
OPNFV FUNCTEST developer guide
Release arno.2015.1.0 (fe179a4)

OPNFV

February 24, 2016

CONTENTS

1 Introduction 1

2 Functest High level architecture 3

3 How Functest works 5

4 How to integrate Functest 7
4.1 Dockerfile . 7
4.2 Common.sh . 7
4.3 requirements.pip . 7
4.4 prepare_env.sh . 8
4.5 run_tests.sh . 8
4.6 config_funtest.yaml . 8

5 Test Dashboard & API 11

6 How to push your results into the Test Database 17
6.1 References . 17

i

ii

CHAPTER

ONE

INTRODUCTION

This document describes how feature projects aiming to run functional tests can be integrated into FuncTest framework.

1

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

2 Chapter 1. Introduction

CHAPTER

TWO

FUNCTEST HIGH LEVEL ARCHITECTURE

Functest is project delivering a test container dedicated to OPNFV. It includes the tools, the scripts and the test scenar-
ios.

Functest can be described as follow:

+----------------------+
| |
| +--------------+ | +-------------------+
			Public	
	Tools	+------------------+ OPNFV		
	Scripts			System Under Test
	Scenarios	+------------------+		
			Management	
+--------------+	+-------------------+			
Functest Docker				
+----------------------+

Functest deals with internal and external test cases. The Internal test cases in Brahmaputra are:

• vPing_SSH

• vPing_userdata

• ODL

• Tempest

• vIMS

• Rally

The external tescases are:

• Promise

• Doctor

• Onos

• BGPVPN

see [2] for details.

Functest can also be considered as a framework that may include external OPNFV projects. This framework will ease
the integration of the feature test suite to the CI.

3

http://artifacts.opnfv.org/functest/docs/userguide/index.htmlfunctestuserguideURL

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

4 Chapter 2. Functest High level architecture

CHAPTER

THREE

HOW FUNCTEST WORKS

The installation and the launch of the Functest docker image is described in [1].

The Functest docker directories are:

home
|
`-- opnfv

|-- functest
| |-- conf
| |-- data
| `-- results
`-- repos

|-- bgpvpn
|-- doctor
|-- functest
|-- odl_integration
|-- onos
|-- ovno
|-- promise
|-- rally
|-- releng
`-- vims-test

+-----------+-------------------+---+
| Directory | Subdirectory | Comments |
+-----------+-------------------+---+
	<project>/conf	All the useful configuration file(s) for
		<project> the openstack creds are put there
		for CI
		It is recommended to push it there when
		passing the credentials to container through
		the -v option
+-------------------+---+		
opnfv	<project>/data	Usefull data, images for <projects>
		By default we put a cirros image:
		cirros-0.3.4-x86_64-disk.img
		This image can be used by any projects
+-------------------+---+		
	<project>/results	Local result directory of project <project>
+-----------+-------------------+---+		
	bgpvpn	
+-------------------+ +		
repos	doctor	
+-------------------+ +		
	functest	

5

http://artifacts.opnfv.org/functest/docs/configguide/index.htmlFunctestconfigurationguideURL

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

| +-------------------+ +
| | odl_integration | |
| +-------------------+ Clone of the useful repositories +
| | onos | These repositories may include: |
| +-------------------+ - tooling +
| | promise | - scenario |
| +-------------------+ - scripts +
| | rally | |
| +-------------------+ +
| | releng | |
| +-------------------+ +
| | vims-test | |
| +-------------------+ +
| | <your project> | |
+-----------+-------------------+---+

Before running the test suite, you must prepare the environement by running:

$ /home/opnfv/repos/functest/docker/prepare_env.sh

By running prepare_env.sh, you build the test environement required by the tests including the retrieval and sourcing
of OpenStack credentials. This is an example of the env variables we have in the docker container:

• HOSTNAME=373f77816eb0

• INSTALLER_TYPE=fuel

• repos_dir=/home/opnfv/repos

• INSTALLER_IP=10.20.0.2

• PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

• PWD=/home/opnfv

• SHLVL=1

• HOME=/home/opnfv

• NODE_NAME=opnfv-jump-2

• creds=/home/opnfv/functest/conf/openstack.creds

• _=/usr/bin/env

The prepare_env.sh will source the credentials, so once run you should have access to the following env variables:

root@373f77816eb0:~# env|grep OS_
OS_REGION_NAME=RegionOne
OS_PROJECT_NAME=admin
OS_PASSWORD=admin
OS_AUTH_STRATEGY=keystone
OS_AUTH_URL=http://172.30.10.70:5000/v2.0
OS_USERNAME=admin
OS_TENANT_NAME=admin
OS_ENDPOINT_TYPE=internalURL
OS_NO_CACHE=true

Then you may run the test suite by running:

$ /home/opnfv/repos/functest/docker/run_tests.sh -t <your project>

see [2] for details.

6 Chapter 3. How Functest works

http://artifacts.opnfv.org/functest/docs/userguide/index.htmlfunctestuserguideURL

CHAPTER

FOUR

HOW TO INTEGRATE FUNCTEST

The files of the Functest repository you must modify to integrate Functest are:

• functest/docker/Dockerfile

• functest/docker/common.sh

• functest/docker/requirements.pip

• functest/docker/run_tests.sh

• functest/docker/prepare_env.sh

• functest/config_funtest.yaml

4.1 Dockerfile

This file lists the repositories to be cloned in the Functest container. The repositories can be internal or external:

RUN git clone https://gerrit.opnfv.org/gerrit/<your porject> ${repos_dir}/<your project>

4.2 Common.sh

This file can be used to declare the branch and commit variables of your projects:

<YOUR_PROJECT>_BRANCH=$(cat $config_file | grep -w <your project>_branch | awk 'END {print $NF}')
<YOUR_PROJECT>_COMMIT=$(cat $config_file | grep -w <your project>_commit | awk 'END {print $NF}')

echo "<YOUR_PROJECT>_BRANCH=${<YOUR_PROJECT>_BRANCH}"
echo "<YOUR_PROJECT>_COMMIT=${<YOUR_PROJECT>_COMMIT}"

4.3 requirements.pip

This file can be used to preloaded all the needed Python libraries (and avoid that each project does it) The current
libraries used in Functest container are:

cat requirements.pip
pyyaml==3.10
gitpython==1.0.1
python-neutronclient==2.6.0
python-novaclient==2.28.1

7

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

python-glanceclient==1.1.0
python-cinderclient==1.4.0
python-ceilometerclient==1.5.1
python-keystoneclient==1.6.0
virtualenv==1.11.4
pexpect==4.0
requests==2.8.0
robotframework==2.9.1
robotframework-requests==0.3.8
robotframework-sshlibrary==2.1.1
configObj==5.0.6
Flask==0.10.1
xmltodict==0.9.2
scp==0.10.2
paramiko==1.16.0

4.4 prepare_env.sh

This script can be adapted if you need to set up a specific environment before running the tests.

4.5 run_tests.sh

This script is used to run the tests. You must thus complete the cases with your own project:

;;
"promise")

info "Running PROMISE test case..."
TODO

;;
"doctor")

info "Running Doctor test..."
python ${FUNCTEST_REPO_DIR}/testcases/features/doctor.py

;;
"<your project>")

info "Running <your project> test..."
your script that launchs your tests...

;;

And do not forget to update also the help line:

-t|--test run specific set of tests
<test_name> one or more of the following separated by comma:

vping_ssh,vping_userdata,odl,rally,tempest,vims,onos,promise,ovno

4.6 config_funtest.yaml

This file is the main configuration file of Functest. You must add the references to your project:

general:
directories:

dir_repo_<your project>: /home/opnfv/repos/<your project>
repositories:

8 Chapter 4. How to integrate Functest

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

branch and commit ID to which the repos will be reset (HEAD)
<your project>_branch: master
<your project>_commit: latest

4.6. config_funtest.yaml 9

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

10 Chapter 4. How to integrate Functest

CHAPTER

FIVE

TEST DASHBOARD & API

The OPNFV testing group created a test collection database to collect the test results from CI. Any test project running
on any lab integrated in CI can push the results to this database. This database can be used afterwards to see the
evolution of the tests and compare the results versus the installers, the scenario or the labs.

You can find more information about the dashboard from Testing Dashboard wiki page [3].

The Test result management in Brahmaputra can be summarized as follows:

+-------------+ +-------------+ +-------------+
Test		Test		Test
Project #1		Project #2		Project #N
+-------------+ +-------------+ +-------------+

| | |
V V V

+---+
| |
| Test Rest API front end |
| http://testresults.opnfv.org/testapi |
| |
+---+

A |
| V
| +-------------------------+
	Test Results DB
	Mongo DB
+-------------------------+	

+----------------------+
| |
| test Dashboard |
| |
+----------------------+

The Test dashboard URL is: TODO LF A alternate Test dashboard has been realized to provide a view per installer
and per scenario for Brahmaputra release:

http://testresults.opnfv.org/proto/brahma/

This Dashboard consumes the results retrieved thanks to the Test API.

11

https://wiki.opnfv.org/opnfv_test_dashboard

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

The Test API is used to declare pods, projects, test cases and test results. An additional method dashboard has been
added to post-process the raw results. The data model is very basic, 4 objects are created:

• Pods

• Test projects

• Test cases

• Test results

Pods:

{
"id": <ID>,
"details": <URL description of the POD>,
"creation_date": YYYY-MM-DD HH:MM:SS ,
"name": <The POD Name>,
"mode": <metal or virtual>

},

Test project:

{
"id": <ID>,
"name": <Name of the Project>,
"creation_date": "YYYY-MM-DD HH:MM:SS",
"description": <Short description>

},

Test case:

{
"id": <ID>,
"name":<Name of the test case>,
"creation_date": "YYYY-MM-DD HH:MM:SS",
"description": <short description>,
"url":<URL for longer description>

},

Test results:

{
"_id": <ID,
"project_name": <Reference to project>,
"pod_name": <Reference to POD where the test was executed>,
"version": <Scenario on which the test was executed>,
"installer": <Installer Apex or Compass or Fuel or Joid>,
"description": <Short description>,
"creation_date": "YYYY-MM-DD HH:MM:SS",
"case_name": <Reference to the test case>
"details":{

<- the results to be put here ->
}

For Brahmaputra, we got:

• 16 pods

• 18 projects

• 101 test cases

12 Chapter 5. Test Dashboard & API

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

The projects and the test cases have been frozen in December. But all were not ready for Brahmaputra.

The API can described as follows:

Version:

Method Path Description
GET /version Get API version

Pods:

Method Path Description
GET /pods Get the list of declared Labs

(PODs)
POST /pods Declare a new POD Content-

Type: application/json {
“name”: “pod_foo”,
“creation_date”:
“YYYY-MM-DD
HH:MM:SS”

}

Projects:

Method Path Description
GET /test_projects Get the list of test projects
GET /test_projects/{project} Get details on {project}
POST /test_projects Add a new test project Content-

Type: application/json {
“name”:
“project_foo”, “de-
scription”: “whatever
you want”

}
PUT /test_projects/{project} Update a test project

Content-Type: application/json {
<the field(s) you want
to modify>

}
DELETE /test_projects/{project} Delete a test project

Test cases:

13

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

Method Path Description
GET /test_projects/{project}/ cases Get the list of test cases of

{project}
POST /test_projects/{project}/ cases Add a new test case to {project}

Content-Type: application/json {
“name”: “case_foo”,
“description”: “what-
ever you want”
“creation_date”:
“YYYY-MM-DD
HH:MM:SS” “url”:
“whatever you want”

}
PUT /test_projects/{project}?

case_name={case}
Modify a test case of {project}
Content-Type: application/json {

<the field(s) you want
to modify>

}
DELETE /test_projects/{project}/

case_name={case}
Delete a test case

Test Results:

14 Chapter 5. Test Dashboard & API

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

Method Path Description
GET /results/project={project} Get the test results of {project}
GET /results/case={case} Get the test results of {case}
GET /results?pod={pod} get the results on pod {pod}
GET /results?installer={inst} Get the test results of installer

{inst}
GET /results?version={version} Get the test results of scenario

{version}. Initially the version
param was reflecting git version,
in Functest it was decided to
move to scenario

GET /results?project={project}
&case={case} &ver-
sion={scenario} &in-
staller={installer} &pod={pod}
&period={days}

Get all the results of the test
case {case} of the project
{project} with version {sce-
nario} installed by {installer}
on POD {pod} stored since
{days} days {project_name} and
{case_name} are mandatory, the
other parameters are optional.

POST /results Add a new test results Content-
Type: application/json {

“project_name”:
“project_foo”,
“case_name”:
“case_foo”,
“pod_name”:
“pod_foo”, “in-
staller”: “in-
staller_foo”,
“version”: “sce-
nario_foo”, “details”:
<your results>

}

Dashboard:

MethodPath Description
GET /dashboard? &project={project}

&case={case} &version={scenario}
&installer={installer} &pod={pod}
&period={days}

Get all the dashboard ready results of {case} of the
project {project} version {scenario} installed by
{installer} on POD {pod} stored since {days} days
{project_name} and {case_name} are mandatory, the
other parameters are optional.

The results with dashboard method are post-processed from raw results. Please note that dashboard results are not
stored. Only raw results are stored.

15

OPNFV FUNCTEST developer guide, Release arno.2015.1.0 (fe179a4)

16 Chapter 5. Test Dashboard & API

CHAPTER

SIX

HOW TO PUSH YOUR RESULTS INTO THE TEST DATABASE

The test database is used to collect test results. By default it is enabled only in Continuous Integration. The architecture
and associated API is described in [2]. If you want to push your results from CI, you just have to use the API at the
end of your script.

You can also reuse a python function defined in functest_utils.py:

def push_results_to_db(db_url, case_name, logger, pod_name,version, payload):
"""
POST results to the Result target DB
"""
url = db_url + "/results"
installer = get_installer_type(logger)
params = {"project_name": "functest", "case_name": case_name,

"pod_name": pod_name, "installer": installer,
"version": version, "details": payload}

headers = {'Content-Type': 'application/json'}
try:

r = requests.post(url, data=json.dumps(params), headers=headers)
if logger:

logger.debug(r)
return True

except Exception, e:
print "Error [push_results_to_db('%s', '%s', '%s', '%s', '%s')]:" \

% (db_url, case_name, pod_name, version, payload), e
return False

==========

6.1 References

OPNFV main site: opnfvmain.

OPNFV functional test page: opnfvfunctest.

IRC support chan: #opnfv-testperf

17

http://artifacts.opnfv.org/functest/docs/userguide/index.htmlfunctestuserguideURL
http://www.opnfv.org
https://wiki.opnfv.org/opnfv_functional_testing

	Introduction
	Functest High level architecture
	How Functest works
	How to integrate Functest
	Dockerfile
	Common.sh
	requirements.pip
	prepare_env.sh
	run_tests.sh
	config_funtest.yaml

	Test Dashboard & API
	How to push your results into the Test Database
	References

