> 0PNFV

OPNFV User Guide
Release brahmaputra.3.0 (605ebda)

OPNFV

April 27,2016

CONTENTS

Abstract 1
Overview 3
2.1 OPNFV Features o i it e et e e e e e e s e e e 3
2.2 Generalusage guidelines L. e e e e e e e 5
Using common platform components 7
3.1 Common VIM COMPONENES . . o . v v v v v e v e 7
3.2 Common SDN COMPONENLS v v v v vt e et e e e e e e e e e e e e e e e e 8
Using Brahmaputra Features 11
4.1 Copper capabilities and USage o . e e e e e e e e e e e e e e e e e 11
4.2 Doctor capabilities and usageo e e e e e e e e e e e e e e e 11
4.3 Using IPv6 Feature of BrahmaputraRelease 11
44 OpenvSwitch e 16
4.5 Promise capabilitiesand usage L. oL e 17
4.6 SDN VPN capabilities and usage v v v v i i e e e e e e e e e e e e e 22
Using the test frameworks in OPNFV 23

CHAPTER
ONE

ABSTRACT

OPNFV is a collaborative project aimed at providing a variety of virtualisation deployments intended to host applica-
tions serving the networking and carrier industry. This document provides guidance and instructions for using platform
features designed to support these applications, made available in the Brahmaputra release of OPNFV.

This document is not intended to replace or replicate documentation from other open source projects such as Open-
Stack or OpenDaylight, rather highlight the features and capabilities delivered through the OPNFV project.

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

2 Chapter 1. Abstract

CHAPTER
TWO

OVERVIEW

OPNFV provides a variety of virtual infrastructure deployments designed to host virtualised network functions
(VNFs). This guide intends to help users of the platform leverage the features and capabilities delivered by the
OPNFYV project.

OPNFV Continuous Integration builds, deploys and tests combinations of virtual infrastructure components in what
are defined as scenarios. A scenario may include components such as OpenStack, OpenDaylight, OVS, KVM etc.
where each scenario will include different source components or configurations. Scenarios are designed to enable
specific features and capabilities in the platform that can be leveraged by the OPNFV user community.

2.1 OPNFV Features

Each OPNFV scenario provides unique features and capabilities, it is important to ensure you have a scenario deployed
on your infrastructure that provides the right capabilities for your needs before working through the user guide.

This user guide outlines how to work with key components and features in the platform, each feature description
section will indicate the scenarios that provide the components and configurations required to use it.

Each scenario provides a set of platform capabilities and features that it supports. It is possible to identify which
features are provided by reviewing the scenario name, however not all features and capabilities are discernible from
the name itself.

2.1.1 Brahmaputra feature support matrix

The following table provides an overview of the available scenarios and supported features in the Brahmaputra release
of OPNFV.

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

-h
-
o -
L
Doctor IPvE kvmm-nify ovsniv Promise SFC SDM VPN Copper
JOID
nosdn-ha Apex ; Fual JOID
odl_|2-ha Apex o JOID
odl_I3-ha Apex Fuel

odl_|2-sfe Apex

onos-ha Apex B JOID
ovs- ha - Fuel

kvm-ha

bgpvon

The table above provides an overview of which scenarios will support certain feature capabilities. The table does not
indicate if the feature or scenario has limitations. Refer to the Configuration Guide for details on the state of each
scenario and further information.

Feature development in the Brahmaputra release often consisted of the development of specific requirements and the
further integration and validation of those requirements. This results in some features only being supported on the
platform when a specific scenario, providing the capabilities necessary to run the feature, is deployed.

2.1.2 Scenario Naming

In OPNFV, scenarios are identified by short scenario names. These names follow a scheme that identifies the key
components and behaviours of the scenario, the rules for scenario naming are as follows:

os-[controller]-[feature]-[mode]-[option]

For example: os-nosdn-kvm-noha provides an OpenStack based deployment using neutron including the OPNFV
enhanced KVM hypervisor.

The [feature] tag in the scenario name describes the main feature provided by the scenario. This scenario may also
provide support for features, such as advanced fault management, which are not apparent in the scenario name. The
following section describes the features available in each scenario.

For details on which scenarios are best for you and how to install and configure them on your infrastructure the OPNFV
Configuration Guide provides a valuable reference.

The user guide will describe how to enable and utilise features and use cases implemented and tested on deployed
OPNFYV scenarios. For details of the use cases and tests that have been run you should check the validation procedures
section of the OPNFV Configuration Guide. This will provide information about the specific use cases that have been
validated and are working on your deployment.

4 Chapter 2. Overview

http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/configguide/configoptions.html#opnfv-scenarios
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/configguide/index.html
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/configguide/index.html
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/configguide/post-install.html

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

2.2 General usage guidelines

The user guide for OPNFV features and capabilities provide step by step instructions for using features that have been
configured according to the installation and configuration instructions.

This guide is structured in a manner that will provide usage instructions for each feature in its own section. Start
by identifying the feature capability you would like to leverage, then read through the relevant user guide section
to understand how to work with the feature. The combination of platform features, if available in a given scenario
and not otherwise indicated, should operate according to the documentation. Dependencies between features will be
highlighted in the user guide text.

You may wish to use the platform in a manner that the development teams have not foreseen, or exercise capabilities
not fully validated on the platform. If you experience issues leveraging the platform for the uses you have envisioned,
the OPNFV user mailing list provides a mechanism to establish a dialog with the community to help you overcome
any issues identified.

It may be that you have identified a bug in the system, or that you are trying to execute a use case that has not yet been
implemented. In either case it is important for OPNFV to learn about it as we are in essence a development project
looking to ensure the required capabilities for our users are available.

2.2. General usage guidelines 5

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

6 Chapter 2. Overview

CHAPTER
THREE

USING COMMON PLATFORM COMPONENTS

This section outlines basic usage principals and methods for some of the commonly deployed components of supported
OPNFYV scenario’s in Brahmaputra. The subsections provide an outline of how these components are commonly used
and how to address them in an OPNFV deployment. The components derive from autonomous upstream commu-
nities and where possible this guide will provide direction to the relevant documentation made available by those
communities to better help you navigate the OPNFV deployment.

3.1 Common VIM components

3.1.1 Brahmaputra OpenStack User Guide

OpenStack is a cloud operating system developed and released by the OpenStack project. OpenStack is used in
OPNFV for controlling pools of compute, storage, and networking resources in a Pharos compliant infrastructure.

OpenStack is used in Brahmaputra to manage tenants (known in OpenStack as projects), users, services, images,
flavours, and quotas across the Pharos infrastructure. The OpenStack interface provides the primary interface for
an operational Brahmaputra deployment and it is from the “horizon console” that an OPNFV user will perform the
majority of administrative and operational activities on the deployment.

OpenStack references
The OpenStack user guide provides details and descriptions of how to configure and interact with the OpenStack
deployment. This guide can be used by lab engineers and operators to tune the OpenStack deployment to your liking.

Once you have configured OpenStack to your purposes, or the Brahmaputra deployment meets your needs as deployed,
an operator, or administrator, will find the best guidance for working with OpenStack in the OpenStack administration
guide.

Connecting to the OpenStack instance

Once familiar with the basic of working with OpenStack you will want to connect to the OpenStack instance via the
Horizon Console. The Horizon console provide a Web based GUI that will allow you operate the deployment. To do
this you should open a browser on the JumpHost to the following address and enter the username and password:

http://{Controller-VIP}:80/index.html> username: admin password: admin

Other methods of interacting with and configuring OpenStack,, like the REST API and CLI are also available in the
Brahmaputra deployment, see the OpenStack administration guide for more information on using those interfaces.

https://www.openstack.org
http://docs.openstack.org/user-guide
http://docs.openstack.org/user-guide-admin
http://docs.openstack.org/user-guide-admin
http:/
http://docs.openstack.org/user-guide-admin

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

3.2 Common SDN components

3.2.1 OpenDaylight User Guide

OpenDaylight is an SDN controller platform developed and released by the OpenDaylight project. The OpenDaylight
controller is installed and configured in OPNFYV as the networking component of a variety of OPNFV NVFi scenarios
using the neutron ODL device driver as an integration point toward OpenStack.

OpenDaylight runs within a JVM and is installed in OPNFV within a container and integrated with OpenStack. The
OpenDaylight instance can be configured through the OpenStack Horizon interface, or accessed directly from the
OPNFV Jumphost. The Brahmaputra release of OPNFV integrates the latest Beryllium release.

OpenDaylight references

For an overview of the OpenDaylight controller a good reference is the Getting Started Guide. For more detailed
information about using the platform the OpenDaylight User Guide provides a good feature by feature reference.

It is important when working on your Brahmaputra deployment to be aware of the configured state of the OpenDaylight
controller in the scenario you have deployed, installing an SFC scenario will for instance configure the OpenDaylight
controller with the required SFC Karaf features in the OpenDaylight controller. Make sure you read the installation
and configuration guide carefully to understand the state of the deployed system.

Connecting to the OpenDaylight instance

Once you are familiar with the OpenDaylight controller and its configuration you will want to connect to the Open-
Daylight instance from the Jumphost. To do this you should open a browser on the JumpHost to the following address
and enter the username and password:

http://{ Controller-VIP}:8181/index.html> username: admin password: admin

Other methods of interacting with and configuring the controller, like the REST API and CLI are also available in the
Brahmaputra deployment, see the OpenDaylight User Guide for more information on using those interfaces.

It is important to be aware that when working directly on the OpenDaylight controller the OpenStack instance will
not always be aware of the changes you are making to the networking controller. This may result in unrecoverable
inconsistencies in your deployment.

3.2.2 ONOS User Guide

ONOS is an SDN controller platform developed and released by the ONOS project. The ONOS controller is installed
and configured in OPNFV as the networking component of a variety of OPNFV NFVI scenarios.

ONOS runs within a JVM instance and is integrated with OpenStack via a Neutron ML2 plugin. The ONOS instance
can be configured through the OpenStack Neutron interface, or through native ONOS tools from the OPNFV jumphost.
The Brahmaputra release of OPNFV integrates the latest ONOS 1.4 (EMU) release version.

ONOS references

For an overview of the ONOS controller, please see User Guide. For more detailed information about the EMU version
of ONOS, documentation is available on the ONOS download page.

8 Chapter 3. Using common platform components

https://www.opendaylight.org/
https://www.opendaylight.org/downloads/
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qt/6342/128122/bk_getting_started_guide_20150629.pdf
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qw/6342/128126/bk_user_guide_20150629.pdf
http:/
http://go.linuxfoundation.org/l/6342/2015-06-28/2l76qw/6342/128126/bk_user_guide_20150629.pdf
https://www.onosproject.org
https://wiki.onosproject.org/display/ONOS/Download+packages+and+tutorial+VMs
https://wiki.onosproject.org/display/ONOS/User's+Guide
https://wiki.onosproject.org/display/ONOS/Download+packages+and+tutorial+VMs

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

Connecting to the ONOS instance

Once you are familiar with the ONOS controller and its configuration you will want to connect to the ONOS instance
from the Jumphost. To do this you should open a browser on the JumpHost to the following address and enter the
username and password:

http://{ Controller-VIP}:8282/index.html> username: karaf password: karaf

Other methods of interacting with and configuring the controller, like the REST API and CLI are also available in the
Brahmaputra deployment, see the ONOS User Guide for more information on using those interfaces.

It is important to be aware that when working directly on the ONOS controller the OpenStack instance will not always
be aware of the changes you are making to the networking controller. This may result in unrecoverable inconsistencies
in your deployment.

If you have any questions or need further assistance, you may also direct your queries to ONOSFW Forum
<http://forum.onosfw.com>

3.2. Common SDN components 9

http:/
https://wiki.onosproject.org/display/ONOS/User's+Guide

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

10 Chapter 3. Using common platform components

CHAPTER
FOUR

USING BRAHMAPUTRA FEATURES

The following sections of the user guide provide feature specific usage guidelines and references. Providing users the
necessary information to leveraging the features in the platform, some operation in this section may refer back to the
guides in the general system usage section.

4.1 Copper capabilities and usage

This release focused on use of the OpenStack Congress service for managing configuration policy. See the Congress
intro guide on readthedocs for information on the capabilities and usage of Congress.

4.2 Doctor capabilities and usage

4.2.1 Immediate Notification
Immediate notification can be used by creating ‘event’ type alarm via OpenStack Alarming (Aodh) API with relevant
internal components support.

See, upstream spec document: http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-
evaluator.html

You can find an example of consumer of this notification in doctor repository. It can be executed as follows:

git clone https://gerrit.opnfv.org/gerrit/doctor -b stable/brahmaputra
cd doctor/tests

CONSUMER_PORT=12346

python consumer.py "SCONSUMER _PORT" > consumer.log 2>&1 &

4.2.2 Consistent resource state awareness (Compute/host-down)

Resource state of compute host can be fixed according to an input from a monitor sitting out side of OpenStack
Compute (Nova) by using force-down APL

See http://artifacts.opnfv.org/doctor/brahmaputra/docs/manuals/mark-host-down_manual.html for more detail.

4.3 Using IPv6 Feature of Brahmaputra Release

This section provides the users with gap analysis regarding IPv6 feature requirements with OpenStack Liberty Official
Release and Open Daylight Beryllium Official Release. The gap analysis serves as feature specific user guides and

11

http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress
http://congress.readthedocs.org/en/latest/readme.html#installing-congress\T1\textbar {}Congress
http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html
http://specs.openstack.org/openstack/ceilometer-specs/specs/liberty/event-alarm-evaluator.html
http://artifacts.opnfv.org/doctor/brahmaputra/docs/manuals/mark-host-down_manual.html

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

references when as a user you may leverage the IPv6 feature in the platform and need to perform some IPv6 related
operations.

4.3.1 IPv6 Gap Analysis with OpenStack Liberty

This section provides users with IPv6 gap analysis regarding feature requirement with OpenStack Neutron in Liberty
Official Release. The following table lists the use cases / feature requirements of VIM-agnostic IPv6 functionality,
including infrastructure layer and VNF (VM) layer, and its gap analysis with OpenStack Neutron in Liberty Official
Release.

Use Case / Requirement Supported in Liberty Notes
All topologies work in a multi-tenant | Yes The IPv6 design is following the
environment Neutron tenant networks model; dns-

masq is being used inside DHCP
network namespaces, while radvd is
being used inside Neutron routers
namespaces to provide full isolation
between tenants. Tenant isolation
can be based on VLANs, GRE, or
VXLAN encapsulation. In case of
overlays, the transport network (and
VTEPs) must be IPv4 based as of to-
day.

IPv6 VM to VM only Yes It is possible to assign IPv6-only ad-
dresses to VMs. Both switching
(within VMs on the same tenant net-
work) as well as east/west routing
(between different networks of the
same tenant) are supported.

IPv6 external L2 VLAN directly at- | Yes IPv6 provider network model; RA
tached to a VM messages from upstream (external)
router are forwarded into the VMs

IPv6 subnet routed via L3 agent to an Configuration is enhanced since Kilo

external IPv6 network 1. Yes to allow easier setup of the up-

1. Both VLAN and overlay (e.g. 2. Yes stream gateway, without the user be-

GRE, VXLAN) subnet at- ing forced to create an IPv6 subnet
tached to VMs; for the external network.

2. Must be able to support multi-
ple L3 agents for a given ex-
ternal network to support scal-
ing (neutron scheduler to as-
sign vRouters to the L3 agents)

Continued on next page

12 Chapter 4. Using Brahmaputra Features

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

Table 4.1 — continued from previous page

Use Case / Requirement

Supported in Liberty

Notes

Ability for a NIC to support both
IPv4 and IPv6 (dual stack) address.

1. VM with a single interface as-
sociated with a network, which
is then associated with two
subnets.

2. VM with two different inter-
faces associated with two dif-
ferent networks and two differ-
ent subnets.

1. Yes
2. Yes

Dual-stack is supported in Neutron
with the addition of Multiple
IPv6 Prefixes Blueprint

Support IPv6 Address assignment
modes.

1. SLAAC

2. DHCPv6 Stateless

3. DHCPv6 Stateful

1. Yes
2. Yes
3. Yes

Ability to create a port on an IPv6
DHCPv6 Stateful subnet and assign a
specific IPv6 address to the port and
have it taken out of the DHCP ad-
dress pool.

Yes

Ability to create a port with fixed_ip
for a SLAAC/DHCPv6-Stateless
Subnet.

The following patch dis-
ables this operation:
https://review.openstack.org/#/c/12914

Support for private IPv6 to external
IPv6 floating IP; Ability to specify
floating IPs via Neutron API (REST
and CLI) as well as via Horizon,
including combination of IPv6/IPv4
and IPv4/IPv6 floating IPs if imple-
mented.

Rejected

Blueprint proposed in upstream and
got rejected. General expectation
is to avoid NAT with IPv6 by as-
signing GUA to tenant VMs. See
https://review.openstack.org/#/c/13973
for discussion.

Provide IPv6/IPv4 feature parity in
support for pass-through capabilities
(e.g., SR-IOV).

To-Do

The L3 configuration should be trans-
parent for the SR-IOV implemen-
tation. SR-IOV networking sup-
port introduced in Juno based on the
sriovnicswitch ML2 driver is
expected to work with IPv4 and IPv6
enabled VMs. We need to verify if it
works or not.

Additional IPv6 extensions, for ex-
ample: IPSEC, IPv6 Anycast, Mul-
ticast

It does not appear to be considered
yet (lack of clear requirements)

VM access to the meta-data server to
obtain user data, SSH keys, etc. using
cloud-init with IPv6 only interfaces.

This is currently not supported.
Config-drive or dual-stack IPv4 /
IPv6 can be used as a workaround
(so that the IPv4 network is used to
obtain connectivity with the metadata
service)

Continued on next page

4.3. Using IPv6 Feature of Brahmaputra Release

13

https://review.openstack.org/#/c/129144/
https://review.openstack.org/#/c/139731/

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

Table 4.1 — continued from previous page

Use Case / Requirement

Supported in Liberty

Notes

Full support for IPv6 matching (i.e.,
IPv6, ICMPv6, TCP, UDP) in secu-
rity groups. Ability to control and
manage all IPv6 security group capa-
bilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

Yes

During network/subnet/router create,
there should be an option to allow
user to specify the type of address
management they would like. This
includes all options including those
low priority if implemented (e.g.,
toggle on/off router and address pre-
fix advertisements); It must be sup-
ported via Neutron API (REST and
CLI) as well as via Horizon

Yes

Two new Subnet attributes were in-
troduced to control IPv6 address as-
signment options:

e ipv6e-ra-mode: to deter-
mine who sends Router Adver-
tisements;

* ipv6-address-mode: to
determine how VM obtains
IPv6 address, default gateway,
and/or optional information.

Security groups anti-spoofing: Pre-
vent VM from using a source
IPv6/MAC address which is not as-
signed to the VM

Yes

Protect tenant and provider network
from rogue RAs

Yes

When using a tenant network, Neu-
tron is going to automatically handle
the filter rules to allow connectivity
of RAs to the VMs only from the
Neutron router port; with provider
networks, users are required to spec-
ify the LLA of the upstream router
during the subnet creation, or oth-
erwise manually edit the security-
groups rules to allow incoming traffic
from this specific address.

Support the ability to assign multiple
IPv6 addresses to an interface; both
for Neutron router interfaces and VM
interfaces.

Yes

Ability for a VM to support a mix of
multiple IPv4 and IPv6 networks, in-
cluding multiples of the same type.

Yes

Support for IPv6 Prefix Delegation.

Yes

Partial support in Liberty

Distributed Virtual Routing (DVR)
support for IPv6

No

Blueprint proposed upstream, pend-
ing discussion.

IPv6 First-Hop Security, IPv6 ND
spoofing

Yes

IPv6 support in Neutron Layer3 High
Availability (keepalived+VRRP).

Yes

4.3.2 IPv6 Gap Analysis with Open Daylight Beryllium

This section provides users with IPv6 gap analysis regarding feature requirement with Open Daylight Beryllium Of-
ficial Release. The following table lists the use cases / feature requirements of VIM-agnostic IPv6 functionality,

14

Chapter 4. Using Brahmaputra Features

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

including infrastructure layer and VNF (VM) layer, and its gap analysis with Open Daylight Beryllium Official Re-

lease.

Use Case / Requirement

Supported in ODL Beryllium

Notes

REST API support for IPv6 subnet
creation in ODL

Yes

Yes, it is possible to create IPv6 sub-
nets in ODL using Neutron REST
APL

For a network which has both 1Pv4
and IPv6 subnets, ODL mechanism
driver will send the port information
which includes IPv4/v6 addresses
to ODL Neutron northbound API
When port information is queried it
displays IPv4 and IPv6 addresses.
However, in Beryllium release, ODL
net-virt provider does not support
IPv6 features (i.e., the actual func-
tionality is missing and would be
available only in the later releases of
ODL).

IPv6 Router support in ODL
1. Communication between VMs
on same compute node
2. Communication between VMs
on different compute nodes
(east-west)
3. External routing (north-south)

No

ODL net-virt provider in Beryllium
release only supports IPv4 Router.

In the meantime, if [Pv6 Routing is
necessary, we can use ODL for L2
connectivity and Neutron L3 agent
for IPv4/v6 routing.

IPAM: Support for [Pv6 Address as-
signment modes.

1. SLAAC

2. DHCPv6 Stateless

3. DHCPv6 Stateful

Although it is possible to create
different types of IPv6 subnets in
ODL, ODL_L3 would have to imple-
ment the IPv6 Router that can send
out Router Advertisements based on
the IPv6 addressing mode. Router
Advertisement is also necessary for
VMs to configure the default route.

When using ODL for L2 forward-
ing/tunneling, it is compatible with
IPv6.

Yes

Full support for IPv6 matching (i.e.,
IPv6, ICMPv6, TCP, UDP) in secu-
rity groups. Ability to control and
manage all IPv6 security group capa-
bilities via Neutron/Nova API (REST
and CLI) as well as via Horizon.

Security Groups for IPv6 is a work in
progress.

Shared Networks support

ODL currently assumes a single ten-
ant to network mapping and does not
support shared networks among ten-
ants.

IPv6 external L2 VLAN directly at-
tached to a VM.

ToDo

Continued on next page

4.3. Using IPv6 Feature of Brahmaputra Release

15

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

Table 4.2 — continued from previous page

Use Case / Requirement

Supported in ODL Beryllium

Notes

ODL on an IPv6 only Infrastructure.

ToDo

Deploying OpenStack with ODL on
an IPv6 only infrastructure where the
API endpoints are all [Pv6 addresses.

4.4 Open vSwitch

Open vSwtich (OVS) is a software switch commonly used in OpenStack deployments to replace Linux bridges as it
offers advantages in terms of mobility, hardware integration and use by network controllers.

4.4.1 Supported OPNFYV Installers

Currently not all installers are supported.

Fuel Installer

OVSNFV project supplies a Fuel Plugin to upgrades Open vSwitch on an OPNFV installation to use user-space

datapath.

As part of the upgrade the following changes are also made:

* change libvirt on compute node to 1.2.12

* change gemu on compute node to 2.2.1

« installs DPDK 2.0.0

* installs OVS 2.1 (specifically git tag 1e77bbe)

e removes existing OVS neutron plugin

* installs new OVS plugin as part of networking_ovs_dpdk OpenStack plugin version stable/kilo

e work around _set_device_mtu issue

Limitations

This release should be considered experimental. In particular:

 performance will be addressed specifically in subsequent releases.

* OVS and other components are updated only on compute nodes.

Bugs

* There may be issues assigning floating and public ip address to VMs.

16

Chapter 4. Using Brahmaputra Features

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

4.5 Promise capabilities and usage

Promise is a resource reservation and management project to identify NFV related requirements and realize resource
reservation for future usage by capacity management of resource pools regarding compute, network and storage.

The following are the key features provided by this module:
» Capacity Management
* Reservation Management
* Allocation Management

The Brahmaputra implementation of Promise is built with the YangForge data modeling framework ! , using a shim-
layer on top of OpenStack to provide the Promise features. This approach requires communication between Con-
sumers/Administrators and OpenStack to pass through the shim-layer. The shim-layer intercepts the message flow to
manage the allocation requests based on existing reservations and available capacities in the providers. It also extracts
information from the intercepted messages in order to update its internal databases. Furthermore, Promise provides ad-
ditional intent-based APIs to allow a Consumer or Administrator to perform capacity management (i.e. add providers,
update the capacity, and query the current capacity and utilization of a provider), reservation management (i.e. create,
update, cancel, query reservations), and allocation management (i.e. create, destroy, query instances).

Detailed information about Promise use cases, features, interface specifications, work flows, and the underlying
Promise YANG schema can be found in the Promise requirement document * .

4.5.1 Promise usage

The yfc run command will load the primary application package from this repository along with any other dependency
files/assets referenced within the YAML manifest and instantiate the opnfv-promise module and run REST/JSON
interface by default listeningon port 5000.:

$ yfc run promise.yaml

You can also checkout the GIT repository (https://github.com/opnfv/promise/) or simply download the files into your
local system and run the application.

4.5.2 Promise feature and API usage guidelines and examples

This section lists the Promise features and API implemented in OPNFV Brahmaputra.

Note 1: In contrast to ETSI NFV specifications and the detailed interface specification in Section 7, the Promise shim-
layer implementation does not distinguish intent interfaces per resource type, i.e. the various capacity, reservations, etc.
operations have different endpoints for each domain such as compute, storage, and network. The current shim-layer
implementation does not separate the endpoints for performing the various operations.

Note 2: The listed parameters are optional unless explicitly marked as “mandatory”.

Reservation management

The reservation management allows a Consumer to request reservations for resource capacity or specific resource
elements. Reservations can be for now or a later time window. After the start time of a reservation has arrived, the
Consumer can issue create server instance requests against the reserved capacity / elements. Note, a reservation will
expire after a predefined expiry time in case no allocation referring to the reservation is requested.

! YangForge framework, http://github.com/opnfv/yangforge
2 Promise requirement document, http://http:/artifacts.opnfv.org/promise/docs/requirements/index.html

4.5. Promise capabilities and usage 17

https://github.com/opnfv/promise/
http://github.com/opnfv/yangforge
http://http://artifacts.opnfv.org/promise/docs/requirements/index.html

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

The implemented workflow is well aligned with the described workflow in the Promise requirement document !
(Clause 6.1) except for the “multi-provider” scenario as described in (Multi-)provider management .

create-reservation

This operation allows making a request to the reservation system to reserve resources. The Consumer can either
request to reserve a certain capacity (container) or specific resource elements (elements), like a certain server instance.

The operation takes the following input parameters:
* start: start time of the requested reservation
 end: end time of the requested reservation
* container: request for reservation of capacity

— instances: number of instances

— cores: number of cores

— ram: size of ram (in MB)

— networks: number of networks

— addresses: number of (public) IP addresses
— ports: number of ports

— routers: number of routers

— subnets: number of subnets

— gigabytes: size of storage (in GB)
— volumes: number of volumes

— snapshots: number of snapshots

* elements: reference to a list of ‘pre-existing’ resource elements that are required for fulfillment of the resource-
usage-request

— instance-identifier: identifier of a specific resource element
* zone: identifier of an Availability Zone

Promise will check the available capacity in the given time window and in case sufficient capacity exists to meet the
reservation request, will mark those resources “reserved” in its reservation map.

update-reservation

This operation allows to update the reservation details for an existing reservation.

It can take the same input parameters as in create-reservation but in addition requires a mandatory reference to the
reservation-id of the reservation that shall be updated.

cancel-reservation

This operation is used to cancel an existing reservation.
The operation takes the following input parameter:

* reservation-id (mandatory): identifier of the reservation to be canceled.

18 Chapter 4. Using Brahmaputra Features

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

query-reservation

The operation queries the reservation system to return reservation(s) matching the specified query filter, e.g., reserva-
tions that are within a specified start/end time window.

The operation takes the following input parameters to narrow down the query results:

* zone: identifier of an Availability Zone

» without: excludes specified collection identifiers from the result

¢ elements:
— some: query for ResourceCollection(s) that contain some or more of these element(s)
— every: query for ResourceCollection(s) that contain all of these element(s)

» window: matches entries that are within the specified start/end time window
— start: start time
— end: end time

— scope: if set to ‘exclusive’, only reservations with start AND end time within the time window are returned.
Otherwise (‘inclusive’), all reservation starting OR ending in the time windows are returned.

 show-utilization: boolean value that specifies whether to also return the resource utilization in the queried time
window or not

subscribe-reservation-events | notify-reservation-events

Subscription to receive notifications about reservation-related events, e.g. a reservation is about to expire or a reserva-
tion is in conflict state due to a failure in the NFVIL.

Note, this feature is not yet available in Brahmaputra release.

Allocation management

create-instance

This operation is used to create an instance of specified resource(s) for immediate use utilizing capacity from the pool.
Create-instance requests can be issued against an existing reservation, but also allocations without a reference to an
existing reservation are allowed. In case the allocation request specifies a reservation identifier, Promise checks if a
reservation with that ID exists, the reservation start time has arrived (i.e. the reservation is ‘active’), and the required
capacity for the requested flavor is within the available capacity of the reservation. If those conditions are met, Promise
creates a record for the allocation (VMState="INITIALIZED”) and update its databases. If no reservation_id was
provided in the allocation request, Promise checks whether the required capacity to meet the request can be provided
from the available, non-reserved capacity. If yes, Promise creates a record for the allocation with an unique instance-id
and update its databases. In any other case, Promise rejects the create-instance request.

In case the create-instance request is rejected, Promise responds with a “status=rejected” providing the reason of the
rejection. This will help the Consumer to take appropriate actions, e.g., send an updated create-instance request. In
case the create-instance request was accepted and a related allocation record has been created, the shim-layer issues a
createServer request to the VIM Controller providing all information to create the server instance.

The operation takes the following input parameters:
* name (mandatory): Assigned name for the instance to be created

* image (mandatory): the image to be booted in the new instance

4.5. Promise capabilities and usage 19

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

* flavor (mandatory): the flavor of the requested server instance

* networks: the list of network uuids of the requested server instance

* provider-id: identifier of the provider where the instance shall be created

* reservation-id: identifier of a resource reservation the create-instance is issued against
The Brahamputra implementation of Promise has the following limitations:

 All create server instance requests shall pass through the Promise shim-layer such that Promise can keep track of
all allocation requests. This is necessary as in the current release the sychronization between the VIM Controller
and Promise on the available capacity is not yet implemented.

* Create-allocation requests are limited to “simple” allocations, i.e., the current workflow only supports the Nova
compute service and create-allocation requests are limited to creating one server instance at a time

* Prioritization of reservations and allocations is yet not implemented. Future version may allow certain policy-
based conflict resolution where, e.g., new allocation request with high priority can “forcefully” terminate lower
priority allocations.

destroy-instance

This operation request to destroy an existing server instance and release it back to the pool.
The operation takes the following input parameter:

* instance-id: identifier of the server instance to be destroyed

query-resource-collection

This operation allows to query for resource collection(s) that are within the specified start/end time window.

subscribe-allocation-events | notify-allocation-events

Subscription to receive notifications about allocation-related events, e.g. an allocation towards the VIM that did not
pass the Promise shim-layer

Note, this feature is not yet available in Brahmaputra release.

Capacity management

The capacity management feature allows the Consumer or Administrator to do capacity planning, i.e. the capacity
available to the reservation management can differ from the actual capacity in the registered provider(s). This feature
can, e.g., be used to limit the available capacity for a given time window due to a planned downtime of some of the
resources, or increase the capacity available to the reservation system in case of a plannes upgrade of the available
capacity.

increase/decrease-capacity

This operations allows to increase/decrease the total capacity that is made available to the Promise reservation service
between a specified window in time. It does NOT increase the actual capacity of a given resource provider, but is used
for capacity management inside Promise.

This feature can be used in different ways, like

20 Chapter 4. Using Brahmaputra Features

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

* Limit the capacity available to the reservation system to a value below 100% of the available capacity in the
VIM, e.g., in order to leave “buffer” in the actual NFVI to be used outside the Promise reservation service.

* Inform the reservation system that, from a given time in the future, additional resources can be reserved, e.g.,
due to a planned upgrade of the available capacity of the provider.

* Similarily, the “decrease-capacity” can be used to reduce the consumable resources in a given time window, e.g.,
to prepare for a planned downtime of some of the resources.

» Expose multiple reservation service instances to different consumers sharing the same resource provider.
The operation takes the following input parameters:

* start: start time for the increased/decreased capacity

 end: end time for the increased/decreased capacity

e container: see create-reservation

Note, increase/decreasing the capacity in Promise is completely transparent to the VIM. As such, when increasing
the virtual capacity in Promise (e.g. for a planned upgrade of the capacity), it is in the responsibility of the Con-
sumer/Administrator to ensure sufficient resources in the VIM are available at the appropriate time, in order to prevent
allocations against reservations to fail due to a lack of resources. Therefore, this operations should only be used
carefully.

query-capacity

This operation is used to query the available capacity information of the specified resource collection. A filter attribute
can be specified to narrow down the query results.

The current implementation supports the following filter criteria:
* time window: returns reservations matching the specified window

» window scope: if set to ‘exclusive’, only reservations with start AND end time within the time window are
returned. Otherwise, all reservation starting OR ending in the time windows are returned.

* metric: query for one of the following capacity metrics:
— ‘total’: resource pools

‘reserved’: reserved resources

— ‘usage’: resource allocations

‘available’: remaining capacity, i.e. neither reserved nor allocated

subscribe-capacity-events | notify-capacity-events

These operations enable the Consumer to subscribe to receiving notifications about capacity-related events, e.g., in-
creased/decreased capacity for a provider due to a failure or upgrade of a resource pool. In order to provide such
notifications to its Consumers, Promise shim-layer has to subscribe itself to OpenStack Aodh to be notified from the
VIM about any capacity related events.

Note, this feature is not yet available in Brahmaputra release.

4.5. Promise capabilities and usage 21

OPNFV User Guide, Release brahmaputra.3.0 (605ebda)

(Multi-)provider management

This API towards OpenStack allows an Consumer/Administrator to add and remove resource providers to Promise.
Note, Promise supports a multi-provider configuration, however, for Brahmaputra, multi-provider support is not yet
fully supported.

add-provider

This operation is used to register a new resource provider into the Promise reservation system.

Note, for Brahmaputra, the add-provider operation should only be used to register one provider with the Promise
shim-layer. Further note that currently only OpenStack is supported as a provider.

The operation takes the following input parameters:
* provider-type (mandatory) = ‘openstack’: select a specific resource provider type.
 endpoint (mandatory): target URL endpoint for the resource provider.
* username (mandatory)
* password (mandatory)
* region: specified region for the provider
* tenant
- id

— name

remove-provider

This operation removes a resource provider from the reservation system. Note, this feature is not yet available in
Brahmaputra release.

4.6 SDN VPN capabilities and usage

The BGPVPN feature enables creation of BGP VPNs according to the OpenStack BGPVPN blueprint at
https://blueprints.launchpad.net/neutron/+spec/neutron-bgp-vpn. In a nutshell, the blueprint defines a BGPVPN ob-
ject and a number of ways how to associate it with the existing Neutron object model, including a unique definition of
the related semantics. The BGPVPN framework supports a backend driver model with currently available drivers for
Bagpipe, OpenContrail, Nuage and OpenDaylight.

Currently, in OPNFV only ODL is supported as a backend for BGPVPN. API calls are mapped onto the ODL VPN
Service REST API through the BGPVPN ODL driver and the ODL Neutron Northbound module.

4.6.1 Feature and API usage guidelines and example

For the details of wusing OpenStack BGPVPN API, please refer to the documentation at
http://docs.openstack.org/developer/networking-bgpvpn/.

22 Chapter 4. Using Brahmaputra Features

https://blueprints.launchpad.net/neutron/+spec/neutron-bgp-vpn
http://docs.openstack.org/developer/networking-bgpvpn/

CHAPTER
FIVE

USING THE TEST FRAMEWORKS IN OPNFV

Testing is one of the key activities in OPNFV, validation can include component level testing, system testing, automated
deployment validation and performance characteristics testing.

The following section outlines how to use the test projects that are delivered on the OPNFYV platform for the purpose
of testing components and VNFs in the context of a Brahmaputra deployment.

23

	Abstract
	Overview
	OPNFV Features
	General usage guidelines

	Using common platform components
	Common VIM components
	Common SDN components

	Using Brahmaputra Features
	Copper capabilities and usage
	Doctor capabilities and usage
	Using IPv6 Feature of Brahmaputra Release
	Open vSwitch
	Promise capabilities and usage
	SDN VPN capabilities and usage

	Using the test frameworks in OPNFV

