
OPNFV FUNCTEST user guide
Release arno.2015.1.0 (fe179a4)

OPNFV

February 24, 2016

CONTENTS

1 Introduction 1

2 Overview of the functest suites 3
2.1 vPing_SSH . 4
2.2 vPing_userdata . 5
2.3 Tempest . 6
2.4 Rally bench test suites . 6
2.5 OpenDaylight . 7
2.6 ONOS . 8
2.7 OpenContrail . 8
2.8 vIMS . 9
2.9 Promise . 9

3 Executing the functest suites 11

4 Test results 15

5 Test Dashboard 17

6 Troubleshooting 19
6.1 vPing_SSH . 19
6.2 vPing_userdata . 19
6.3 Tempest . 19
6.4 Rally . 20
6.5 ODL . 20
6.6 ONOS . 20
6.7 OpenContrail . 20
6.8 vIMS . 20
6.9 Promise . 20

7 References 21

i

ii

CHAPTER

ONE

INTRODUCTION

The goal of this documents is to describe the Functest test cases as well as provide a procedure about how to execute
them.

A presentation has been created for the first OPNFV Summit [4].

It is assumed that Functest container has been properly installed [1].

1

http://events.linuxfoundation.org/sites/events/files/slides/Functest%20in%20Depth_0.pdf

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

2 Chapter 1. Introduction

CHAPTER

TWO

OVERVIEW OF THE FUNCTEST SUITES

Functest is the OPNFV project primarily targeting function testing. In the Continuous Integration pipeline, it is
launched after an OPNFV fresh installation to validate and verify the basic functions of the infrastructure.

The current list of test suites can be distributed in 3 main domains:

+----------------+----------------+---+
| Domain | Test suite | Comments |
+================+================+===+
| | vPing | NFV "Hello World" using SSH connection |
| | | and floatting IP |
| +----------------+---+
| VIM | vPing_userdata | Ping using userdata and cloud-init |
| | | mechanism |
| +----------------+---+
|(Virtualised | Tempest | OpenStack reference test suite `[2]`_ |
| Infrastructure +----------------+---+
| Manager) | Rally bench | OpenStack testing tool benchmarking |
| | | OpenStack modules `[3]`_ |
+----------------+----------------+---+
| | OpenDaylight | Opendaylight Test suite |
| +----------------+---+
| Controllers | ONOS | Test suite of ONOS L2 and L3 functions |
| +----------------+---+
| | OpenContrail | |
+----------------+----------------+---+
Features	vIMS	Example of a real VNF deployment to show
		the NFV capabilities of the platform.
		The IP Multimedia Subsytem is a typical
		Telco test case, referenced by ETSI.
		It provides a fully functional VoIP System
+----------------+---+		
	Promise	Resource reservation and management
		project to identify NFV related
		requirements and realize resource
		reservation for future usage by capacity
		management of resource pools regarding
		compute, network and storage.
+----------------+---+		
	SDNVPN	
+----------------+----------------+---+

Functest includes different test suites with several test cases within. Some of the tests are developed by Functest team
members whereas others are integrated from upstream communities or other OPNFV projects. For example, Tempest
is the OpenStack integration test suite and Functest is in charge of the selection, integration and automation of the tests
that fit in OPNFV.

3

http://docs.openstack.org/developer/tempest/overview.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

The Tempest suite has been customized but no new test cases have been created. Some OPNFV feature projects (e.g.
SDNVPN) have written some Tempest tests cases and pushed upstream to be used by Functest.

The results produced by the tests run from CI are pushed and collected in a NoSQL database. The goal is to populate
the database with results from different sources and scenarios and to show them on a Dashboard.

There is no real notion of Test domain or Test coverage. Basic components (VIM, controllers) are tested through their
own suites. Feature projects also provide their own test suites with different ways of running their tests.

vIMS test case was integrated to demonstrate the capability to deploy a relatively complex NFV scenario on top of the
OPNFV infrastructure.

Functest considers OPNFV as a black box. OPNFV, since the Brahmaputra release, offers lots of potential combina-
tions:

• 3 controllers (OpenDayligh, ONOS, OpenContrail)

• 4 installers (Apex, Compass, Fuel, Joid)

Most of the tests are runnable on any combination, but some others might have restrictions imposed by the installers
or the available deployed features.

Details on working with the functest suites can be found at http://artifacts.opnfv.org/functest/brahmaputra/userguide/index.html

The different scenarios are described in the section hereafter.

VIM (Virtualized Infrastructure Manager) —

2.1 vPing_SSH

Given the script ‘ping.sh’:

#!/bin/sh
while true; do

ping -c 1 $1 2>&1 >/dev/null
RES=$?
if ["Z$RES" = "Z0"] ; then

echo 'vPing OK'
break

else
echo 'vPing KO'

fi
sleep 1
done

The goal of this test is described as follows:

vPing test case
+-------------+ +-------------+
	Boot VM1 with IP1	
+------------------->		
Tester		System
	Boot VM2	Under
+------------------->	Test	
	Create floating IP	
+------------------->		
	Assign floating IP	

4 Chapter 2. Overview of the functest suites

http://artifacts.opnfv.org/functest/brahmaputra/userguide/index.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

	to VM2	
+------------------->		
	Stablish SSH	
	connection to VM2	
	through floating IP	
+------------------->		
	SCP ping.sh to VM2	
+------------------->		
	VM2 executes	
	ping.sh to VM1	
+------------------->		
	If ping:	
	exit OK	
	else (timeout)	
	exit Failed	
+-------------+ +-------------+

This test can be considered as an “Hello World” example. It is the first basic use case which shall work on any
deployment.

2.2 vPing_userdata

The goal of this test can be described as follows:

vPing_userdata test case
+-------------+ +-------------+
	Boot VM1 with IP1	
+------------------->		
	Boot VM2 with	
	ping.sh as userdata	
	with IP1 as $1.	
+------------------->		
Tester		System
	VM2 exeutes ping.sh	Under
	(ping IP1)	Test
+------------------->		
	Monitor nova	
	console-log VM 2	
	If ping:	
	exit OK	
	else (timeout)	
	exit Failed	
+-------------+ +-------------+

This scenario is similar to the previous one but it uses cloud-init (nova metadata service) instead of floating IPs and
SSH connection. When the second VM boots it will execute the script automatically and the ping will be detected
capturing periodically the output in the console-log of the second VM.

2.2. vPing_userdata 5

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

2.3 Tempest

Tempest [2] is the reference OpenStack Integration test suite. It is a set of integration tests to be run against a live
OpenStack cluster. Tempest has batteries of tests for:

• OpenStack API validation

• Scenarios

• Other specific tests useful in validating an OpenStack deployment

Functest uses Rally [3] to run the Tempest suite. Rally generates automatically the Tempest configuration file (tem-
pest.conf). Before running the actual test cases, Functest creates the needed resources and updates the appropriate
parameters to the configuration file. When the Tempest suite is executed, each test duration is measured and the full
console output is stored in the tempest.log file for further analysis.

As an addition of Arno, Brahmaputra runs a customized set of Tempest test cases. The list is specificed through
–tests-file when running Rally. This option has been introduced in Rally in version 0.1.2.

The customized test list is available in the Functest repo [4]. This list contains more than 200 Tempest test cases and
can be divided into two main sections:

1. Set of tempest smoke test cases

2. Set of test cases from DefCore list [8]

The goal of the Tempest test suite is to check the basic functionalities of different OpenStack components on an
OPNFV fresh installation using the corresponding REST API interfaces.

2.4 Rally bench test suites

Rally [3] is a benchmarking tool that answers the question:

“How does OpenStack work at scale?”.

The goal of this test suite is to benchmark the different OpenStack modules and get significant figures that could help
to define Telco Cloud KPIs.

The OPNFV scenarios are based on the collection of the existing Rally scenarios:

• authenticate

• cinder

• glance

• heat

• keystone

• neutron

• nova

• quotas

• requests

A basic SLA (stop test on errors) have been implemented.

6 Chapter 2. Overview of the functest suites

http://docs.openstack.org/developer/tempest/overview.html
https://rally.readthedocs.org/en/latest/index.html
http://events.linuxfoundation.org/sites/events/files/slides/Functest%20in%20Depth_0.pdf
https://wiki.openstack.org/wiki/Governance/DefCoreCommittee
https://rally.readthedocs.org/en/latest/index.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

2.4.1 SDN Controllers

Brahmaputra introduces new SDN controllers. There are currently 3 possible controllers:

• OpenDaylight (ODL)

• ONOS

• OpenContrail (OCL)

2.5 OpenDaylight

The OpenDaylight (ODL) test suite consists of a set of basic tests inherited from the ODL project using the Robot [11]
framework. The suite verifies creation and deletion of networks, subnets and ports with OpenDaylight and Neutron.

The list of tests can be described as follows:

• Restconf.basic: Get the controller modules via Restconf

• Neutron.Networks

– Check OpenStack Networks :: Checking OpenStack Neutron for known networks

– Check OpenDaylight Networks :: Checking OpenDaylight Neutron API

– Create Network :: Create new network in OpenStack

– Check Network :: Check Network created in OpenDaylight

– Neutron.Networks :: Checking Network created in OpenStack are pushed

• Neutron.Subnets

– Check OpenStack Subnets :: Checking OpenStack Neutron for known Subnets

– Check OpenDaylight subnets :: Checking OpenDaylight Neutron API

– Create New subnet :: Create new subnet in OpenStack

– Check New subnet :: Check new subnet created in OpenDaylight

– Neutron.Subnets :: Checking Subnets created in OpenStack are pushed

• Neutron.Ports

– Check OpenStack ports :: Checking OpenStack Neutron for known ports

– Check OpenDaylight ports :: Checking OpenDaylight Neutron API

– Create New Port :: Create new port in OpenStack

– Check New Port :: Check new subnet created in OpenDaylight

– Neutron.Ports :: Checking Port created in OpenStack are pushed

• Delete Ports

– Delete previously created subnet in OpenStack

– Check subnet deleted in OpenDaylight

– Check subnet deleted in OpenStack

• Delete network

– Delete previously created network in OpenStack

2.5. OpenDaylight 7

http://robotframework.org/

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

– Check network deleted in OpenDaylight

– Check network deleted in OpenStack

2.6 ONOS

TestON Framework is used to test the ONOS SDN controller functions. The test cases deal with L2 and L3 functions.
The ONOS test suite can be run on any ONOS compliant scenario.

The test cases may be described as follows:

• onosfunctest: The main executable file contains the initialization of the docker environment and functions called
by FUNCvirNetNB and FUNCvirNetNBL3

• FUNCvirNetNB

– Create Network: Post Network data and check it in ONOS

– Update Network: Update the Network and compare it in ONOS

– Delete Network: Delete the Network and check if it’s NULL in ONOS or not

– Create Subnet: Post Subnet data and check it in ONOS

– Update Subnet: Update the Subnet and compare it in ONOS

– Delete Subnet: Delete the Subnet and check if it’s NULL in ONOS or not

– Create Port: Post Port data and check it in ONOS

– Update Port: Update the Port and compare it in ONOS

– Delete Port: Delete the Port and check if it’s NULL in ONOS or not

• FUNCvirNetNBL3

– Create Router: Post dataes for create Router and check it in ONOS

– Update Router: Update the Router and compare it in ONOS

– Delete Router: Delete the Router dataes and check it in ONOS

– Create RouterInterface: Post RouterInterface data to an exist Router and check it in ONOS

– Delete RouterInterface: Delete the RouterInterface and check the Router

– Create FloatingIp: Post dataes for create FloatingIp and check it in ONOS

– Update FloatingIp: Update the FloatingIp and compare it in ONOS

– Delete FloatingIp: Delete the FloatingIp and check if it’s NULL in ONOS or not

– Create External Gateway: Post dataes for create External Gateway to an exit Router and check it

– Update External Gateway: Update the External Gateway and compare it

– Delete External Gateway: Delete the External Gateway and check if it’s NULL in ONOS or not

2.7 OpenContrail

TODO OVNO

8 Chapter 2. Overview of the functest suites

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

2.7.1 Features

2.8 vIMS

The goal of this test suite consists of:

• deploy a VNF orchestrator (Cloudify)

• deploy a Clearwater vIMS (IP Multimedia Subsystem) VNF from this orchestrator based on a TOSCA blueprint
defined in [5]

• run suite of signaling tests on top of this VNF

The Clearwater architecture is described as follows:

Two types of information are stored in the Test Database:

• the duration of each step (orchestion deployment, VNF deployment and test)

• the test results

The deployment of a complete functional VNF allows the test of most of the essential functions needed for a NFV
platform.

2.9 Promise

Promise provides a basic set of test cases as part of Brahmaputra.

2.8. vIMS 9

https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater/blob/master/openstack-blueprint.yaml

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

The available 33 test cases can be grouped into 7 test suites:

1. Add a new OpenStack provider into resource pool: Registers OpenStack into a new resource pool and adds more
capacity associated with this pool.

2. Allocation without reservation: Creates a new server in OpenStack and adds a new allocation record in Promise
shim-layer.

3. Allocation using reservation for immediate use: Creates a resource reservation record with no start/end time and
immediately creates a new server in OpenStack and add a new allocation record in Promise shim-layer.

4. Reservation for future use: Creates a resource reservation record for a future start time, queries, modifies and
cancels the newly created reservation.

5. Capacity planning: Decreases and increases the available capacity from a provider in the future and queries the
available collections and utilizations.

6. Reservation with conflict: Tries to create reservations for immediate and future use with conflict.

7. Cleanup test allocations: Destroys all allocations in OpenStack.

The specific parameters for Promise can be found in config_functest.yaml and include:

promise:
general:

tenant_name: Name of the OpenStack tenant/project (e.g. promise)
tenant_description: Description of the OpenStack tenant (e.g. promise Functionality Testing)
user_name: Name of the user tenant (e.g. promiser)
user_pwd: Password of the user tenant (e.g. test)
image_name: Name of the software image (e.g. promise-img)
flavor_name: Name of the flavor (e.g. promise-flavor with 1 vCPU and 512 MB RAM)
flavor_vcpus: 1
flavor_ram: 512
flavor_disk: 0

However, these parameters must not be changed, as they are the values expected by the Promise test suite.

10 Chapter 2. Overview of the functest suites

CHAPTER

THREE

EXECUTING THE FUNCTEST SUITES

Once the Functest docker container is running and Functest environment ready (through
/home/opnfv/repos/functest/docker/prepare_env.sh script), the system is ready to run the tests.

The script run_tests.sh launches the test in an automated way. Although it is possible to execute the different tests man-
ually, it is recommended to use the previous shell script which makes the call to the actual scripts with the appropriate
parameters.

It is located in $repos_dir/functest/docker and it has several options:

./run_tests.sh -h
Script to trigger the tests automatically.

usage:
bash run_tests.sh [-h|--help] [-r|--report] [-n|--no-clean] [-t|--test <test_name>]

where:
-h|--help show this help text
-r|--report push results to database (false by default)
-n|--no-clean do not clean up OpenStack resources after test run
-s|--serial run tests in one thread
-t|--test run specific set of tests

<test_name> one or more of the following separated by comma:
vping_ssh,vping_userdata,odl,rally,tempest,vims,onos,promise,ovno

examples:
run_tests.sh
run_tests.sh --test vping,odl
run_tests.sh -t tempest,rally --no-clean

The -r option is used by the OPNFV Continuous Integration automation mechanisms in order to push the test results
into the NoSQL results collection database. This database is read only for a regular user given that it needs special
rights and special conditions to push data.

The -t option can be used to specify the list of a desired test to be launched, by default Functest will launch all the test
suites in the following order: vPing, Tempest, vIMS, Rally.

A single or set of test may be launched at once using -t <test_name> specifying the test name or names separated by
commas in the following list: [vping,vping_userdata,odl,rally,tempest,vims,onos,promise].

The -n option is used for preserving all the possible OpenStack resources created by the tests after their execution.

Please note that Functest includes cleaning mechanism in order to remove all the
VIM resources except what was present before running any test. The script $re-
pos_dir/functest/testcases/VIM/OpenStack/CI/libraries/generate_defaults.py is called once by prepare_env.sh
when setting up the Functest environment to snapshot all the OpenStack resources (images, networks, volumes,
security groups, tenants, users) so that an eventual cleanup does not remove any of this defaults.

11

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

The -s option forces execution of test cases in a single thread. Currently this option affects Tempest test cases only
and can be used e.g. for troubleshooting concurrency problems.

The script $repos_dir/functest/testcases/VIM/OpenStack/CI/libraries/clean_openstack.py is normally called after a test
execution if the -n is not specified. It is in charge of cleaning the OpenStack resources that are not specified in the de-
faults file generated previously which is stored in /home/opnfv/functest/conf/os_defaults.yaml in the docker container.

It is important to mention that if there are new OpenStack resources created manually after preparing the Functest
environment, they will be removed if this flag is not specified in the run_tests.sh command. The reason to include this
cleanup meachanism in Functest is because some test suites such as Tempest or Rally create a lot of resources (users,
tenants, networks, volumes etc.) that are not always properly cleaned, so this cleaning function has been set to keep
the system as clean as it was before a full Functest execution.

Within the Tempest test suite it is possible to define which test cases to execute by edit-
ing test_list.txt file before executing run_tests.sh script. This file is located in $re-
pos_dir/functest/testcases/VIM/OpenStack/CI/custom_tests/test_list.txt

Although run_tests.sh provides an easy way to run any test, it is possible to do a direct call to the desired test script.
For example:

python $repos_dir/functest/testcases/vPing/vPing.py -d

As mentioned in [1], the prepare-env.sh and run_test.sh can be called within the container from Jenkins. There are 2
jobs that automate all the manual steps explained in the previous section. One job runs all the tests and the other one
allows testing test suite by test suite specifying the test name. The user might use one or the other job to execute the
desired test suites.

One of the most challenging task in the Brahmaputra release consists in dealing with lots of scenarios and installers.
Thus, when the tests are automatically started from CI, a basic algorithm has been created in order to detect whether a
given test is runnable or not on the given scenario. Some Functest test suites cannot be systematically run (e.g. ODL
suite can not be run on an ONOS scenario).

CI provides some useful information passed to the container as environment variables:

• Installer (apex|compass|fuel|joid), stored in INSTALLER_TYPE

• Installer IP of the engine or VM running the actual deployment, stored in INSTALLER_IP

• The scenario [controller]-[feature]-[mode], stored in DEPLOY_SCENARIO with

– controller = (odl|onos|ocl|nosdn)

– feature = (ovs(dpdk)|kvm)

– mode = (ha|noha)

The constraints per test case are defined in the Functest configuration file
/home/opnfv/functest/config/config_functest.yaml:

test-dependencies:
functest:

vims:
scenario: '(ocl)|(odl)|(nosdn)'

vping:
vping_userdata:

scenario: '(ocl)|(odl)|(nosdn)'
tempest:
rally:
odl:

scenario: 'odl'
onos:

scenario: 'onos'
....

12 Chapter 3. Executing the functest suites

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

At the end of the Functest environment creation (prepare_env.sh see [1]), a file /home/opnfv/functest/conf/testcase-
list.txt is created with the list of all the runnable tests. Functest considers the static constraints as regular expressions
and compare them with the given scenario name. For instance, ODL suite can be run only on an scenario including
‘odl’ in its name.

The order of execution is also described in the Functest configuration file:

test_exec_priority:

1: vping_ssh
2: vping_userdata
3: tempest
4: odl
5: onos
6: ovno
7: doctor
8: promise
9: odl-vpnservice
10: bgpvpn
11: openstack-neutron-bgpvpn-api-extension-tests
12: vims
13: rally

The tests are executed in the following order:

• Basic scenario (vPing_ssh, vPing_userdata, Tempest)

• Controller suites: ODL or ONOS or OpenContrail

• Feature projects (promise, vIMS)

• Rally (benchmark scenario)

As explained before, at the end of an automated execution, the OpenStack resources might be eventually removed.

13

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

14 Chapter 3. Executing the functest suites

CHAPTER

FOUR

TEST RESULTS

For Brahmaputra test results, see the functest results document at: http://artifacts.opnfv.org/functest/brahmaputra/docs/results/index.html

15

http://artifacts.opnfv.org/functest/brahmaputra/docs/results/index.html

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

16 Chapter 4. Test results

CHAPTER

FIVE

TEST DASHBOARD

Based on results collected in CI, a test dashboard is dynamically generated. The URL of this dashboard is TODO LF

17

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

18 Chapter 5. Test Dashboard

CHAPTER

SIX

TROUBLESHOOTING

6.1 vPing_SSH

vPing should work on all the scenarios. In case of timeout, check your network connectivity. The test case creates its
own security group to allow SSH access, check your network settings and your security rules.

6.2 vPing_userdata

Cloud-init in not supported on scenario dealing with ONOS.

6.3 Tempest

In the upstream OpenStack CI all the Tempest test cases are supposed to pass. If some test cases fail in an OPNFV
deployment, the reason is very probably one of the following:

+-----------------------------+--+
| Error | Details |
+=============================+==+
Resources required for test	Such resources could be e.g. an external
case execution are missing	network and access to the management subnet
	(adminURL) from the Functest docker container.
+-----------------------------+--+	
OpenStack components or	Check running services in the controller and
services are missing or not	compute nodes (e.g. with "systemctl" or
configured properly	"service" commands). Configuration parameters
	can be verified from related .conf files
	located under /etc/<component> directories.
+-----------------------------+--+	
Some resources required for	The tempest.conf file, automatically generated
execution test cases are	by Rally in Functest, does not contain all the
missing	needed parameters or some parameters are not
	set properly.
	The tempest.conf file is located in /home/opnfv
	/.rally/tempest/for-deployment-<UUID> in
	Functest container
	Use "rally deployment list" command in order to
	check UUID of current deployment.
+-----------------------------+--+

19

OPNFV FUNCTEST user guide, Release arno.2015.1.0 (fe179a4)

When some Tempest test case fails, captured traceback and possibly also related REST API requests/responses are
output to the console. More detailed debug information can be found from tempest.log file stored into related Rally
deployment folder.

6.4 Rally

Same error causes than for Tempest mentioned above may lead to error in Rally.

6.5 ODL

2 versions are supported in Brahmaputra depending on the scenario:

• Lithium

• Berylium

The upstream test suites have not been adapted, so you may get 18 or 15 tests passed on 18 depending on your
configuration. The 3 testcases are partly failed due to wrong return code.

6.6 ONOS

TODO

6.7 OpenContrail

6.8 vIMS

vIMS deployment may fail for several reasons, the most frequent ones are described in the following table:

+===================================+====================================+ | Error |
Comments | +———————————–+————————————+ | Keystone admin API not reachable |
Impossible to create vIMS user and | | | tenant | +———————————–+————————————+ |
Impossible to retrieve admin role | Impossible to create vIMS user and | | id | tenant | +———————————
–+————————————+ | Error when uploading image from | impossible to deploy VNF | | OpenStack to
glance | | +———————————–+————————————+ | Cinder quota cannot be updated | Default
quotas not sufficient, they| | | are adapted in the script | +———————————–+————————————+
| Impossible to create a volume | VNF cannot be deployed | +———————————–+——————————
——+ | SSH connection issue between the | if vPing test fails, vIMS test will| | Test container and the VM | fail... |
+———————————–+————————————+ | No Internet access from a VM | the VMs of the VNF
must have an | | | external access to Internet | +———————————–+————————————+

6.9 Promise

TODO

20 Chapter 6. Troubleshooting

CHAPTER

SEVEN

REFERENCES

OPNFV main site: opnfvmain.

OPNFV functional test page: opnfvfunctest.

IRC support chan: #opnfv-testperf

21

http://www.opnfv.org
https://wiki.opnfv.org/opnfv_functional_testing

	Introduction
	Overview of the functest suites
	vPing_SSH
	vPing_userdata
	Tempest
	Rally bench test suites
	OpenDaylight
	ONOS
	OpenContrail
	vIMS
	Promise

	Executing the functest suites
	Test results
	Test Dashboard
	Troubleshooting
	vPing_SSH
	vPing_userdata
	Tempest
	Rally
	ODL
	ONOS
	OpenContrail
	vIMS
	Promise

	References

