> 0PNFV

OPNFV FUNCTEST user guide
Release arno.2015.1.0 (b6ca5b5)

OPNFV

April 29, 2016

Introduction

CONTENTS

Overview of the functest suites

2.1 VIM (Virtualized Infrastructure Manager) v v i v v v it e e e e e
2.2 SDN Controllers i e e e e e e e e
2.3 Features o i e e e e e e e e e e e

Executing the functest suites
3.1 Manual testing o e e e e e e e e e e e e e e e e e e
3.2 Automated testing L. e e e e e

Test results

Test Dashboard

Troubleshooting

6.1 VIM .

6.2 Controllers e e e e e

6.3 Feature

References

15

17

19
19
23
23

25

CHAPTER
ONE

INTRODUCTION

The goal of this document is to describe the Functest test cases as well as provide a procedure to execute them.
A presentation has been created for the first OPNFV Summit [4].

This document is a continuation of the Functest Configuration Guide‘[1]°_ and it is assumed that the Functest Docker
container is properly deployed.

IMPORTANT: All the instructions described in this guide must be performed inside the container.

http://events.linuxfoundation.org/sites/events/files/slides/Functest%20in%20Depth_0.pdf

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

2 Chapter 1. Introduction

CHAPTER
TWO

OVERVIEW OF THE FUNCTEST SUITES

Functest is the OPNFV project primarily targeting function testing. In the Continuous Integration pipeline, it is
launched after an OPNFV fresh installation to validate and verify the basic functions of the infrastructure.

The current list of test suites can be distributed in 3 main domains: VIM (Virtualised Infrastructure Manager), Con-
trollers and Features.

Do- Test Comments
main | suite
vPing NFV “Hello World” using SSH connection and floatting IP
vPing_userdite using userdata and cloud-init mechanism

vIM Tempest | OpenStack reference test suite [2]

Rally OpenStack testing tool benchmarking OpenStack modules [3]

bench
Controlle]%pen_ Opendaylight Test suite

ay-

light

ONOS Test suite of ONOS L2 and L3 functions See ONOSFW User Guide for details

vIMS Example of a real VNF deployment to show the NFV capabilities of the platform. The IP
Featurek Multimedia Subsytem is a typical Telco test case, referenced by ETSI. It provides a fully

functional VoIP System

Promise | Resource reservation and management project to identify NFV related requirements and
realize resource reservation for future usage by capacity management of resource pools
regarding compute, network and storage. See Promise User Guide for details

Doctor Doctor platform, as of Brahmaputra release , provides the two features: * Immediate
Notification * Consistent resource state awareness (compute), see Doctor User Guide for
details

SD- Implementation of the OpenStack bgpvpn API from the SDNVPN feature project. It
NVPN allowing the cration of BGP VPNs see SDNVPN User Guide for

Functest includes different test suites with several test cases within. Some of the tests are developed by Functest team
members whereas others are integrated from upstream communities or other OPNFV projects. For example, Tempest
is the OpenStack integration test suite and Functest is in charge of the selection, integration and automation of the tests
that fit in OPNFV.

The Tempest suite has been customized but no new test cases have been created.

The results produced by the tests run from CI are pushed and collected in a NoSQL database. The goal is to populate
the database with results from different sources and scenarios and to show them on a Dashboard.

There is no real notion of Test domain or Test coverage. Basic components (VIM, controllers) are tested through their
own suites. Feature projects also provide their own test suites with different ways of running their tests.

vIMS test case was integrated to demonstrate the capability to deploy a relatively complex NFV scenario on top of the
OPNFYV infrastructure.

http://docs.openstack.org/developer/tempest/overview.html
https://rally.readthedocs.org/en/latest/index.html
http://artifacts.opnfv.org/onosfw/brahmaputra/docs/userguide/index.html
http://artifacts.opnfv.org/promise/brahmaputra/docs/userguide/index.html
http://artifacts.opnfv.org/opnfvdocs/brahmaputra/docs/userguide/featureusage-doctor.html
http://docs.openstack.org/developer/tempest/overview.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

Functest considers OPNFYV as a black box. OPNFV, since the Brahmaputra release, offers lots of potential combina-
tions:

* 2 controllers (OpenDayligh, ONOS)
* 4 installers (Apex, Compass, Fuel, Joid)

Most of the tests are runnable on any combination, but some others might have restrictions imposed by the installers
or the available deployed features.

The different test cases are described in the section hereafter.

2.1 VIM (Virtualized Infrastructure Manager)

2.1.1 vPing_ssh

Given the script ping.sh:

#!/bin/sh
while true; do
ping -c 1 $1 2>&1 >/dev/null
RES=$7?
if ["ZS$SRES" = "zZ0"] ; then
echo 'vPing OK'
break
else
echo 'vPing KO'
fi
sleep 1
done

The goal of this test is to establish an SSH connection using a floating IP on the public network and verify that 2
instances can talk on a private network:

vPing_ssh test case

o >

Tester | System
| Boot VM2 Under
- > Test

Stablish SSH

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | to VM2 |
| |
	connection to VM2

4 Chapter 2. Overview of the functest suites

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

| VM2 executes
| ping.sh to VM1

exit OK
else (timeout):

| I
| I
| I
I I
If ping: |
| I
| I
exit Failled | |

| I

This test can be considered as an “Hello World” example. It is the first basic use case which shall work on any
deployment.

2.1.2 vPing_userdata

This test case is similar to vPing_ssh but without the use of floating ips and the public network. It only checks that
2 instances can talk to each other on a private network but it also verifies that the Nova metadata service is properly
working:

vPing_userdata test case

|

| Boot VM2 with |
| ping.sh as userdatal
|

with IP1 as $1. |

f———————————— > |

Tester | | System
| (ping IP1) | Test
e >

|

| Monitor nova |
| console-log VM 2 |
| If ping: |
| exit OK |
| else (timeout) |
| |
| |

| I
| I
I I
| I
| I
I I
| I
| I
I I
| | VM2 exeutes ping.sh]| Under |
| I
| I
| I
| I
I I
| I
| I
I I
| exit Failed |
| I

When the second VM boots it will execute the script passed as userdata automatically and the ping will be detected
capturing periodically the output in the console-log of the second VM.

2.1.3 Tempest
Tempest [2] is the reference OpenStack Integration test suite. It is a set of integration tests to be run against a live
OpenStack cluster. Tempest has batteries of tests for:

* OpenStack API validation

¢ Scenarios

* Other specific tests useful in validating an OpenStack deployment

2.1. VIM (Virtualized Infrastructure Manager) 5

http://docs.openstack.org/developer/tempest/overview.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

Functest uses Rally [3] to run the Tempest suite. Rally generates automatically the Tempest configuration file tem-
pest.conf. Before running the actual test cases, Functest creates the needed resources (user, tenant) and updates the
appropriate parameters into the configuration file. When the Tempest suite is executed, each test duration is measured
and the full console output is stored in a log file for further analysis.

As an addition of Arno, Brahmaputra runs a customized set of Tempest test cases. The list is specificed through
—tests-file when executing the Rally command. This option has been introduced in the version 0.1.2 of the Rally
framework.

This customized list contains more than 200 Tempest test cases and can be divided into two main sections:
1. Set of Tempest smoke test cases
2. Set of test cases from DefCore list [8]

The goal of the Tempest test suite is to check the basic functionalities of the different OpenStack components on an
OPNFV fresh installation using the corresponding REST API interfaces.

2.1.4 Rally bench test suites

Rally [3] is a benchmarking tool that answers the question:
How does OpenStack work at scale?

The goal of this test suite is to benchmark all the different OpenStack modules and get significant figures that could
help to define Telco Cloud KPIs.

The OPNFV Rally scenarios are based on the collection of the actual Rally scenarios:
* authenticate
e cinder
* glance
* heat
* keystone
¢ neutron
* nova
* quotas
* requests

A basic SLA (stop test on errors) have been implemented.

2.2 SDN Controllers

Brahmaputra introduces new SDN controllers. There are currently 2 available controllers:
* OpenDaylight (ODL)
* ONOS

6 Chapter 2. Overview of the functest suites

https://rally.readthedocs.org/en/latest/index.html
https://wiki.openstack.org/wiki/Governance/DefCoreCommittee
https://rally.readthedocs.org/en/latest/index.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

2.2.1 OpenDaylight
The OpenDaylight (ODL) test suite consists of a set of basic tests inherited from the ODL project using the Robot [11]
framework. The suite verifies creation and deletion of networks, subnets and ports with OpenDaylight and Neutron.
The list of tests can be described as follows:

¢ Restconf.basic: Get the controller modules via Restconf

¢ Neutron.Networks

Check OpenStack Networks :: Checking OpenStack Neutron for known networks

Check OpenDaylight Networks :: Checking OpenDaylight Neutron API

Create Network :: Create new network in OpenStack

Check Network :: Check Network created in OpenDaylight

Neutron.Networks :: Checking Network created in OpenStack are pushed
* Neutron.Subnets

— Check OpenStack Subnets :: Checking OpenStack Neutron for known Subnets

Check OpenDaylight subnets :: Checking OpenDaylight Neutron API

Create New subnet :: Create new subnet in OpenStack

Check New subnet :: Check new subnet created in OpenDaylight

Neutron.Subnets :: Checking Subnets created in OpenStack are pushed

¢ Neutron.Ports

Check OpenStack ports :: Checking OpenStack Neutron for known ports

Check OpenDaylight ports :: Checking OpenDaylight Neutron API

Create New Port :: Create new port in OpenStack

Check New Port :: Check new subnet created in OpenDaylight

Neutron.Ports :: Checking Port created in OpenStack are pushed
* Delete Ports

— Delete previously created subnet in OpenStack

— Check subnet deleted in OpenDaylight

— Check subnet deleted in OpenStack
* Delete network

— Delete previously created network in OpenStack

— Check network deleted in OpenDaylight

— Check network deleted in OpenStack

2.2.2 ONOS

TestON Framework is used to test the ONOS SDN controller functions. The test cases deal with L2 and L3 functions.
The ONOS test suite can be run on any ONOS compliant scenario.

The test cases are described as follows:

2.2. SDN Controllers 7

http://robotframework.org/

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

¢ onosfunctest: The main executable file contains the initialization of the docker environment and functions called
by FUNCvirNetNB and FUNCvirNetNBL3

e FUNCvirNetNB
— Create Network: Post Network data and check it in ONOS

Update Network: Update the Network and compare it in ONOS
Delete Network: Delete the Network and check if it’s NULL in ONOS or not
Create Subnet: Post Subnet data and check it in ONOS

Update Subnet: Update the Subnet and compare it in ONOS
Delete Subnet: Delete the Subnet and check if it’s NULL in ONOS or not
Create Port: Post Port data and check it in ONOS

Update Port: Update the Port and compare it in ONOS
— Delete Port: Delete the Port and check if it’s NULL in ONOS or not
* FUNCvirNetNBL3
— Create Router: Post dataes for create Router and check it in ONOS
— Update Router: Update the Router and compare it in ONOS
— Delete Router: Delete the Router dataes and check it in ONOS
— Create RouterInterface: Post RouterInterface data to an exist Router and check it in ONOS
— Delete RouterInterface: Delete the RouterInterface and check the Router
— Create Floatinglp: Post dataes for create Floatinglp and check it in ONOS
— Update Floatinglp: Update the Floatinglp and compare it in ONOS
— Delete FloatingIp: Delete the Floatinglp and check if it’s NULL in ONOS or not
— Create External Gateway: Post dataes for create External Gateway to an exit Router and check it
— Update External Gateway: Update the External Gateway and compare it
— Delete External Gateway: Delete the External Gateway and check if it’s NULL in ONOS or not

2.3 Features

2.3.1 vIMS

The IP Multimedia Subsystem or I[P Multimedia Core Network Subsystem (IMS) is an architectural framework for
delivering IP multimedia services.

vIMS has been integrated in Functest to demonstrate the capability to deploy a relatively complex NFV scenario on
the OPNFV platform. The deployment of a complete functional VNF allows the test of most of the essential functions
needed for a NFV platform.

The goal of this test suite consists of:
¢ deploy a VNF orchestrator (Cloudify)

* deploy a Clearwater vIMS (IP Multimedia Subsystem) VNF from this orchestrator based on a TOSCA blueprint
defined in [5]

8 Chapter 2. Overview of the functest suites

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater/blob/master/openstack-blueprint.yaml

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

* run suite of signaling tests on top of this VNF

The Clearwater architecture is described as follows:

. <
Ellis App
CDF (Test Servers HSS Enum
provisioning) Server
A AN A ;r
Diameter [Rf ISC Diameter | Cx
Homestead
XCAP n (HSS Mirror)
T S >
Ut
A
Ralf
(Rf CTF)
— XCAP HTTP
T
A v V ¥
HTTP HTTP
> Sprout
y (I/S-CSCF < DNS
BGCF, TAS)
Bono
e —
UE < SIP (P-CSCF o SIP > - T
Gm WebRTC) memcached =z —>| |BCF
Mg/Mj/Mk

2.3.2 Promise

Promise provides a basic set of test cases as part of Brahmaputra.

The available 33 test cases can be grouped into 7 test suites:

1. Add a new OpenStack provider into resource pool: Registers OpenStack into a new resource pool and adds more

capacity associated with this pool.

2. Allocation without reservation: Creates a new server in OpenStack and adds a new allocation record in Promise

shim-layer.

3. Allocation using reservation for immediate use: Creates a resource reservation record with no start/end time and
immediately creates a new server in OpenStack and add a new allocation record in Promise shim-layer.

4. Reservation for future use: Creates a resource reservation record for a future start time, queries, modifies and

cancels the newly created reservation.

5. Capacity planning: Decreases and increases the available capacity from a provider in the future and queries the

available collections and utilizations.

6. Reservation with conflict: Tries to create reservations for immediate and future use with conflict.

7. Cleanup test allocations: Destroys all allocations in OpenStack.

2.3. Features

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

2.3.3 SDNVPN

Many telecom network functions are relying on layer-3 infrastructure services, within a VNF between components, or
towards existing external networks. In many cases, these external networks are implemented in MPLS/BGP technol-
ogy in existing service provider wide-area-networks (WAN). This proven technology provides a good mechanism for
inter-operation of a NFV Infrastructure (NFVI) and WAN.

The SDNVPN project defined a bgpvpn suite. This bgpvpn suite deals with 2 Tempest cases dedicated to the test of
the OpenStack bgpvpn API:

* test_create_bgpvpn

* test_create_bgpvpn_as_non_admin_fail

10 Chapter 2. Overview of the functest suites

CHAPTER
THREE

EXECUTING THE FUNCTEST SUITES

3.1 Manual testing

This section assumes the following:
* The Functest Docker container is running
* The docker prompt is shown
* The Functest environment is ready (prepare_env.sh has been executed)

If any of the above steps is missing please refer to the Functest Config Guide as they are a prerequisite and all the
commands explained in this section must be performed inside the container.

The script run_tests.sh launches the test in an automated way. Although it is possible to execute the different tests
manually, it is recommended to use the previous shell script which makes the call to the actual scripts with the appro-
priate parameters.

It is located in $repos_dir/functest/docker and it has several options:

./run_tests.sh -h
Script to trigger the tests automatically.
usage:

bash run_tests.sh [-h|--help] [-r|--report] [-n|-—no-clean] [-t|-—-test <test_name>]
where:

~h|--help show this help text

-r|—-—-report push results to database (false by default)

-n|--no-clean do not clean up OpenStack resources after test run

—-s|—-—-serial run tests in one thread

-t |-——test run specific set of tests

<test_name> one or more of the following separated by comma:
vping_ssh, vping_userdata, odl, onos, tempest,rally,vims,promise,doctor, bgpvpn

examples:

run_tests.sh

run_tests.sh —--test vping,odl

run_tests.sh -t tempest,rally —-—-no-clean

The -r option is used by the OPNFV Continuous Integration automation mechanisms in order to push the test results
into the NoSQL results collection database. This database is read only for a regular user given that it needs special
rights and special conditions to push data.

The -t option can be used to specify the list of a desired test to be launched, by default Functest will launch all the test
suites in the following order:

11

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

1. vPing test cases

2. Tempest suite

3. SDN controller suites

4. Feature project tests cases (Promise, Doctor, SDNVPN)
5. vIMS suite

6. Rally suite

Please note that for some scenarios some test cases might not be launched. Functest calculates automatically which test
can be executed and which cannot given the environment variable DEPLOY_SCENARIO to the docker container.

A single or set of test may be launched at once using -t <test_name> specifying the test name or names separated by
commas in the following list: [vping_ssh,vping_userdata,odl,onos,rally,tempest,vims,promise,doctor].

Functest includes cleaning mechanism in order to remove all the OpenStack resources except what was present before
running any test. The script $repos_dir/functest/utils/generate_defaults.py is called once by prepare_env.sh when
setting up the Functest environment to snapshot all the OpenStack resources (images, networks, volumes, security
groups, tenants, users) so that an eventual cleanup does not remove any of this defaults.

The -n option is used for preserving all the possible OpenStack resources created by the tests after their execution.

The -5 option forces execution of test cases in a single thread. Currently this option affects Tempest test cases only
and can be used e.g. for troubleshooting concurrency problems.

The script clean_openstack.py which is located in $repos_dir/functest/testcases/VIM/OpenStack/CIl/libraries/ is nor-
mally called after a test execution if the -n is not specified. It is in charge of cleaning the OpenStack resources that are
not specified in the defaults file generated previously which is stored in /home/opnfv/functest/conf/os_defaults.yaml in
the docker container.

It is important to mention that if there are new OpenStack resources created manually after preparing the Functest
environment, they will be removed if this flag is not specified in the run_tests.sh command. The reason to include this
cleanup meachanism in Functest is because some test suites such as Tempest or Rally create a lot of resources (users,
tenants, networks, volumes etc.) that are not always properly cleaned, so this function has been set to keep the system
as clean as it was before a full Functest execution.

Although run_tests.sh provides an easy way to run any test, it is possible to do a direct call to the desired test script.
For example:

python $repos_dir/functest/testcases/vPing/vPing_ssh.py -d

3.2 Automated testing

As mentioned previously, the prepare-env.sh and run_test.sh can be called within the container from Jenkins. There
are 2 jobs that automate all the manual steps explained in the previous section. One job runs all the tests and the other
one allows testing test suite by test suite specifying the test name. The user might use one or the other job to execute
the desired test suites.

One of the most challenging task in the Brahmaputra release consists in dealing with lots of scenarios and installers.
Thus, when the tests are automatically started from CI, a basic algorithm has been created in order to detect whether a
given test is runnable or not on the given scenario. Some Functest test suites cannot be systematically run (e.g. ODL
suite can not be run on an ONOS scenario).

CI provides some useful information passed to the container as environment variables:
¢ Installer (apexlcompasslfuelljoid), stored in INSTALLER_TYPE
* Installer IP of the engine or VM running the actual deployment, stored in INSTALLER_IP

12 Chapter 3. Executing the functest suites

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

¢ The scenario [controller]-[feature]-[mode], stored in DEPLOY_SCENARIO with
— controller = (odllonosloclinosdn)
— feature = (ovs(dpdk)lkvmlisfclbgpvpn)
— mode = (halnoha)

The constraints per test case are defined in the Functest configuration file
/home/opnfv/functest/config/config_functest.yaml:

test-dependencies:

functest:
vims:
scenario: ' (ocl) | (odl) | (nosdn) '
vping:
vping_userdata:
scenario: ' (ocl) | (odl) | (nosdn) '
tempest:
rally:
odl:
scenario: 'odl'
onos:
scenario: 'onos'

At the end of the Functest environment creation, a file /home/opnfv/functest/conf/testcase-list.txt is created with the
list of all the runnable tests. Functest considers the static constraints as regular expressions and compare them with
the given scenario name. For instance, ODL suite can be run only on an scenario including ‘odl’ in its name.

The order of execution is also described in the Functest configuration file:

test_exec_priority:

vping_ssh
vping_userdata
tempest

odl

onos

ovno

doctor

O J o U b W N

promise

9: odl-vpnservice

10: bgpvpn

#11: openstack-neutron-bgpvpn-api-extension-tests
12: vims

13: rally

The tests are executed in the following order:
1. vPing test cases
Tempest suite
SDN controller suites
Feature project tests cases (Promise, Doctor, BGPVPN...)
vIMS suite

wooA »N

6. Rally suite

As explained before, at the end of an automated execution, the OpenStack resources might be eventually removed.

3.2. Automated testing 13

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

14 Chapter 3. Executing the functest suites

CHAPTER
FOUR

TEST RESULTS

For Brahmaputra test results, see the functest results document at [12]

Note that the results are documented per scenario basis. Although most of the test cases might show the same output,
some of them are not supported by certain scenario. Please select the appropriate scenario and compare the results to
the referenced in the documentation.

15

http://artifacts.opnfv.org/functest/brahmaputra/docs/results/index.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

16 Chapter 4. Test results

CHAPTER
FIVE

TEST DASHBOARD

Based on results collected in CI, a test dashboard is dynamically generated.

17

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

18 Chapter 5. Test Dashboard

CHAPTER
SIX

TROUBLESHOOTING

This section gives some guidelines about how to troubleshoot the test cases owned by Functest.

IMPORTANT: As in the previous section, the steps defined below must be executed inside the Functest Docker
container and after sourcing the OpenStack credentials:

’. Screds

or:

‘source /home/opnfv/functest/conf/openstack.creds

6.1 VIM

This section covers the test cases related to the VIM (vPing, Tempest, Rally).

6.1.1 vPing common

For both vPing test cases (vPing_ssh, and vPing_userdata), the first steps are similar:
* Create Glance image
* Create Network
* Create Security Group
* Create instances
After these actions, the test cases differ and will be explained in their respective section.

These test cases can be run inside the container as follows:

Srepos_dir/functest/docker/run_tests.sh -t vping_ssh
Srepos_dir/functest/docker/run_tests.sh -t vping_userdata

The run_tests.sh script is basically calling internally the corresponding vPing
scripts, located in $repos_dir/functest/testcases/vPing/CIl/libraries/vPing_ssh.py and $re-
pos_dir/functest/testcases/vPing/Cl/libraries/vPing_userdata.py with the appropriate flags.

After finishing the test execution, the corresponding script will remove all created resources in OpenStack (image,
instances, network and security group). When troubleshooting, it is advisable sometimes to keep those resources in
case the test fails and a manual testing is needed. This can be achieved by adding the flag -n:

Srepos_dir/functest/docker/run_tests.sh -n -t vping_ssh
Srepos_dir/functest/docker/run_tests.sh -n -t vping_userdata

19

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

Some of the common errors that can appear in this test case are:

vPing_ssh— ERROR - There has been a problem when creating the neutron network....

This means that there has been some problems with Neutron, even before creating the instances. Try to create manually
a Neutron network and a Subnet to see if that works. The debug messages will also help to see when it failed (subnet

and router creation). Example of Neutron commands (using 10.6.0.0/24 range for example):

neutron
neutron
neutron
neutron
neutron

net-create net-test

subnet-create —-name subnet-test —--allocation-pool start=10.6.0.2,end=10.6.0.100 —-—-gateway L1

router—-create test_router
router—interface—add <ROUTER_ID> test_subnet
router—gateway—-set <ROUTER_ID> <EXT_NET_NAME>

Another related error can occur while creating the Security Groups for the instances:

vPing_ssh—- ERROR - Failed to create the security group...

In this case, proceed to create it manually. These are some hints:

neutron
neutron
neutron
neutron

security—-group-create sg-test

security-group-rule-create sg-test --direction ingress —--protocol icmp —--remote-
security—-group-rule-create sg-test —--direction ingress —--ethertype IPv4 —-protod
security—-group-rule-create sg-test —--direction egress —--ethertype IPv4 ——protocg

rip-prefix 0.
ol tcp ——port
1 tcp ——port-

The next step is to create the instances. The image used is located in /home/opnfv/functest/data/cirros-0.3.4-x86_64-
disk.img and a Glance image is created with the name functest-vping. If booting the instances fails (i.e. the status is

not ACTIVE), you can check why it failed by doing:

nova list
nova show <INSTANCE_ID>

It might show some messages about the booting failure. To try that manually:

nova boot --flavor 2 --image functest-vping —--nic net-id=<NET_ID> nova-test

This will spawn a VM using the network created previously manually. In all the OPNFV tested scenarios from CI, it
never has been a problem with the previous actions. Further possible problems are explained in the following sections.

6.1.2 vPing_SSH

This test case creates a floating IP on the external network and assigns it to the second instance opnfv-vping-2. The
purpose of this is to establish a SSH connection to that instance and SCP a script that will ping the first instance. This
script is located in the repository under $repos_dir/functest/testcases/vPing/Cl/libraries/ping.sh and takes an IP as a
parameter. When the SCP is completed, the test will do an SSH call to that script inside the second instance. Some

problems can happen here:

vPing_ssh- ERROR - Cannot establish connection to IP xxx.xXX.XXX.xxx. Aborting

If this is displayed, stop the test or wait for it to finish (if you have used the flag -n in run_tests.sh explained previously)
so that the test does not clean the OpenStack resources. It means that the Container can not reach the public IP assigned
to the instance opnfv-vping-2. There are many possible reasons, and they really depend on the chosen scenario. For

most of the ODL-L3 and ONOS scenarios this has been noticed and it is a known limitation.

First, make sure that the instance opnfv-vping-2 succeeded to get an IP from the DHCP agent. It can be checked by

doing:

‘nova console-log opnfv-vping-2

20

Chapter 6. Troubleshooting

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

If the message Sending discover and No lease, failing is shown, it probably means that the Neutron dhcp-agent failed
to assign an IP or even that it was not responding. At this point it does not make sense to try to ping the floating IP.

If the instance got an IP properly, try to ping manually the VM from the container:

nova list
<grab the public IP>
ping <public IP>

If the ping does not return anything, try to ping from the Host where the Docker container is running. If that solves
the problem, check the iptable rules because there might be some rules rejecting ICMP or TCP traffic coming/going
from/to the container.

At this point, if the ping does not work either, try to reproduce the test manually with the steps described above in the
vPing common section with the addition:

neutron floatingip-create <EXT_NET_NAME>
nova floating-ip-associate nova-test <FLOATING_IP>

Further troubleshooting is out of scope of this document, as it might be due to problems with the SDN controller.
Contact the installer team members or send an email to the corresponding OPNFV mailing list for more information.

6.1.3 vPing_userdata

This test case does not create any floating IP neither establishes an SSH connection. Instead, it uses nova-metadata
service when creating an instance to pass the same script as before (ping.sh) but as 1-line text. This script will be
executed automatically when the second instance opnfv-vping-2 is booted.

The only known problem here for this test to fail is mainly the lack of support of cloud-init (nova-metadata service).
Check the console of the instance:

nova console-log opnfv-vping-2

If this text or similar is shown:

checking http://169.254.169.254/2009-04-04/instance-1id
failed 1/20: up 1.13. request failed
failed 2/20: up 13.18. request failed
failed 3/20: up 25.20. request failed
failed 4/20: up 37.23. request failed
failed 5/20: up 49.25. request failed
failed 6/20: up 61.27. request failed
failed 7/20: up 73.29. request failed
failed 8/20: up 85.32. request failed
failed 9/20: up 97.34. request failed
failed 10/20: up 109.36. request failed
failed 11/20: up 121.38. request failed
failed 12/20: up 133.40. request failed
failed 13/20: up 145.43. request failed
failed 14/20: up 157.45. request failed
failed 15/20: up 169.48. request failed
failed 16/20: up 181.50. request failed
failed 17/20: up 193.52. request failed
failed 18/20: up 205.54. request failed
failed 19/20: up 217.56. request failed
failed 20/20: up 229.58. request failed
failed to read iid from metadata. tried 20

6.1. VIM 21

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

it means that the instance failed to read from the metadata service. Contact the Functest or installer teams for more
information.

NOTE: Cloud-init in not supported on scenario dealing with ONOS and the tests have been excluded from CI in those
scenarios.

6.1.4 Tempest

In the upstream OpenStack CI all the Tempest test cases are supposed to pass. If some test cases fail in an OPNFV
deployment, the reason is very probably one of the following

Error Details
Resources required for test case Such resources could be e.g. an external network and access to the
execution are missing management subnet (adminURL) from the Functest docker container.
OpenStack components or Check running services in the controller and compute nodes (e.g. with
services are missing or not “systemctl” or “service” commands). Configuration parameters can be
configured properly verified from related .conf files located under /etc/<component> directories.
Some resources required for The tempest.conf file, automatically generated by Rally in Functest, does not
execution test cases are missing contain all the needed parameters or some parameters are not set properly.
The tempest.conf file is located in /home/opnfv
/.rally/tempest/for-deployment-<UUID> in Functest container Use “rally
deployment list” command in order to check UUID of current deployment.

When some Tempest test case fails, captured traceback and possibly also related REST API requests/responses are
output to the console. More detailed debug information can be found from tempest.log file stored into related Rally
deployment folder.

6.1.5 Rally

Same error causes than for Tempest mentioned above may lead to errors in Rally.

It is possible to run only one Rally scenario, instead of the whole suite. To do that, call the python script (instead of
run_tests.sh) as follows:

python $repos_dir/functest/testcases/VIM/OpenStack/CI/libraries/run_rally-cert.py -h
usage: run_rally-cert.py [-h] [-d] [-r] [-s] [-v] [-n] test_name

positional arguments:

test_name Module name to be tested. Possible values are : [
authenticate | glance | cinder | heat | keystone | neutron |
nova | quotas | requests | vm | all] The 'all' wvalue

performs all possible test scenarios

optional arguments:

-h, --help show this help message and exit

-d, ——-debug Debug mode

-r, ——-report Create json result file

-s, ——smoke Smoke test mode

-v, —-verbose Print verbose info about the progress

-n, —--noclean Don't clean the created resources for this test.

For example, to run the Glance scenario with debug information:

python $repos_dir/functest/testcases/VIM/OpenStack/CI/libraries/run_rally-cert.py -d gl#nce

Possible scenarios are:

22 Chapter 6. Troubleshooting

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

* authenticate
* glance

e cinder

* heat

* keystone

* neutron

* nova

* quotas

* requests

e vm

To know more about what those scenarios are doing, they are defined in: Sre-
pos_dir/functest/testcases/VIM/OpenStack/Cl/rally_cert/scenario. For more info about Rally scenario definition
please refer to the Rally official documentation.

If the flag all is specified, it will run all the scenarios one by one. Please note that this might take some time (~1,5hr),
taking around 1 hour to complete the Nova scenario.

To check any possible problems with rally, the logs are stored under /home/opnfv/functest/results/rally/ in the Functest
container.

6.2 Controllers

6.2.1 ODL

2 versions are supported in Brahmaputra depending on the scenario:
e Lithium
* Berylium

The upstream test suites have not been adapted, so you may get 18 or 15 tests passed on 18 depending on your
configuration. The 3 testcases are partly failed due to wrong return code.

6.2.2 ONOS
Please refer to the ONOS documentation.
6.3 Feature

6.3.1 vIMS

vIMS deployment may fail for several reasons, the most frequent ones are described in the following table:

6.2. Controllers 23

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (b6ca5b5)

Error

Comments

Keystone admin API not reachable

Impossible to create vIMS user and tenant

Impossible to retrieve admin role id

Impossible to create vIMS user and tenant

Error when uploading image from OpenStack to
glance

impossible to deploy VNF

Cinder quota cannot be updated

Default quotas not sufficient, they are adapted in the
script

Impossible to create a volume

VNF cannot be deployed

SSH connection issue between the Test container and
the VM

if vPing test fails, vIMS test will fail...

No Internet access from the VM

the VMs of the VNF must have an external access to
Internet

No access to OpenStack API from the VM

Orchestrator can be installed but the vIMS VNF
installation fails

6.3.2 Promise

Please refer to the Promise documentation.

6.3.3 SDNVPN

Please refer to the SNVPN documentation.

24

Chapter 6. Troubleshooting

CHAPTER
SEVEN

REFERENCES

OPNFV main site: opnfvmain.
OPNFV functional test page: opnfvfunctest.
IRC support chan: #opnfv-testperf

25

http://www.opnfv.org
https://wiki.opnfv.org/opnfv_functional_testing

	Introduction
	Overview of the functest suites
	VIM (Virtualized Infrastructure Manager)
	SDN Controllers
	Features

	Executing the functest suites
	Manual testing
	Automated testing

	Test results
	Test Dashboard
	Troubleshooting
	VIM
	Controllers
	Feature

	References

