you have selected:

5.1.1 Fuel post installation procedures

Automated post installation activities

Fuel provides a fairly broad coverage of built in automated health checks. These validate the installation in terms of
configuration, services, networking, storage, policies, etc. The execution of the full range of health checks takes less
than 30 minutes.

For instructions on how to run health-checks, please read the Fuel installation instructions.

Platform components validation

Consult the feature sections in this document for any post-install feature specific validation/health-checks.

5.1.2 JOID post installation procedures

Configure OpenStack

In each SDN directory, for example joid/ci/opencontrail, there is a folder for Juju deployer where you can find the
charm bundle yaml files that the deploy.sh uses to deploy.

In the same directory, there is scripts folder where you can find shell scripts to help you configure the OpenStack
cloud that you just deployed. These scripts are created to help you configure a basic OpenStack Cloud to verify the
cloud. For more info on OpenStack Cloud configuration, please refer to the OpenStack Cloud Administrator Guide
on docs.openstack.org. Similarly, for complete SDN configuration, please refer to the respective SDN adminstrator
guide.

Each SDN solution requires slightly different setup, please refer to the README in each SDN folder. Most likely
you will need to modify the openstack.sh and cloud-setup.sh scripts for the floating IP range, private IP network, and
SSH keys. Please go through openstack.sh, glance.sh and cloud-setup.sh and make changes as you see fit.

47

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

5.2 Feature validation activities

The following sections provide information on how to validate the features you have installed in your scenario:

5.2.1 Copper post installation procedures

This release focused on use of the OpenStack Congress service for managing configuration policy. The Congress
install verify procedure described here is largely manual. This procedure, as well as the longer-term goal of automated
verification support, is a work in progress. The procedure is further specific to one OPNFV installer (JOID, i.e.
MAAS/JuJu) based environment.

Automated post installation activities

No automated procedures are provided at this time.

Copper post configuration procedures

No configuration procedures are required beyond the basic install procedure.

Platform components validation

Following are notes on creating a container as test driver for Congress. This is based upon an Ubuntu host as installed
by JOID.

Create and Activate the Container

On the jumphost:

sudo lxc-create -n trusty-copper -t /usr/share/lxc/templates/lxc-ubuntu \
-- -b ubuntu ~/opnfv
sudo lxc-start -n trusty-copper -d
sudo lxc-info --name trusty-copper
(typical output)
Name: trusty-copper
State: RUNNING
PID: 4563
IP: 10.0.3.44
CPU use: 28.77 seconds
BlkIO use: 522.79 MiB
Memory use: 559.75 MiB
KMem use: 0 bytes
Link: vethDMFOAN
TX bytes: 2.62 MiB
RX bytes: 88.48 MiB
Total bytes: 91.10 MiB

Login and configure the test server

48 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

ssh ubuntu@10.0.3.44
sudo apt-get update
sudo apt-get upgrade -y

Install pip
sudo apt-get install python-pip -y

Install java
sudo apt-get install default-jre -y

Install other dependencies
sudo apt-get install git gcc python-dev libxml2 libxslt1-dev \
libzip-dev php5-curl -y

Setup OpenStack environment variables per your OPNFV install
export CONGRESS_HOST=192.168.10.117
export KEYSTONE_HOST=192.168.10.108
export CEILOMETER_HOST=192.168.10.105
export CINDER_HOST=192.168.10.101
export GLANCE_HOST=192.168.10.106
export HEAT_HOST=192.168.10.107
export NEUTRON_HOST=192.168.10.111
export NOVA_HOST=192.168.10.112
source ~/admin-openrc.sh

Install and test OpenStack client
mkdir ~/git
cd git
git clone https://github.com/openstack/python-openstackclient.git
cd python-openstackclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
openstack service list
(typical output)
+----------------------------------+------------+----------------+
| ID | Name | Type |
+----------------------------------+------------+----------------+
2f8799ae50f24c928c021fabf8a50f5f	keystone	identity
351b13f56d9a4e25849406ec1d5a2726	cinder	volume
5129510c3143454f9ba8ec7e6735e267	cinderv2	volumev2
5ee1e220460f41dea9be06921400ce9b	congress	policy
78e73a7789a14f56a5d248a0cd141201	quantum	network
9d5a00fb475a45b2ae6767528299ed6b	ceilometer	metering
9e4b1624ef0b434abc0b82f607c5045c	heat	orchestration
b6c01ceb5023442d9f394b83f2a18e01	heat-cfn	cloudformation
ba6199e3505045ad87e2a7175bd0c57f	glance	image
d753f304a0d541dbb989780ae70328a8	nova	compute
+----------------------------------+------------+----------------+

Install and test Congress client
cd ~/git
git clone https://github.com/openstack/python-congressclient.git
cd python-congressclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
openstack congress driver list
(typical output)
+------------+--+
| id | description |
+------------+--+
ceilometer	Datasource driver that interfaces with ceilometer.
neutronv2	Datasource driver that interfaces with OpenStack Networking aka Neutron.
nova	Datasource driver that interfaces with OpenStack Compute aka nova.
keystone	Datasource driver that interfaces with keystone.
cinder	Datasource driver that interfaces with OpenStack cinder.
glancev2	Datasource driver that interfaces with OpenStack Images aka Glance.
+------------+--+

Install and test Glance client
cd ~/git
git clone https://github.com/openstack/python-glanceclient.git
cd python-glanceclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
glance image-list
(typical output)
+--------------------------------------+---------------------+
| ID | Name |
+--------------------------------------+---------------------+
| 6ce4433e-65c0-4cd8-958d-b06e30c76241 | cirros-0.3.3-x86_64 |
+--------------------------------------+---------------------+

Install and test Neutron client
cd ~/git
git clone https://github.com/openstack/python-neutronclient.git
cd python-neutronclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
neutron net-list
(typical output)
+--------------------------------------+----------+--+
| id | name | subnets |
+--------------------------------------+----------+--+
| dc6227df-af41-439f-bd2c-c2c2f0fe7fc5 | public | 5745846c-dd79-4900-a7da-bf506348ceac 192.168.10.0/24 |
| a3f9f13a-5de9-4d3b-98c8-d2e40a2ef8e9 | internal | 5e0be862-90da-44ab-af43-56d5c65aa049 10.0.0.0/24 |
+--------------------------------------+----------+--+

Install and test Nova client
cd ~/git
git clone https://github.com/openstack/python-novaclient.git
cd python-novaclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install
nova hypervisor-list
(typical output)
+----+---------------------+-------+---------+
| ID | Hypervisor hostname | State | Status |
+----+---------------------+-------+---------+
| 1 | compute1.maas | up | enabled |
+----+---------------------+-------+---------+

Install and test Keystone client
cd ~/git
git clone https://github.com/openstack/python-keystoneclient.git
cd python-keystoneclient
git checkout stable/liberty
sudo pip install -r requirements.txt
sudo python setup.py install

5.2. Feature validation activities 49

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Setup the Congress Test Webapp

Clone Copper (if not already cloned in user home)
cd ~/git
if [! -d ~/git/copper]; then \
git clone https://gerrit.opnfv.org/gerrit/copper; fi

Copy the Apache config
sudo cp ~/git/copper/components/congress/test-webapp/www/ubuntu-apache2.conf \
/etc/apache2/apache2.conf

Point proxy.php to the Congress server per your install
sed -i -- "s/192.168.10.117/$CONGRESS_HOST/g" \
~/git/copper/components/congress/test-webapp/www/html/proxy/index.php

Copy the webapp to the Apache root directory and fix permissions
sudo cp -R ~/git/copper/components/congress/test-webapp/www/html /var/www
sudo chmod 755 /var/www/html -R

Make webapp log directory and set permissions
mkdir ~/logs
chmod 777 ~/logs

Restart Apache
sudo service apache2 restart

Using the Test Webapp

Browse to the trusty-copper server IP address.

Interactive options are meant to be self-explanatory given a basic familiarity with the Congress service and data model.
But the app will be developed with additional features and UI elements.

5.2.2 IPv6 Post Installation Procedures

Congratulations, you have completed the setup of using a service VM to act as an IPv6 vRouter. You have validated
the setup based on the instruction in previous sections. If you want to further test your setup, you can ping6 among
VM1, VM2, vRouter and ipv6-router.

This setup allows further open innovation by any 3rd-party. For more instructions and documentations, please refer to:

1. IPv6 Configuration Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html

2. IPv6 User Guide (HTML): http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

Automated post installation activities

Refer to the relevant testing guides, results, and release notes of Yardstick Project.

5.3 Additional testing and validation activities

Many of our testing tools can be manually installed to facilitate targeted testing of features and capabilities of your
scenario. The following guides provide instruction on setting up these testing suites:

50 Chapter 5. Post Configuration Activities

http://artifacts.opnfv.org/ipv6/docs/setupservicevm/index.html
http://artifacts.opnfv.org/ipv6/docs/gapanalysis/index.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

5.3.1 Overview of the Functest suites

Functest is the OPNFV project primarily targeting function testing. In the Continuous Integration pipeline, it is
launched after an OPNFV fresh installation to validate and verify the basic functions of the infrastructure.

The current list of test suites can be distributed over 4 main domains: VIM (Virtualised Infrastructure Manager),
Controllers (i.e. SDN Controllers), Features and VNF (Virtual Network Functions).

Do-
main

Tier Test case Comments

VIM

healthcheckhealthcheck Verify basic operation in VIM

smoke

vPing_SSH NFV “Hello World” using an SSH connection to a destination VM over a created
floating IP address on the SUT Public / External network. Using the SSH
connection a test script is then copied to the destination VM and then executed via
SSH. The script will ping another VM on a specified IP address over the SUT
Private Tenant network.

vPing_userdataUses Ping with given userdata to test intra-VM connectivity over the SUT Private
Tenant network. The correct operation of the NOVA Metadata service is also
verified in this test.

tem-
pest_smoke
_serial

Generate and run a relevant Tempest Test Suite in smoke mode. The generated
test set is dependent on the OpenStack deployment environment.

rally_sanity Run a subset of the OpenStack Rally Test Suite in smoke mode

openstacktem-
pest_full
_parallel

Generate and run a full set of the OpenStack Tempest Test Suite. See the
OpenStack reference test suite [2]. The generated test set is dependent on the
OpenStack deployment environment.

rally_full Run the OpenStack testing tool benchmarking OpenStack modules See the Rally
documents [3].

Controllerssdn_suitesodl Opendaylight Test suite TODO: Find a document reference!
onos Test suite of ONOS L2 and L3 functions. See ONOSFW User Guide for details.

Features features

Promise Resource reservation and management project to identify NFV related
requirements and realize resource reservation for future usage by capacity
management of resource pools regarding compute, network and storage. See
Promise User Guide for details.

Doctor Doctor platform, as of Colorado release, provides the two features: * Immediate
Notification * Consistent resource state awareness (compute). See the See Doctor
User Guide for details

bgpvpn Implementation of the OpenStack bgpvpn API from the SDNVPN feature project.
It allows for the creation of BGP VPNs. See SDNVPN User Guide for details

secu-
rity_scan

Implementation of a simple security scan. (Currently available only for the Apex
installer environment) TODO: Add document link from Luke Hinds; when
received.

VNF vnf vims Example of a real VNF deployment to show the NFV capabilities of the platform.
The IP Multimedia Subsytem is a typical Telco test case, referenced by ETSI. It
provides a fully functional VoIP System,

As shown in the above table, Functest is structured into different ‘domains’, ‘tiers’ and ‘test cases’. Each ‘test case’
usually represents an actual ‘Test Suite’ comprised -in turn- of several test cases internally.

Test cases also have an implicit execution order. For example, if the early ‘healthcheck’ Tier testcase fails, or if there
are any failures in the ‘smoke’ Tier testcases, there is little point to launch a full testcase execution round.

An overview of the Functest Structural Concept is depicted graphically below:

Some of the test cases are developed by Functest team members, whereas others are integrated from upstream com-
munities or other OPNFV projects. For example, Tempest is the OpenStack integration test suite and Functest is in
charge of the selection, integration and automation of those tests that fit suitably to OPNFV.

5.3. Additional testing and validation activities 51

http://docs.openstack.org/developer/tempest/overview.html
https://rally.readthedocs.org/en/latest/index.html
http://artifacts.opnfv.org/onosfw/brahmaputra/docs/userguide/index.html
http://artifacts.opnfv.org/promise/brahmaputra/docs/userguide/index.html
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/userguide/featureusage-doctor.html
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/userguide/featureusage-doctor.html
http://artifacts.opnfv.org/sdnvpn/brahmaputra/docs/userguide/featureusage.html
http://docs.openstack.org/developer/tempest/overview.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

52 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

The Tempest test suite has been customized but no new test cases have been created in OPNFV Functest.

The results produced by the tests run from CI are pushed and collected into a NoSQL database. The goal is to populate
the database with results from different sources and scenarios and to show them on a Functest Dashboard. A screenshot
of a live Functest Dashboard is shown below:

There is no real notion of Test domain or Test coverage. Basic components (VIM, SDN controllers) are tested through
their own suites. Feature projects also provide their own test suites with different ways of running their tests.

vIMS test case was integrated to demonstrate the capability to deploy a relatively complex NFV scenario on top of the
OPNFV infrastructure.

Functest considers OPNFV as a black box. As of Colorado release the OPNFV offers a lot of potential combinations:

• 3 controllers (OpenDaylight, ONOS, OpenContrail)

• 4 installers (Apex, Compass, Fuel, Joid)

Most of the tests are runnable by any combination, but some tests might have restrictions imposed by the utilized
installers or due to the available deployed features. The system uses the environment variables (INSTALLER_IP and
DEPLOY_SCENARIO) to automatically determine the valid test cases; for each given environment.

In the Colorado OPNFV System release a convenience Functest CLI utility is also introduced to simplify setting up
the Functest evironment, management of the OpenStack environment (e.g. resource clean-up) and for executing tests.
The Functest CLI organised the testcase into logical Tiers, which contain in turn one or more testcases. The CLI
allow execution of a single specified testcase, all test cases in a specified Tier, or the special case of execution of
ALL testcases. The Functest CLI is introduced in more detail in the section ‘Executing the functest suites‘_ of this
document.

Preparing the Docker container

Pull the Functest Docker image (‘opnfv/functest’) from the public dockerhub registry under the OPNFV account:
[dockerhub], with the following docker command:

5.3. Additional testing and validation activities 53

http://testresults.opnfv.org/dashboard/
https://hub.docker.com/r/opnfv/functest/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

docker pull opnfv/functest:<TagIdentifier>

where <TagIdentifier> identifies a specifically tagged release of the Functest docker container image in the public
dockerhub registry. There are many different tags created automatically by the CI mechanisms, but you must ensure
you pull an image with the correct tag to match the OPNFV software release installed in your environment. All
available tagged images can be seen from location [FunctestDockerTags]. For example, when running on the first
official release of the OPNFV Colorado system platform, tag “colorado.1.0” is needed. Pulling other tags might cause
some problems while running the tests. If you need to specifically pull the latest Functest docker image, then omit the
tag argument:

docker pull opnfv/functest

After pulling the Docker image, check that the pulled image is available with the following docker command:

[functester@jumphost ~]$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
opnfv/functest latest 8cd6683c32ae 2 weeks ago 1.611 GB
opnfv/functest brahmaputra.3.0 94b78faa94f7 4 weeks ago 874.9 MB
hello-world latest 94df4f0ce8a4 7 weeks ago 967 B

(Docker images pulled without a tag specifier bear the implicitly
assigned label "latest", as seen above.)

The Functest docker container environment can -in principle- be also used with non-OPNFV official installers (e.g.
‘devstack), with the disclaimer that support for such environments is outside of the scope of responsibility of the
OPNFV project.

The minimum command to create the Functest Docker container can be described as follows:

docker run -it opnfv/functest:<TagIdentifier> /bin/bash

For OPNFV official installers, it is recommended (although no longer mandatory) to provide two additional environ-
ment variables, in the ‘docker run ...’ command nvocation:

• INSTALLER_TYPE : possible values are apex, compass, fuel or joid.

• INSTALLER_IP : IP of the installer node/VM.

Functest may need to know the IP of the installer to retrieve automatically the credentials from the installer node/VM
or even from the actual controllers.

Thus, the recommended minimum command to create the Functest Docker container for OPNFV installer can be
described (using installer ‘fuel’, and an invented INSTALLER_IP of ‘10.20.0.2’, for example), as follows:

docker run -it \
-e "INSTALLER_IP=10.20.0.2" \
-e "INSTALLER_TYPE=fuel" \
opnfv/functest:<TagIdentifier> /bin/bash

Optionally, it is possible to assign precisely a container name through the –name option:

docker run --name "CONTAINER_NAME" -it \
-e "INSTALLER_IP=10.20.0.2" \
-e "INSTALLER_TYPE=fuel" \
opnfv/functest:<TagIdentifier> /bin/bash

It is also possible to to indicate the path of the OpenStack credentials using a -v option:

54 Chapter 5. Post Configuration Activities

https://hub.docker.com/r/opnfv/functest/tags/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

docker run -it \
-e "INSTALLER_IP=10.20.0.2" \
-e "INSTALLER_TYPE=fuel" \
-v <path_to_your_local_creds_file>:/home/opnfv/functest/conf/openstack.creds \
opnfv/functest:<TagIdentifier> /bin/bash

NOTE: Make sure you have placed the needed credential file into the
Jumphost local path <path_to_your_local_cred_file>. For the
Apex Installer you will need to pre-copy the required OpenStack
credentials file from the Instack/Undercloud Virtual Machine.
See the section 'Apex Installer Tips' later in this document.

Warning

If you are using the Joid installer, you must use the method above
to provide the required OpenStack credentials. See the section
'Focus on the OpenStack credentials' later in this document.

The local openstack credential file will be mounted in the Docker container under the path:
‘/home/opnfv/functest/conf/openstack.creds’

If the intention is to run Functest against any of the supported OPNFV scenarios, it is recommended to include also
the environment variable DEPLOY_SCENARIO. The DEPLOY_SCENARIO environment variable is passed with
the format:

-e "DEPLOY_SCENARIO=os-<controller>-<nfv_feature>-<ha_mode>"

where:
os = OpenStack (No other VIM choices currently available)
controller is one of (nosdn | odl_l2 | odl_l3 | onos | ocl)
nfv_feature is one or more of (ovs | kvm | sfc | bgpvpn | nofeature)

If several features are pertinent then use the underscore
character '_' to separate each feature (e.g. ovs_kvm)
'nofeature' indicates no NFV feature is deployed

ha_mode is one of (ha | noha)

For example:

docker run -it \
-e "INSTALLER_IP=10.20.0.2" \
-e "INSTALLER_TYPE=fuel" \
-e "DEPLOY_SCENARIO=os-odl_l2-ovs_kvm-ha" \
opnfv/functest:<TagIdentifier> /bin/bash

NOTE: Not all possible combinations of “DEPLOY_SCENARIO” are supported. The scenario name passed in to
the Functest Docker container must match the scenario used with the selected installer to create the actual OPNFV
platform deployment.

Finally, three additional environment variables can also be passed in to the Functest Docker Container, using the -e
“<EnvironmentVariableName>=<Value>” mechanism. The first two of these are only relevant to Jenkins CI invoked
testing and should not be used when performing manual test scenarios:

-e "NODE_NAME=<Test POD Name>" \
-e "BUILD_TAG=<Jenkins Build Tag>" \
-e "CI_DEBUG=<DebugTraceValue>"

where:
<Test POD Name> = Symbolic name of the POD where the tests are run.

Visible in test results files, which are stored

5.3. Additional testing and validation activities 55

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

to the database. This option is only used when
tests are activated under Jenkins CI control.
It indicates the POD/hardware where the test has
been run. If not specified, then the POD name is
defined as "Unknown" by default.
DO NOT USE THIS OPTION IN MANUAL TEST SCENARIOS.

<Jenkins Build tag> = Symbolic name of the Jenkins Build Job.
Visible in test results files, which are stored
to the database. This option is only set when
tests are activated under Jenkins CI control.
It enables the correlation of test results, which
are independently pushed to the results datbase
from different Jenkins jobs.
DO NOT USE THIS OPTION IN MANUAL TEST SCENARIOS.

<DebugTraceValue> = "true" or "false"
Default = "false", if not specified
If "true" is specified, then additional debug trace
text can be sent to the test results file / log files
and also to the standard console output.

Apex Installer Tips

Some specific tips are useful for the Apex Installer case. If not using Apex Installer; ignore this section.

1. The “INSTALLER_IP” environment variable should be set equal to the IP address of the so-called “In-
stack/undercloud Virtual Machine”.

In the Jumphost, execute the following command and note the returned IP address:

sudo virsh domifaddr undercloud | grep -Eo "[0-9.]+{4}"

NOTE: In releases prior to Colorado, the name 'instack' was
used. From Colorado onward, the name 'undercloud' is used.
If in doubt, then execute -from the Jumphost- the command
"virsh list" to see which name is in use for the Installer
Virtual Machine.

You can now enter the <Specific IP Address> as learned in the above step in the -e option specification:

-e "INSTALLER_IP=<Specific IP Address>"

2. If you want to ‘Bind mount’ a local Openstack credentials file (“overcloudrc”) to the Docker container, then you
may need to first pre-copy that file from the ‘Instack/Undercloud VM’ to the Jump host.

As before, in the Jumphost, execute the following command and note the returned IP address:

sudo virsh domifaddr undercloud | grep -Eo "[0-9.]+{4}"

Using the <Specific IP Address> just learned above, execute the following shell commands in the Jumphost,
before issuing the ‘docker run ...’ command invocation:

scp stack@<Specific IP Address>:overcloudrc .
sed -i 's/export no_proxy/#export no_proxy/' overcloudrc
The above 'sed' command is needed *only* in cases where
the Jumphost is operating behind a http proxy.
See the 'Proxy Support' section later on in this document

56 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

NOTE: There are two Openstack credential files present in the
Instack/Undercloud VM: 'overcloudrc' and 'stackrc'.
Don't mix these up! The file 'stackrc' is intended for use with
'Triple O Undercloud'; only. The SUT always requires OpenStack
Overcloud Credentials.

The file located at Jumphost path: ‘~/overcloudrc’ is now ‘Bind mounted’ to the Docker path
‘/home/opnfv/functest/conf/openstack.creds’ by specifying a -v option:

-v ~/overcloudrc:/home/opnfv/functest/conf/openstack.creds

in the argument list of the ‘docker run ...’ command invocation. In the Apex installer case, the Openstack
Credential file has the name ‘overcloudrc’ and is located in the home directory of the ‘stack’ user (‘/home/stack/’
or ‘~/’]) in the ‘Instack/Undercloud VM’.

3. In order that the docker container can access the Instack/Undercloud VM, even with ‘stack’ user, the SSH keys
of the Jumphost root user must be ‘Bind mounted’ to the docker container by the following -v option in the
‘docker run ...’ command invocation:

-v /root/.ssh/id_rsa:/root/.ssh/id_rsa

4. Here is an example of the docker command invocation for an Apex installed system, using latest Funtest docker
container, for illustration purposes:

docker run -it --name "ApexFuncTstODL" \
-e "INSTALLER_IP=<Specific IP Address>" \
-e "INSTALLER_TYPE=apex" \
-e "DEPLOY_SCENARIO=os-odl_l2-nofeature-ha" \
-v /root/.ssh/id_rsa:/root/.ssh/id_rsa \
-v ~/overcloudrc:/home/opnfv/functest/conf/openstack.creds \
opnfv/functest /bin/bash

Functest docker container directory structure

Inside the Functest docker container, the following directory structure should now be in place:

`-- home
`-- opnfv

|-- functest
| |-- conf
| |-- data
| `-- results
`-- repos

|-- bgpvpn
|-- doctor
|-- functest
|-- odl_integration
|-- onos
|-- ovno
|-- promise
|-- rally
|-- releng
`-- vims-test

(The sub-directory 'ovno' holds SDN controller functional tests
for the OpenContrail SDN Controller, which should be available
for Colorado release)

5.3. Additional testing and validation activities 57

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Underneath the ‘/home/opnfv/’ directory, the Functest docker container includes two main directories:

• The functest directory stores configuration files (e.g. the OpenStack creds are stored in path
‘/home/opnfv/functest/conf/openstack.creds’), the data directory stores a ‘cirros’ test image used in some func-
tional tests and the results directory stores some temporary result log files

• The repos directory holds various repositories. The directory ‘/home/opnfv/repos/functest’ is used to prepare the
needed Functest environment and to run the tests. The other repository directories are used for the installation
of the needed tooling (e.g. rally) or for the retrieval of feature projects scenarios (e.g. promise)

The structure under the functest repository can be described as follows:

. |-- INFO
|-- LICENSE
|-- __init__.py
|-- ci
| |-- __init__.py
| |-- check_os.sh
| |-- config_functest.yaml
| |-- exec_test.sh
| |-- prepare_env.py
| |-- run_tests.py
| |-- testcases.yaml
| |-- tier_builder.py
| `-- tier_handler.py
|-- cli
| |-- __init__.py
| |-- cli_base.py
| |-- commands
| |-- functest-complete.sh
| `-- setup.py
|-- commons
| |-- ims
| |-- mobile
| `--traffic-profile-guidelines.rst
|-- docker
| |-- Dockerfile
| |-- config_install_env.sh
| `-- requirements.pip
|-- docs
| |-- com
| |-- configguide
| |-- devguide
| |-- images
| |-- release-notes
| |-- results
| `--userguide
|-- testcases
| |-- Controllers
| |-- OpenStack
| |-- __init__.py
| |-- features
| |-- security_scan
| `-- vIMS
`-- utils

|-- __init__.py
|-- functest_logger.py
|-- functest_utils.py
|-- openstack_clean.py

58 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

|-- openstack_snapshot.py
`-- openstack_utils.py

(Note: All *.pyc files removed from above list for brevity...)

We may distinguish 7 different directories:

• ci: This directory contains test structure defintion files (e.g <filename>.yaml) and bash shell/python scripts used
to configure and execute Functional tests. The test execution script can be executed under the control of Jenkins
CI jobs.

• cli: This directory holds the python based Functest CLI utility source code, which is based on the Python ‘click’
framework.

• commons: This directory is dedicated for storage of traffic profile or any other test inputs that could be reused
by any test project.

• docker: This directory includes the needed files and tools to build the Funtest Docker container image.

• docs: This directory includes documentation: Release Notes, User Guide, Configuration Guide and Developer
Guide. Test results are also located in a sub–directory called ‘results’.

• testcases: This directory includes the scripts required by Functest internal test cases and other feature projects
test cases.

• utils: this directory holds Python source code for some general purpose helper utilities, which testers can also
re-use in their own test code. See for an example the Openstack helper utility: ‘openstack_utils.py’.

After the run command, a new prompt appears which means that we are inside the container and ready to move to the
next step.

Useful Docker commands

When typing exit in the container prompt, this will cause exiting the container and probably stopping it. When
stopping a running Docker container all the changes will be lost, there is a keyboard shortcut to quit the container
without stopping it: CTRL+P+Q. To reconnect to the running container DO NOT use the run command again (since
it will create a new container), use the exec command instead:

docker ps <copy the container ID> docker exec -ti \
<CONTAINER_ID> /bin/bash

or simply:

docker exec -ti \
$(docker ps|grep functest|awk '{print $1}') /bin/bash

There are other useful Docker commands that might be needed to manage possible issues with the containers.

List the running containers:

docker ps

List all the containers including the stopped ones:

docker ps -a

It is useful sometimes to remove a container if there are some problems:

docker rm <CONTAINER_ID>

Use the -f option if the container is still running, it will force to destroy it:

5.3. Additional testing and validation activities 59

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

docker -f rm <CONTAINER_ID>

The Docker image is called opnfv/functest and it is stored in the public Docker registry under the OPNFV account:
dockerhub. The are many different tags that have been created automatically by the CI mechanisms, but the one that
this document refers to is brahmaputra.1.0. Pulling other tags might cause some problems while running the tests.

Check the Docker documentation dockerdocs for more information.

Preparing the Functest environment

Once the Functest docker container is up and running, the required Functest environment needs to be prepared. A cus-
tom built functest CLI utility is availabe to perform the needed environment preparation action. Once the enviroment
is prepared, the functest CLI utility can be used to run different functional tests. The usage of the functest CLI utility
to run tests is described further in the Functest User Guide OPNFV_FuncTestUserGuide

Prior to commencing the Functest environment preparation, we can check the initial status of the environment. Issue
the functest env status command at the prompt:

functest env status
Functest environment is not installed.

Note: When the Funtest environment is prepared, the command will
return the status: "Functest environment ready to run tests."

To prepare the Functest docker container for test case execution, issue the functest env prepare command at the
prompt:

functest env prepare

This script will make sure that the requirements to run the tests are met and will install the needed libraries and tools
by all Functest test cases. It should be run only once every time the Functest docker container is started from scratch.
If you try to run this command, on an already prepared enviroment, you will be prompted whether you really want to
continue or not:

functest env prepare
It seems that the environment has been already prepared.
Do you want to do it again? [y|n]

(Type 'n' to abort the request, or 'y' to repeat the
environment preparation)

To list some basic information about an already prepared Functest docker container environment, issue the functest
env show at the prompt:

functest env show
+==+
| Functest Environment info |
+==+
| INSTALLER: apex, 192.168.122.89 |
| SCENARIO: os-odl_l2-nofeature-ha |
| POD: localhost |
| GIT BRANCH: master |
| GIT HASH: 5bf1647dec6860464eeb082b2875798f0759aa91 |
| DEBUG FLAG: false |
+--+
| STATUS: ready |
+--+

60 Chapter 5. Post Configuration Activities

https://hub.docker.com/r/opnfv/functest/
https://docs.docker.com/
http://artifacts.opnfv.org/functest/docs/userguide/index.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Where:

INSTALLER: Displays the INSTALLER_TYPE value
- here = "apex"
and the INSTALLER_IP value
- here = "192.168.122.89"

SCENARIO: Displays the DEPLOY_SCENARIO value
- here = "os-odl_l2-nofeature-ha"

POD: Displays the value pass in NODE_NAME
- here = "loclahost"

GIT BRANCH: Displays the git branch of the OPNFV Functest
project repository included in the Functest
Docker Container.
- here = "master"

(In first official colorado release
would be "colorado.1.0")

GIT HASH: Displays the git hash of the OPNFV Functest
project repository included in the Functest
Docker Container.
- here = "5bf1647dec6860464eeb082b2875798f0759aa91"

DEBUG FLAG: Displays the CI_DEBUG value
- here = "false"

NOTE: In Jenkins CI runs, an additional item "BUILD TAG"
would also be listed. The valaue is set by Jenkins CI.

Finally, the functest CLI has a basic ‘help’ system with so called –help options:

Some examples:

functest --help Usage: functest [OPTIONS] COMMAND [ARGS]...

Options:
--version Show the version and exit.
-h, --help Show this message and exit.

Commands:
env
openstack
testcase
tier

functest env --help
Usage: functest env [OPTIONS] COMMAND [ARGS]...

Options:
-h, --help Show this message and exit.

Commands:
prepare Prepares the Functest environment.
show Shows information about the current...
status Checks if the Functest environment is ready...

Focus on the OpenStack credentials

The OpenStack credentials are needed to run the tests against the VIM. There are 3 ways to provide them to Functest:

• using the -v option when running the Docker container

5.3. Additional testing and validation activities 61

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

• create an empty file in ‘/home/opnfv/functest/conf/openstack.creds’ and paste the credentials into it. (Consult
your installer guide to know from where you can retrieve credential files, which are set-up in the Openstack
installation of the SUT)

• automatically retrieved using the following script:

$repos_dir/releng/utils/fetch_os_creds.sh \
-d /home/opnfv/functest/conf/openstack.creds \
-i fuel \
-a 10.20.0.2"

(-d specifies the full destination path where to place the
copied Openstack credential file

-i specifies the INSTALLER_TYPE
-a specifies the INSTALLER_IP
If the installer is of type "fuel" and a Virtualized
deployment is used, then this should be indicated by
adding an option '-v'. The -v option takes no arguments.
It enables some needed special handling in the script.)

Note: If you omit the -d <full destination path> option in
the command invocation, then the script will create the
credential file with name 'opnfv-openrc.sh' in directory
'/home/opnfv'. In that case, you need to copy/edit the file
into the correct target path:
'/home/opnfv/functest/conf/openstack.creds'.

Warning If you are using the Joid installer, the ‘fetch_os_cred-sh’ shell script should not be used. Use instead, the
-v optin to Bind Mount a suitably prepared local copy of the Openstack credentials for usage by the Functest docker
container

Once the credentials are there, they should be sourced before running the tests:

source /home/opnfv/functest/conf/openstack.creds

or simply using the environment variable creds:

. $creds

After this, try to run any OpenStack command to see if you get any output, for instance:

openstack user list

This will return a list of the actual users in the OpenStack deployment. In any other case, check that the credentials
are sourced:

env|grep OS_

This command must show a set of environment variables starting with OS_, for example:

OS_REGION_NAME=RegionOne
OS_DEFAULT_DOMAIN=default
OS_PROJECT_NAME=admin
OS_PASSWORD=admin
OS_AUTH_STRATEGY=keystone
OS_AUTH_URL=http://172.30.10.3:5000/v2.0
OS_USERNAME=admin
OS_TENANT_NAME=admin
OS_ENDPOINT_TYPE=internalURL
OS_NO_CACHE=true

62 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

If the OpenStack command still does not show anything or complains about connectivity issues, it could be due to an
incorrect url given to the OS_AUTH_URL environment variable. Check the deployment settings.

SSL Support

If you need to connect to a server that is TLS-enabled (the auth URL begins with ‘https’) and it uses a certificate from
a private CA or a self-signed certificate, then you will need to specify the path to an appropriate CA certificate to use,
to validate the server certificate with the environment variable OS_CACERT:

echo $OS_CACERT
/etc/ssl/certs/ca.crt

However, this certificate does not exist in the container by default. It has to be copied manually from the OpenStack
deployment. This can be done in 2 ways:

1. Create manually that file and copy the contents from the OpenStack controller.

2. (Recommended) Add the file using a Docker volume when starting the container:

-v <path_to_your_cert_file>:/etc/ssl/certs/ca.cert

You might need to export OS_CACERT environment variable inside the container:

export OS_CACERT=/etc/ssl/certs/ca.crt

Certificate verification can be turned off using OS_INSECURE=true. For example, Fuel uses self-signed cacerts by
default, so an pre step would be:

export OS_INSECURE=true

Proxy support

If your Jumphost node is operating behind a http proxy, then there are 2 places where some special actions may be
needed to make operations succeed:

1. Initial installation of docker engine First, try following the official Docker documentation for Proxy settings.
Some issues were experienced on CentOS 7 based Jumphost. Some tips are documented in section: Docker
Installation on CentOS 7 behind http proxy below.

2. Execution of the Functest environment preparation inside the created docker container Functest needs internet
access to download some resources for some test cases. For example to install the Rally environment. This
might not work properly if the Jumphost is running through a http Proxy.

If that is the case, make sure the resolv.conf and the needed http_proxy and https_proxy environment variables, as well
as the ‘no_proxy’ environment variable are set correctly:

Make double sure that the 'no_proxy=...' line in the
'openstack.creds' file is commented out first. Otherwise, the
values set into the 'no_proxy' environment variable below will
be ovewrwritten, each time the command
'source ~/functest/conf/openstack.creds' is issued.

sed -i 's/export no_proxy/#export no_proxy/' \
~/functest/conf/openstack.creds

source ~/functest/conf/openstack.creds

Next calculate some IP addresses for which http_proxy

5.3. Additional testing and validation activities 63

https://docs.docker.com/engine/admin/systemd/#http-proxy

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

usage should be excluded:

publicURL_IP=$(echo $OS_AUTH_URL| \
grep -Eo "([0-9]+\.){3}[0-9]+")

adminURL_IP=$(openstack catalog show identity | \
grep adminURL | grep -Eo "([0-9]+\.){3}[0-9]+")

export http_proxy="<your http proxy settings>"
export https_proxy="<your httpsproxy settings>"
export no_proxy="127.0.0.1,localhost,$publicURL_IP,$adminURL_IP"

Ensure that "git" uses the http_proxy
This may be needed if your firewall forbids SSL based git fetch
git config --global http.sslVerify True
git config --global http.proxy <Your http proxy settings>

Validation check: Before running ‘functest env prepare’ CLI command, make sure you can reach http and https sites
from inside the Functest docker container.

For example, try to use the nc command from inside the functest docker container:

nc -v google.com 80
Connection to google.com 80 port [tcp/http] succeeded!

nc -v google.com 443
Connection to google.com 443 port [tcp/https] succeeded!

Note: In a Jumphost node based on the CentOS 7, enviroment, it was observed that the nc commands did not function
as described in the section above. You can however try using the curl command instead, if you encounter any issues
with the nc command:

curl http://www.google.com:80

<HTML><HEAD><meta http-equiv="content-type"
content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE>
</HEAD>
<BODY>
<H1>302 Moved</H1>
:
:
</BODY></HTML>

curl https://www.google.com:443

<HTML><HEAD><meta http-equiv="content-type"
content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE>
</HEAD>
<BODY>
<H1>302 Moved</H1>
:
:
</BODY></HTML>

(Even Google complained the URL used, it proves the http and https
protocols are working correctly through the http / https proxy.)

64 Chapter 5. Post Configuration Activities

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Docker Installation on CentOS 7 behind http proxy

There are good instructions in [InstallDockerCentOS7] for the installation of docker on CentOS 7. However, if your
Jumphost is behind a http proxy, then the following steps are needed before following the instructions in the above
reference:

1) # Make a directory '/etc/systemd/system/docker.service.d'
if it does not exist
sudo mkdir /etc/systemd/system/docker.service.d

Create a file called 'env.conf' in that directory with
the following contents:
[Service]
EnvironmentFile=-/etc/sysconfig/docker

2) # Set up a file called 'docker' in directory '/etc/sysconfig'
with the following contents:

HTTP_PROXY="<Your http proxy settings>"
HTTPS_PROXY="<Your https proxy settings>"
http_proxy="${HTTP_PROXY}"
https_proxy="${HTTPS_PROXY}"

3) # Reload the daemon
systemctl daemon-reload

4) # Sanity check - check the following docker settings:
systemctl show docker | grep -i env

Expected result:

EnvironmentFile=/etc/sysconfig/docker (ignore_errors=yes)
DropInPaths=/etc/systemd/system/docker.service.d/env.conf

Now follow the instructions in [InstallDockerCentOS7] to download and install the docker-engine. The instructions
conclude with a “test pull” of a sample “Hello World” docker container. This should now work with the above pre-
requisite actions.

5.3.2 Installing vswitchperf

Supported Operating Systems

• CentOS 7

• Fedora 20

• Fedora 21

• Fedora 22

• RedHat 7.2

• Ubuntu 14.04

Supported vSwitches

The vSwitch must support Open Flow 1.3 or greater.

5.3. Additional testing and validation activities 65

https://docs.docker.com/engine/installation/linux/centos/
https://docs.docker.com/engine/installation/linux/centos/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

• OVS (built from source).

• OVS with DPDK (built from source).

Supported Hypervisors

• Qemu version 2.3.

Available VNFs

A simple VNF that forwards traffic through a VM, using:

• DPDK testpmd

• Linux Brigde

• custom l2fwd module

The official VM image is called vloop-vnf and it is available for free download at OPNFV website.

vloop-vnf changelog:

• vloop-vnf-ubuntu-14.04_20160303

– snmpd service is disabled by default to avoid error messages during VM boot

– security updates applied

• vloop-vnf-ubuntu-14.04_20151216

– version with development tools required for build of DPDK and l2fwd

Other Requirements

The test suite requires Python 3.3 and relies on a number of other packages. These need to be installed for the test
suite to function.

Installation of required packages, preparation of Python 3 virtual environment and compilation of OVS, DPDK and
QEMU is performed by script systems/build_base_machine.sh. It should be executed under user account, which will
be used for vsperf execution.

Please Note: Password-less sudo access must be configured for given user account before script is executed.

Execution of installation script:

$ cd systems
$./build_base_machine.sh

Please Note: you don’t need to go into any of the systems subdirectories, simply run the top level
build_base_machine.sh, your OS will be detected automatically.

Script build_base_machine.sh will install all the vsperf dependencies in terms of system packages, Python 3.x and
required Python modules. In case of CentOS 7 it will install Python 3.3 from an additional repository provided by
Software Collections (a link). In case of RedHat 7 it will install Python 3.4 as an alternate installation in /usr/local/bin.
Installation script will also use virtualenv to create a vsperf virtual environment, which is isolated from the default
Python environment. This environment will reside in a directory called vsperfenv in $HOME.

You will need to activate the virtual environment every time you start a new shell session. Its activation is specific to
your OS:

66 Chapter 5. Post Configuration Activities

http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20160303.qcow2
http://artifacts.opnfv.org/vswitchperf/vnf/vloop-vnf-ubuntu-14.04_20151216.qcow2
http://www.softwarecollections.org/en/scls/rhscl/python33/
https://virtualenv.readthedocs.org/en/latest/

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

CentOS 7

$ scl enable python33 bash
$ cd $HOME/vsperfenv
$ source bin/activate

Fedora, RedHat and Ubuntu

$ cd $HOME/vsperfenv
$ source bin/activate

Gotcha Check what type of shell you are using

See what scripts are available in $HOME/vsperfenv/bin

source the appropriate script

Working Behind a Proxy

If you’re behind a proxy, you’ll likely want to configure this before running any of the above. For example:

export http_proxy=proxy.mycompany.com:123
export https_proxy=proxy.mycompany.com:123

Hugepage Configuration

Systems running vsperf with either dpdk and/or tests with guests must configure hugepage amounts to support running
these configurations. It is recommended to configure 1GB hugepages as the pagesize.

The amount of hugepages needed depends on your configuration files in vsperf. Each guest image requires 4096 by
default according to the default settings in the 04_vnf.conf file.

GUEST_MEMORY = ['4096', '4096']

The dpdk startup parameters also require an amount of hugepages depending on your configuration in the
02_vswitch.conf file.

VSWITCHD_DPDK_ARGS = ['-c', '0x4', '-n', '4', '--socket-mem 1024,1024']
VSWITCHD_DPDK_CONFIG = {

'dpdk-init' : 'true',
'dpdk-lcore-mask' : '0x4',
'dpdk-socket-mem' : '1024,1024',

}

Note: Option VSWITCHD_DPDK_ARGS is used for vswitchd, which supports –dpdk parameter. In recent vswitchd
versions, option VSWITCHD_DPDK_CONFIG will be used to configure vswitchd via ovs-vsctl calls.

With the –socket-mem argument set to use 1 hugepage on the specified sockets as seen above, the configuration will
need 9 hugepages total to run all tests within vsperf if the pagesize is set correctly to 1GB.

Depending on your OS selection configuration of hugepages may vary. Please refer to your OS documentation to set
hugepages correctly. It is recommended to set the required amount of hugepages to be allocated by default on reboots.

Information on hugepage requirements for dpdk can be found at http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html

5.3. Additional testing and validation activities 67

http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

You can review your hugepage amounts by executing the following command

cat /proc/meminfo | grep Huge

5.3.3 Yardstick

The project’s goal is to verify infrastructure compliance, from the perspective of a Virtual Network Function (VNF).

The Project’s scope is the development of a test framework, Yardstick, test cases and test stimuli to enable Network
Function Virtualization Infrastructure (NFVI) verification.

In OPNFV Brahmaputra release, generic test cases covering aspects of the metrics in the document ETSI GS NFV-
TST001, “Pre-deployment Testing; Report on Validation of NFV Environments and Services” are available; further
OPNFV releases will provide extended testing of these metrics.

The Project also includes a sample VNF, the Virtual Traffic Classifier (VTC) and its experimental framework,
ApexLake.

Yardstick is used in OPNFV for verifying the OPNFV infrastructure and some of the OPNFV features. The Yardstick
framework is deployed in several OPNFV community labs. It is installer, infrastructure and application independent.

See also:

This Presentation for an overview of Yardstick and Yardsticktst for material on alignment ETSI TST001 and Yardstick.

Yardstick Installation

Abstract

Yardstick currently supports installation on Ubuntu 14.04 or by using a Docker image. Detailed steps about installing
Yardstick using both of these options can be found below.

To use Yardstick you should have access to an OpenStack environment, with at least Nova, Neutron, Glance, Keystone
and Heat installed.

The steps needed to run Yardstick are:

1. Install Yardstick and create the test configuration .yaml file.

2. Build a guest image and load the image into the OpenStack environment.

3. Create a Neutron external network and load OpenStack environment variables.

4. Run the test case.

Installing Yardstick on Ubuntu 14.04

Installing Yardstick framework Install dependencies:

sudo apt-get update && sudo apt-get install -y \
wget \
git \
sshpass \
qemu-utils \
kpartx \
libffi-dev \
libssl-dev \
python \

68 Chapter 5. Post Configuration Activities

https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-deployment_Validation/
https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-deployment_Validation/
https://wiki.opnfv.org/_media/opnfv_summit_-_yardstick_project.pdf
https://wiki.opnfv.org/_media/opnfv_summit_-_bridging_opnfv_and_etsi.pdf

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

python-dev \
python-virtualenv \
libxml2-dev \
libxslt1-dev \
python-setuptools

Create a python virtual environment, source it and update setuptools:

virtualenv ~/yardstick_venv
source ~/yardstick_venv/bin/activate
easy_install -U setuptools

Download source code and install python dependencies:

git clone https://gerrit.opnfv.org/gerrit/yardstick
cd yardstick
python setup.py install

There is also a YouTube video, showing the above steps:

Installing extra tools

yardstick-plot Yardstick has an internal plotting tool yardstick-plot, which can be installed using the follow-
ing command:

sudo apt-get install -y g++ libfreetype6-dev libpng-dev pkg-config
python setup.py develop easy_install yardstick[plot]

Building a guest image Yardstick has a tool for building an Ubuntu Cloud Server image containing all the required
tools to run test cases supported by Yardstick. It is necessary to have sudo rights to use this tool.

Also you may need install several additional packages to use this tool, by follwing the commands below:

apt-get update && apt-get install -y \
qemu-utils \
kpartx

This image can be built using the following command while in the directory where Yardstick is installed
(~/yardstick if the framework is installed by following the commands above):

sudo ./tools/yardstick-img-modify tools/ubuntu-server-cloudimg-modify.sh

Warning: the script will create files by default in: /tmp/workspace/yardstick and the files will be owned by
root!

The created image can be added to OpenStack using the glance image-create or via the OpenStack Dashboard.

Example command:

glance --os-image-api-version 1 image-create \
--name yardstick-trusty-server --is-public true \
--disk-format qcow2 --container-format bare \
--file /tmp/workspace/yardstick/yardstick-trusty-server.img

5.3. Additional testing and validation activities 69

http://www.youtube.com/watch?v=4S4izNolmR0

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

Installing Yardstick using Docker

Yardstick has two Docker images, first one (Yardstick-framework) serves as a replacement for installing the Yardstick
framework in a virtual environment (for example as done in Installing Yardstick framework), while the other image is
mostly for CI purposes (Yardstick-CI).

Yardstick-framework image Download the source code:

git clone https://gerrit.opnfv.org/gerrit/yardstick

Build the Docker image and tag it as yardstick-framework:

cd yardstick
docker build -t yardstick-framework .

Run the Docker instance:

docker run --name yardstick_instance -i -t yardstick-framework

To build a guest image for Yardstick, see Building a guest image.

Yardstick-CI image Pull the Yardstick-CI Docker image from Docker hub:

docker pull opnfv/yardstick:$DOCKER_TAG

Where $DOCKER_TAG is latest for master branch, as for the release branches, this coincides with its release name,
such as brahmaputra.1.0.

Run the Docker image:

docker run \
--privileged=true \
--rm \
-t \
-e "INSTALLER_TYPE=${INSTALLER_TYPE}" \
-e "INSTALLER_IP=${INSTALLER_IP}" \
opnfv/yardstick \
exec_tests.sh ${YARDSTICK_DB_BACKEND} ${YARDSTICK_SUITE_NAME}

Where ${INSTALLER_TYPE} can be apex, compass, fuel or joid, ${INSTALLER_IP} is the installer mas-
ter node IP address (i.e. 10.20.0.2 is default for fuel). ${YARDSTICK_DB_BACKEND} is the IP and port
number of DB, ${YARDSTICK_SUITE_NAME} is the test suite you want to run. For more details, please re-
fer to the Jenkins job defined in Releng project, labconfig information and sshkey are required. See the link
https://git.opnfv.org/cgit/releng/tree/jjb/yardstick/yardstick-ci-jobs.yml.

Note: exec_tests.sh is used for executing test suite here, furthermore, if someone wants to execute the test suite
manually, it can be used as long as the parameters are configured correct. Another script called run_tests.sh is used for
unittest in Jenkins verify job, in local manaul environment, it is recommended to run before test suite execuation.

Basic steps performed by the Yardstick-CI container:

1. clone yardstick and releng repos

2. setup OS credentials (releng scripts)

3. install yardstick and dependencies

4. build yardstick cloud image and upload it to glance

5. upload cirros-0.3.3 cloud image to glance

70 Chapter 5. Post Configuration Activities

https://git.opnfv.org/cgit/releng/tree/jjb/yardstick/yardstick-ci-jobs.yml

OPNFV Configuration Guide, Release arno.2015.1.0 (22cdec3)

6. run yardstick test scenarios

7. cleanup

OpenStack parameters and credentials

Yardstick-flavor Most of the sample test cases in Yardstick are using an OpenStack flavor called yardstick-flavor
which deviates from the OpenStack standard m1.tiny flavor by the disk size - instead of 1GB it has 3GB. Other
parameters are the same as in m1.tiny.

Environment variables Before running Yardstick it is necessary to export OpenStack environment vari-
ables from the OpenStack openrc file (using the source command) and export the external network name
export EXTERNAL_NETWORK="external-network-name", the default name for the external network is
net04_ext.

Credential environment variables in the openrc file have to include at least:

• OS_AUTH_URL

• OS_USERNAME

• OS_PASSWORD

• OS_TENANT_NAME

Yardstick default key pair Yardstick uses a SSH key pair to connect to the guest image. This key pair can be found
in the resources/files directory. To run the ping-hot.yaml test sample, this key pair needs to be imported
to the OpenStack environment.

Examples and verifying the install

It is recommended to verify that Yardstick was installed successfully by executing some simple commands and test
samples. Below is an example invocation of yardstick help command and ping.py test sample:

yardstick -h
yardstick task start samples/ping.yaml

Each testing tool supported by Yardstick has a sample configuration file. These configuration files can be found in the
samples directory.

Example invocation of yardstick-plot tool:

yardstick-plot -i /tmp/yardstick.out -o /tmp/plots/

Default location for the output is /tmp/yardstick.out.

More info about the tool can be found by executing:

yardstick-plot -h

5.3. Additional testing and validation activities 71

	Abstract
	Configuration Options
	OPNFV Scenarios

	Installer Configuration
	Lab Setup Guide
	Apex configuration
	Compass4nfv configuration
	Fuel configuration
	JOID Configuration

	Feature Configuration
	Copper configuration
	Doctor Configuration
	IPv6 Configuration - Setting Up a Service VM as an IPv6 vRouter
	Installing OVSNFV Fuel Plugin
	Promise Feature Configuration Overview
	Configuring SDNVPN features

	Post Configuration Activities
	Scenario validation activities
	Feature validation activities
	Additional testing and validation activities

