
Software Fastpath Service Quality
Metrics

Release draft (32a7428)

OPNFV

August 14, 2016

CONTENTS

1 Table of Contents: 3
1.1 Introduction . 3
1.2 Problem Statement . 3
1.3 Scope . 4
1.4 Consumption Models . 5
1.5 SFQM user guide . 5
1.6 Features to Date . 11
1.7 Release B . 11
1.8 Release C . 12

i

ii

Software Fastpath Service Quality Metrics, Release draft (32a7428)

Project SFQM, https://wiki.opnfv.org/collaborative_development_projects/opnfv_telco_kpi_monitoring

Authors Maryam Tahhan <maryam.tahhan@intel.com>

History Date Description
16.12.2014 Project creation

CONTENTS 1

https://wiki.opnfv.org/collaborative_development_projects/opnfv_telco_kpi_monitoring
mailto:maryam.tahhan@intel.com

Software Fastpath Service Quality Metrics, Release draft (32a7428)

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS:

1.1 Introduction

The goal of Software Fastpath service Quality Metrics (SFQM) is to develop the utilities and libraries in DPDK to
support:

• Measuring Telco Traffic and Performance KPIs. Including:

– Packet Delay Variation (by enabling TX and RX time stamping).

– Packet loss (by exposing extended NIC stats).

• Performance Monitoring of the DPDK interfaces (by exposing extended NIC stats + collectd Plugin).

• Detecting and reporting violations that can be consumed by VNFs and higher level management systems
(through DPDK Keep Alive).

After all the ability to measure and enforce Telco KPIs (Service assurance) in the data-plane will be mandatory
for any Telco grade NFVI implementation.

All developed features will be upstreamed to DPDK or other Open Source projects relevant to telemetry such as
collectd and Ceilometer.

The OPNFV project wiki can be found @ SFQM

1.2 Problem Statement

Providing carrier grade Service Assurance is critical in the network transformation to a software defined and virtualized
network (NFV). Medium-/large-scale cloud environments account for between hundreds and hundreds of thousands
of infrastructure systems. It is vital to monitor systems for malfunctions that could lead to users application service
disruption and promptly react to these fault events to facilitate improving overall system performance. As the size of
infrastructure and virtual resources grow, so does the effort of monitoring back-ends. SFQM aims to expose as much
useful information as possible off the platform so that faults and errors in the NFVI can be detected promptly and
reported to the appropriate fault management entity.

The OPNFV platform (NFVI) requires functionality to:

• Create a low latency, high performance packet processing path (fast path) through the NFVI that VNFs can take
advantage of;

• Measure Telco Traffic and Performance KPIs through that fast path;

• Detect and report violations that can be consumed by VNFs and higher level EMS/OSS systems

Examples of local measurable QoS factors for Traffic Monitoring which impact both Quality of Experience and five
9’s availability would be (using Metro Ethernet Forum Guidelines as reference):

3

http://dpdk.org/
http://dpdk.org/
http://collectd.org/
https://wiki.openstack.org/wiki/Telemetry
https://wiki.opnfv.org/collaborative_development_projects/opnfv_telco_kpi_monitoring

Software Fastpath Service Quality Metrics, Release draft (32a7428)

• Packet loss

• Packet Delay Variation

• Uni-directional frame delay

Other KPIs such as Call drops, Call Setup Success Rate, Call Setup time etc. are measured by the VNF.

In addition to Traffic Monitoring, the NFVI must also support Performance Monitoring of the physical interfaces
themselves (e.g. NICs), i.e. an ability to monitor and trace errors on the physical interfaces and report them.

All these traffic statistics for Traffic and Performance Monitoring must be measured in-service and must be capable of
being reported by standard Telco mechanisms (e.g. SNMP traps), for potential enforcement actions.

1.3 Scope

The output of the project will provide interfaces and functions to support monitoring of Packet Latency and Network
Interfaces while the VNF is in service.

The DPDK interface/API will be updated to support:

• Exposure of NIC MAC/PHY Level Counters

• Interface for Time stamp on RX

• Interface for Time stamp on TX

• Exposure of DPDK events

collectd will be updated to support the exposure of DPDK metrics and events.

Specific testing and integration will be carried out to cover:

• Unit/Integration Test plans: A sample application provided to demonstrate packet latency monitoring and inter-
face monitoring

The following list of features and functionality will be developed:

• DPDK APIs and functions for latency and interface monitoring

• A sample application to demonstrate usage

• collectd plugins

The scope of the project involves developing the relavant DPDK APIs, OVS APIs, sample applications, as well as the
utilities in collectd to export all the relavent information to a telemetry and events consumer.

VNF specific processing, Traffic Monitoring, Performance Monitoring and Management Agent are out of scope.

The Proposed Interface counters include:

• Packet RX

• Packet TX

• Packet loss

• Interface errors + other stats

The Proposed Packet Latency Monitor include:

• Cycle accurate stamping on ingress

• Supports latency measurements on egress

4 Chapter 1. Table of Contents:

Software Fastpath Service Quality Metrics, Release draft (32a7428)

Support for failover of DPDK enabled cores is also out of scope of the current proposal. However, this is an important
requirement and must-have functionality for any DPDK enabled framework in the NFVI. To that end, a second phase
of this project will be to implement DPDK Keep Alive functionality that would address this and would report to a
VNF-level Failover and High Availability mechanism that would then determine what actions, including failover, may
be triggered.

1.4 Consumption Models

In reality many VNFs will have an existing performance or traffic monitoring utility used to monitor VNF behavior
and report statistics, counters, etc.

The consumption of performance and traffic related information/events provided by this project should be a logical
extension of any existing VNF monitoring utility. It should not require a new utility to be developed. We do not see the
Software Fastpath Service Quality Metrics data as major additional effort for VNFs to consume; this project would be
sympathetic to existing VNF architecture constructs. The intention is that this project represents a lower level interface
for network interface monitoring to be used by higher level fault management entities (see below).

Allowing the Software Fastpath Service Quality Metrics data to be handled within existing VNF performance or traffic
monitoring utilities also makes it simpler for overall interfacing with higher level management components in the VIM,
MANO and OSS/BSS. The Software Fastpath Service Quality Metrics proposal would be complementary to the Fault
Management and Maintenance project proposal (Doctor), which addresses NFVI Fault Management support in the
VIM. To that end, the project committers and contributors for the Software Fastpath Service Quality Metrics project
wish to collaborate with the Doctor project to facilitate this.

1.5 SFQM user guide

1.5.1 collectd plugins description

The SFQM collectd plugins enable the ability to monitor DPDK interfaces by exposing stats and the relevant events
to higher level telemetry and fault management applications. The following sections will discuss the SFQM features
in detail.

Measuring Telco Traffic and Performance KPIs

This section will discuss the SFQM features that enable Measuring Telco Traffic and Performance KPIs.

• The very first thing SFQM enabled was a call-back API in DPDK and an associated application that used the
API to demonstrate how to timestamp packets and measure packet latency in DPDK (the sample app is called
rxtx_callbacks). This was upstreamed to DPDK 2.0 and is represented by the interfaces 1 and 2 in Figure 1.2.

• The second thing SFQM implemented in DPDK is the extended NIC statistics API, which exposes NIC stats
including error stats to the DPDK user by reading the registers on the NIC. This is represented by interface 3 in
Figure 1.2.

– For DPDK 2.1 this API was only implemented for the ixgbe (10Gb) NIC driver, in association with a
sample application that runs as a DPDK secondary process and retrieves the extended NIC stats.

– For DPDK 2.2 the API was implemented for igb, i40e and all the Virtual Functions (VFs) for all drivers.

– For DPDK 16.07 the API migrated from using string value pairs to using id value pairs, improving the
overall performance of the API.

1.4. Consumption Models 5

Software Fastpath Service Quality Metrics, Release draft (32a7428)

Fig. 1.1: Measuring Telco Traffic and Performance KPIs

Monitoring DPDK interfaces

With the features SFQM enabled in DPDK to enable measuring Telco traffic and performance KPIs, we can now
retrieve NIC statistics including error stats and relay them to a DPDK user. The next step is to enable monitoring of
the DPDK interfaces based on the stats that we are retrieving from the NICs, by relaying the information to a higher
level Fault Management entity. To enable this SFQM has been enabling a number of plugins for collectd.

collectd

collectd is a daemon which collects system performance statistics periodically and provides a variety of mechanisms
to publish the collected metrics. It supports more than 90 different input and output plugins. Input plugins retrieve
metrics and publish them to the collectd deamon, while output plugins publish the data they receive to an end point.
collectd also has infrastructure to support thresholding and notification.

collectd statistics and Notifications

Within collectd notifications and performance data are dispatched in the same way. There are producer plugins (plugins
that create notifications/metrics), and consumer plugins (plugins that receive notifications/metrics and do something
with them).

Statistics in collectd consist of a value list. A value list includes:

• Values, can be one of:

– Derive: used for values where a change in the value since it’s last been read is of interest. Can be used to
calculate and store a rate.

– Counter: similar to derive values, but take the possibility of a counter wrap around into consideration.

6 Chapter 1. Table of Contents:

Software Fastpath Service Quality Metrics, Release draft (32a7428)

– Gauge: used for values that are stored as is.

– Absolute: used for counters that are reset after reading.

• Value length: the number of values in the data set.

• Time: timestamp at which the value was collected.

• Interval: interval at which to expect a new value.

• Host: used to identify the host.

• Plugin: used to identify the plugin.

• Plugin instance (optional): used to group a set of values together. For e.g. values belonging to a DPDK interface.

• Type: unit used to measure a value. In other words used to refer to a data set.

• Type instance (optional): used to distinguish between values that have an identical type.

• meta data: an opaque data structure that enables the passing of additional information about a value list. “Meta
data in the global cache can be used to store arbitrary information about an identifier” [7].

Host, plugin, plugin instance, type and type instance uniquely identify a collectd value.

Values lists are often accompanied by data sets that describe the values in more detail. Data sets consist of:

• A type: a name which uniquely identifies a data set.

• One or more data sources (entries in a data set) which include:

– The name of the data source. If there is only a single data source this is set to “value”.

– The type of the data source, one of: counter, gauge, absolute or derive.

– A min and a max value.

Types in collectd are defined in types.db. Examples of types in types.db:

bitrate value:GAUGE:0:4294967295
counter value:COUNTER:U:U
if_octets rx:COUNTER:0:4294967295, tx:COUNTER:0:4294967295

In the example above if_octets has two data sources: tx and rx.

Notifications in collectd are generic messages containing:

• An associated severity, which can be one of OKAY, WARNING, and FAILURE.

• A time.

• A Message

• A host.

• A plugin.

• A plugin instance (optional).

• A type.

• A types instance (optional).

• Meta-data.

1.5. SFQM user guide 7

Software Fastpath Service Quality Metrics, Release draft (32a7428)

collectd plugins

SFQM has enabled three collectd plugins to date:

• dpdkstat plugin: A read plugin that retrieve stats from the DPDK extended NIC stats API.

• ceilometer plugin: A write plugin that pushes the retrieved stats to Ceilometer. It’s capable of pushing any stats
read through collectd to Ceilometer, not just the DPDK stats.

• hugepages plugin: A read plugin that retrieves the number of available and free hugepages on a platform as well
as what is available in terms of hugepages per socket.

Other plugins in progress:

• dpdkevents: A read plugin that retrieves DPDK link status and DPDK forwarding cores liveliness status (DPDK
Keep Alive).

• Open vSwitch stats Plugin: A read plugin that retrieve flow and interface stats from OVS.

• Open vSwitch events Plugin: A read plugin that retrieves events from OVS.

Monitoring Interfaces and Openstack Support

Fig. 1.2: Monitoring Interfaces and Openstack Support

The figure above shows the DPDK L2 forwarding application running on a compute node, sending and receiving
traffic. collectd is also running on this compute node retrieving the stats periodically from DPDK through the dpdkstat
plugin and publishing the retrieved stats to Ceilometer through the ceilometer plugin.

To see this demo in action please checkout: SFQM OPNFV Summit demo

8 Chapter 1. Table of Contents:

https://github.com/maryamtahhan/collectd-with-DPDK/tree/dpdkstat
https://github.com/openstack/collectd-ceilometer-plugin/tree/stable/mitaka
https://github.com/maryamtahhan/collectd-with-DPDK/tree/hugepages
https://prezi.com/kjv6o8ixs6se/software-fastpath-service-quality-metrics-demo/

Software Fastpath Service Quality Metrics, Release draft (32a7428)

References

[1] https://collectd.org/wiki/index.php/Naming_schema [2] https://github.com/collectd/collectd/blob/master/src/daemon/plugin.h
[3] https://collectd.org/wiki/index.php/Value_list_t [4] https://collectd.org/wiki/index.php/Data_set [5]
https://collectd.org/documentation/manpages/types.db.5.shtml [6] https://collectd.org/wiki/index.php/Data_source [7]
https://collectd.org/wiki/index.php/Meta_Data_Interface

1.5.2 DPDK Keep Alive description

SFQM aims to enable fault detection within DPDK, the very first feature to meet this goal is the DPDK Keep Alive
Sample app that is part of DPDK 2.2.

DPDK Keep Alive or KA is a sample application that acts as a heartbeat/watchdog for DPDK packet processing cores,
to detect application thread failure. The application supports the detection of ‘failed’ DPDK cores and notification to
a HA/SA middleware. The purpose is to detect Packet Processing Core fails (e.g. infinite loop) and ensure the failure
of the core does not result in a fault that is not detectable by a management entity.

Fig. 1.3: DPDK Keep Alive Sample Application

Essentially the app demonstrates how to detect ‘silent outages’ on DPDK packet processing cores. The application
can be decomposed into two specific parts: detection and notification.

• The detection period is programmable/configurable but defaults to 5ms if no timeout is specified.

• The Notification support is enabled by simply having a hook function that where this can be ‘call back support’
for a fault management application with a compliant heartbeat mechanism.

1.5. SFQM user guide 9

https://collectd.org/wiki/index.php/Naming_schema
https://github.com/collectd/collectd/blob/master/src/daemon/plugin.h
https://collectd.org/wiki/index.php/Value_list_t
https://collectd.org/wiki/index.php/Data_set
https://collectd.org/documentation/manpages/types.db.5.shtml
https://collectd.org/wiki/index.php/Data_source
https://collectd.org/wiki/index.php/Meta_Data_Interface

Software Fastpath Service Quality Metrics, Release draft (32a7428)

DPDK Keep Alive Sample App Internals

This section provides some explanation of the The Keep-Alive/’Liveliness’ conceptual scheme as well as the DPDK
Keep Alive App. The initialization and run-time paths are very similar to those of the L2 forwarding application (see
L2 Forwarding Sample Application (in Real and Virtualized Environments) for more information).

There are two types of cores: a Keep Alive Monitor Agent Core (master DPDK core) and Worker cores
(Tx/Rx/Forwarding cores). The Keep Alive Monitor Agent Core will supervise worker cores and report any failure (2
successive missed pings). The Keep-Alive/’Liveliness’ conceptual scheme is:

• DPDK worker cores mark their liveliness as they forward traffic.

• A Keep Alive Monitor Agent Core runs a function every N Milliseconds to inspect worker core liveliness.

• If keep-alive agent detects time-outs, it notifies the fault management entity through a call-back function.

Note: Only the worker cores state is monitored. There is no mechanism or agent to monitor the Keep Alive Monitor
Agent Core.

DPDK Keep Alive Sample App Code Internals

The following section provides some explanation of the code aspects that are specific to the Keep Alive sample appli-
cation.

The heartbeat functionality is initialized with a struct rte_heartbeat and the callback function to invoke in the case of a
timeout.

rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
if (rte_global_hbeat_info == NULL)

rte_exit(EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings hbeat_dispatch_pings() is configured to run every check_period milliseconds.

if (rte_timer_reset(&hb_timer,
(check_period * rte_get_timer_hz()) / 1000,
PERIODICAL,
rte_lcore_id(),
&hbeat_dispatch_pings, rte_global_keepalive_info
) != 0)

rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows the same paths as the the L2 forwarding application. The only
addition to the main processing loop is the mark alive functionality and the example random failures.

rte_keepalive_mark_alive(&rte_global_hbeat_info);
cur_tsc = rte_rdtsc();

/* Die randomly within 7 secs for demo purposes.. */
if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive() function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive(struct rte_heartbeat *keepcfg)
{

keepcfg->state_flags[rte_lcore_id()] = 1;
}

10 Chapter 1. Table of Contents:

http://dpdk.org/doc/guides/sample_app_ug/l2_forward_real_virtual.html

Software Fastpath Service Quality Metrics, Release draft (32a7428)

Keep Alive Monitor Agent Core Monitoring Options The application can run on either a host or a guest. As such there
are a number of options for monitoring the Keep Alive Monitor Agent Core through a Local Agent on the compute
node:

Application Location DPDK KA LOCAL AGENT
HOST X HOST/GUEST
GUEST X HOST/GUEST

For the first implementation of a Local Agent SFQM will enable:

Application Location DPDK KA LOCAL AGENT
HOST X HOST

Through extending the dpdkstat plugin for collectd with KA functionality, and integrating the extended plugin with
Monasca for high performing, resilient, and scalable fault detection.

1.6 Features to Date

This section provides a summary of the features implemented to date and their relevant upstream projects.

Fig. 1.4: SFQM features to date

Please note the timeline denotes DPDK releases.

1.7 Release B

The features implemented for OPNFV release B in DPDK include:

• Callback API to enable TX/RX timestamping to measure latency through DPDK.

• Extended NIC statistics API for 1GB, 10GB and 40GB NICs to expose detailed statistics for DPDK interfaces
in addition to the overall aggregate statistics.

1.6. Features to Date 11

Software Fastpath Service Quality Metrics, Release draft (32a7428)

Fig. 1.5: SFQM features to date cont.

• DPDK Keep Alive.

1.8 Release C

The features implemented for OPNFV release C include:

• DPDK extended NIC stats API improvement; migrate from key value pairs to using id value pairs.

• DPDK Keep Alive improvement, so that core status is exposed through a posix shared memory object.

• collectd dpdkstat plugin that can retrieve DPDK interface statistics.

• collectd ceilometer plugin that can publish any statistics collected by collectd to ceilometer.

• Fuel plugin support for the collectd ceilometer plugin for OPNFV.

12 Chapter 1. Table of Contents:

	Table of Contents:
	Introduction
	Problem Statement
	Scope
	Consumption Models
	SFQM user guide
	Features to Date
	Release B
	Release C

