OPNFV functional test guide

Contents

Introduction 1
Prerequisites 2
Description of the test cases 4
vPing 4
OpenDaylight 4
Rally bench test suite 5
Tempest 6
Tooling installation 6
Configuration of config_functest.yaml 8
Manual testing 10
vPing 10
OpenDaylight 10
Rally bench suite 10
Tempest suite 10
Test results 11
vPing 11
OpenDaylight 11
Known issues 12

Rally bench suite 13
Known issues 13
Tempest suite 13
Known issues 14

Testing Automation 14
Connection of your platform 14
Integrating into CI Pipeline 14
References 14

Introduction

Testing is a key challenge of OPNFV. It shall be possible to run functional tests on any OPNFV solution.
The goal of this document consists in

« a description of functional tests for OPNFV
« a description of the tools needed to perform these tests

« the procedure to configure the tools and the scenarios associated with these tests

Functional tests shall be automated (as much as possible) and collected results shall be used to improve
the robustness and the reliability of the overall system.

Function tests may cover any domain that could lead to improve the OPNFV solution and define "Telco
Cloud" KPI.

The last section also describes how to automate these tests within the OPNFV continuous integration
project.

ETSI NFV defined 9 use cases (ref ETSI):

* VNF as a Service

* NFV as a service

* VNF Forwarding graphs

* Virtual Network Platform as a Service
* Virtualisation of Mobile Core and IMS
* Virtualisation of Mobile station

* Fixed Access NFV

* Virtualization of CDNs (vCDN)

« Virtualization of the Home environment
Most of the use cases are also discussed in upstream projects (e.g. Openstack Telco Working Group)
For release 1 (Arno), 4 test suites have been selected:

« Rally Bench test suite for Openstack
» Openstack Tempest test suite
» OpenDaylight test suite

* vPing
The 3 first suites are directly inherited from upstream projects. vPing, that is already present in Tempest
suite, has been developped to provided a basic "hello world" functional test example.

vIMS, VEPC, vPE, VHGW, vCDN, vWhatever use cases are not considered for first release. It does not
mean that such use cases cannot be tested on OPNFV Arno. It means that these testcases have not been
integrated in the Continuous Integration and no specific work (integration or developpment) have been
done for the first release. We may expect that new VNFs and new scenarios will be created and
integrated in the future releases. See functest guide for details.

Prerequisites

We assume that an OPNFV Arno solution has been installed.

The installation of the OPNFV solution is out of scope of this document but can be found [here]. In the rest
of the document the OPNFV solution would be considered as the System Under Test (SUT).

The installation and configuration of the tools needed to perform the tests will be described in the following
sections.

For Arno SR1, the tools are automatically installed. Manual sourcing of OpenStack credentials is no more
required if you are fully integrated in the continuous integration. A script has been added to automatically
retrieve the credentials. However, if you still install manually functest, you will need to source the rc file on
the machine you are running the tests. More details will be provided in the configuration section.

It is recommended to install the different tools on the jump host server as defined in the pharos project.

For functest, the following libraries are needed. You can install them either with yum install or
apt-get install, depending on your operating system:

* python-pip

http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV001v010101p%20-%20Use%20Cases.pdf
https://wiki.openstack.org/wiki/TelcoWorkingGroup
https://build.opnfv.org/ci/view/functest/
https://wiki.opnfv.org/_media/opnfv-_functest.pdf
https://wiki.opnfv.org/documentation/Arno
https://wiki.opnfv.org/pharos

* python-dev
* libffi-dev
* libxml2-dev
* libxsltl-dev
You will also need some Python modules:
* sudo pip install GitPython
* sudo pip install python-novaclient
« sudo pip install python-neutronclient
« sudo pip install python-glanceclient

« sudo pip install python-keystoneclient
The high level architecture can be described as follow:

Cl MTJ Li ght s+out nmanagenent Admi n Private Publ i c St or age
PXE
+
+ + | P_PRIV/ 24 | |
| | + + |
| | | | P_PUB/ 24 |
I AR R + I I + I
I I I I I I I
ool + Junpserver | | | | |
I I Hooeeoee s + I I I
I I I I I I I
I | - + | I I I I
I | | Rally | 4---- mmmmmiee s + I I
I | (. I I I I
I | | Robot | | | I I I
I | (. I I I I
I | | vPing | | I I I |
I | (. I I I I
I | | Tenpest | | I I I I
I e + | | I I I
| | FuncTest e + |
I I I I I I I
| | T TP +
I I I I I I I
I R EEEEEEEE R + I I I I
I | I I I
I taEEEEEEEEEEEEEEE + I I I I
I I 1] I I I |
R T +- + | | | |
I || 2 | I I I I
I | | o+--mmme - +-+ | I I I
I |11 3 | I I I I
I I R +-+ I I I I
I L 4 | I I I I
I sl B R R R +-+ I I I I
I I S e-----oo------- + I I I
| +-+ | | nodes for | [| | |
I | | | deploying AR LR + I I
I +-+ | opnfv | I I I |

sut e + |

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
+

Description of the test cases

vPing

The goal of this test can be described as follow:

VPi ng testcase

oococococooooooos + oococococooooooos +

|
|
| Boot VML
oococococoocoocooooooo >
|
| Get |P VM
oococococoocoocooooooo >

Tester | System
| Boot VM2 Under

VM2 pi ngs VML

|

|

| Check console | og
| I f ping:

| exit OK

| el se (tinmeout)
|

|

|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| S coooooooocococoooooo >| Test
| |
| |
| |
| |
| |
| |
| exit KO |
| |
| |

This example, using OpenStack Python clients can be considered as an "Hello World" example and may
be modified for future use.

In SR1, some code has been added in order to push the results (status and duration) into a centralized
test result database.

OpenDaylight

The ODL suite consists in a set of basic tests inherited from ODL project. The suite tests the creation and
deletion of network, subnet, port though OpenDaylight and Neutron.

The list of tests can be described as follow:

* Restconf.basic: Get the controller modules via Restconf
* Neutron.Networks

» Check OpenStack Networks :: Checking OpenStack Neutron for known networks
» Check OpenDaylight Networks :: Checking OpenDaylight Neutron API

« Create Network :: Create new network in OpenStack
» Check Network :: Check Network created in OpenDaylight
» Neutron.Networks :: Checking Network created in OpenStack are pushed
» Neutron.Subnets
» Check OpenStack Subnets :: Checking OpenStack Neutron for known Subnets
» Check OpenDaylight subnets :: Checking OpenDaylight Neutron API
 Create New subnet :: Create new subnet in OpenStack
» Check New subnet :: Check new subnet created in OpenDaylight
« Neutron.Subnets :: Checking Subnets created in OpenStack are pushed
* Neutron.Ports
» Check OpenStack ports :: Checking OpenStack Neutron for known ports
» Check OpenDaylight ports :: Checking OpenDaylight Neutron API
 Create New Port :; Create new port in OpenStack
» Check New Port :: Check new subnet created in OpenDaylight
 Neutron.Ports :: Checking Port created in OpenStack are pushed
* Delete Ports
« Delete previously created subnet in OpenStack
e Check subnet deleted in OpenDaylight
» Check subnet deleted in OpenStack
* Delete network
« Delete previously created network in OpenStack
» Check network deleted in OpenDaylight
» Check network deleted in OpenStack

Rally bench test suite

Rally bench test suite consist in a suite of light performance tests on some of the OpenStack components.

The goal of this test suite is to test the different modules of OpenStack and get significant figures that
could help us to define telco Cloud KPI.

The OPNFV scenarios are based on the collection of the existing Rally scenarios:

« authenticate
- cinder

* nova

* requests

« glance

* keystone

* neutron

* quotas
This test suite provides performance information on VIM (OpenStack) part.

https://wiki.openstack.org/wiki/Rally

No SLA were defined for release 1, we just consider whether the tests are passed or failed.
In the future SLA shall be defined (e.g. accepting booting time for a given image with a given flavour).

Through its integration in Continuous Integration, the evolution of the performance of these tests shall also
be considered.

Tempest

Tempest is the OpenStack Integration Test Suite. We use Rally to run Tempest suite.

The Tempest.conf configuration file is automatically generated by Rally then the Tempest suite is run,
each test duration is measured.

We considered the smoke test suite for Arno.

The goal of this test is to to check the basic OpenStack functionality on a fresh installation.

Tooling installation

2 external tools are needed for the functional tests on Arno:

* Rally

» Robot
Rally is used for benchmarking and running Tempest. Robot is used for running OpenDaylight test suites.

A script (config_test.py) has been created to simplify as much as possible the installation of the different
suites of tests.

This script config_test.py is hosted in OPNFV repository and uses the configuration file
config_functest.yamil:

usage: config_functest.py [-h] [-d] [-f] path action
posi tional argunents:

repo_path path to the repository

action Possi bl e actions are: 'start|check]|clean'

optional argunents:

-h, --help show this hel p nessage and exit

-d, --debug Debug node

-f, --force wused to avoid pronpting the user for confirnation when cleaning functest environment.
Actions

« start: will prepare the functional testing environment

 check: will check the configuration (scenarios available, environment variables properly set,
networks,..)

« clean: will clean the functional test environement if existing
This script will:

« Install Rally environment

* Install Robot environment

« Install Tempest

* Retrieve test scenarios

« Create temporary neutron private network (if needed)

- Create Glance images

http://docs.openstack.org/developer/tempest/overview.html
https://git.opnfv.org/cgit/functest/tree/testcases/config_functest.py
https://git.opnfv.org/cgit/functest/tree/testcases/config_functest.yaml

When integrated in Cl, there are no additional prerequisites. When running functest manually, the only
prerequisite consists in retrieving the OpenStack credentials (rc file). This file shall be saved on the
jumphost. It must be sourced by the user (who shall have sudo rights) executing the tests.

For the Continuous Integration we store this file under SHOME/functest/opnfv-openrc.sh on the jumphost
server so Cl can automatically execute the suite of tests

The procedure to set up functional testing environment can be described as follow:

Log on the Jumphost server. Be sure you are no root then execute:

[user @unphost]$ mkdir <Your functest directory>

[user @unphost]$ cd <Your functest directory>

[user @unphost]$ git clone https://git.opnfv.org/functest
[user @ unphost] $ cd testcases/

Modify and adapt needed parameters in the config_functest.yaml. Follow the instructions below.

Retrieve OpenStack source file (configure your OpenRC file to let Rally access to your OpenStack, you
can either export it from Horizon or build it manually (OpenStack credentials are required):

[user @ unphost]$ source Your_OpenRC fil e
[user @ unphost]$ python <functest_repo_directory>/config_functest.py -d <Your_functest_directory> start

In SR1, a script has been created: fetch_os_creds.sh. This script retrieves automatically the credentials of
your OpenStack solution. You may run it manually:

[user @unphost]$ /hone/jenkins-ci/functest/fetch_os_creds.sh -d <destination> -i <installer_type> -a <installer_ip>
with

« installer_type = fuel or foreman
« installer_ip the IP of your installer

« the destination shall be the full path including the file name.
Examples:

[user @unphost] $./fetch_os_creds.sh -d ./credentials -i foreman -a 172.30. 10. 73
[user @unphost] $./fetch_os_creds.sh -d ./credentials -i fuel -a 10.20.0.2

At the end of the git clone, the tree of <functest_repo_directory> will have the following structure:

| -- docs/

| | -- functest.rst

| | -- inages

| | -- I ns_overview. png
| -- 1 NFO

| -- LI CENSE

| -- testcases/

| -- config_functest. py

| -- config_functest.yan
| -- functest utils.py

| -- Controllers/

I |-- ODL/

I |-- af
| | -- create_venv. sh
| | -- customtests/

| | | -- neutron

http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
https://git.opnfv.org/cgit/releng/tree/utils/fetch_os_creds.sh

-- integration/

| -- distributions

| -- features

| -- feature-sel ector
| -- packagi ng

| -- pom xm

| -- test

| -- vm
-- logs
-- requirenents.pip
-- start_tests.sh
| -- test list.txt

|-- ODL.nmd
-- functest _utils.py
-- VIM
-- OpenStack/
-- libraries/
-- suites/
-- opnfv-authenticate.json

-- opnfv-cinder.json
-- opnfv-gl ance. json
-- opnfv-heat.json
-- opnfv-keystone.json
-- opnfv-neutron.json
-- opnfv-nova.json

opnf v- quot as. j son
opnfv-requests.json
opnf v- smoke- green. j son
opnf v- smoke. j son
opnfv-tenpest.json

-- opnfv-vmjson

| -- OpenStack. md

|-- libraries/
| -- vPi ng. py

NOTE: the Rally environment will be installed under ~/.rally/ the default Tempest configuration
(automatically generated by Rally based on OpenStack credentials) can be found under
.rally/tempest/for-deployment-<deployment_id>/tempest.conf

Configuration of config_functest.yaml

Do not change the directories structure:

* image_name: name of the image that will be created in Glance
« image_url: URL of the image to be downloaded
« image_disk_format: glance image disk format (raw, gcow2, ...)

* neutron_private_net_name: name of an OpenStack private network. If not existing, it will be
created

* neutron_private_subnet_name: private subnet network to be created if not existing

* neutron_private_subnet_cidr: range of the private subnet.

* neutron_private_subnet_start; start IP

* neutron_private_subnet_end: end IP

* neutron_router_name: name of the router between the private and the public networks
* ping_timeout: time out of the vPing test case

« vm_flavor: name of the flavor used to create the VMs

e vm_name_1: name of the first VM

e vm_name_2: name of the second VM

« ip_1: IP of the first VM (matching the private subnet cidr)

* ip_2: IP of the second VM

Please note that you need to install this environment only once. As long as the credentials of the System
Under Test do not change, there is no reason to modify the testing environment.

If you need more details on Rally installation, see Rally installation procedure.

You can check if the configuration of rally is fine by typing 'rally deployment check’, you shall see the list of
available services as follow:

rally depl oyment check
keystone endpoints are valid and followi ng service are avail abl e:

focooccoocooos dococoscsosoo docccccsocos +
| Services | Type | Status |
fooocccozoos foocoocccocooos fmoocccccsocos +
cinder	vol urme	Available
cinderv2	vol unmev2	Available
glance	image	Available
keystone	identity	Available
neutron	network	Available
nova	conpute	Available
nova_ec2	conpute_ec2	Available
novav3	conputev3	Available
R B Fommm e +

ffococccoccooccoscooccoocooocoooooocoooos floocoococcocooocccooococcosoooScoSocoocoooScoocooocoo doccosccosooo +

| uu D | Nane | Size (B) |
ffococccooccooccoscoocccoocooocoooooooooos floocoococcocooocccooooccosoooScoSocoocooScoocooocoo foccosccosooo +

| 0al5951f - 6388- 4d5d- 8531- 79e7205eb140 | cirros_2015_04_10_13_13_18 | 13167616 |

| b1504066- 045a- 4f 8f - 8919- 8c665ef 3f 400 | Ubuntu 14. 04 64b | 253297152 |
fooooccoccosscoscooscoscooocoooooooooos foocosccocoooocccooooocosoooScoSSooScooSooocooooo doccosccosoos +

rally show flavors

fooococoooooooooocoooCOoOCoCoCOoOoCoDooOno ffoocoococoooocooooooooo oooocooo ffoooocooooo foooccoooooo foocoocoooooo +
| ID | Nane | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
B T B IR Fommm - e R L +
110e6375- a058- 4af 6- b21e- b765187904d2	nil. medi um	2	1024		20	
7084d7e7-415a- 455d- ab5a- 2ad286ddf 7c9	ni.	arge	4	4096		80
a0345ba7- c667- 4f d2- 964f - 7e98f 8cda279	nil. x	arge	4	8192		200
accdc28c-5e20-4859- a5cc-61cf 9009e56d	nil. smal		1	512		10
ffoocooccoocooccoscooccoscooocoooooooooos floccooccoooooccoocooooo fmoooooo flmocococooo ffmoooccoooos flmocooocooos +
rally show networks

Net wor ks for user “adnmin® in tenant “admin :

ffococccooccooccoscoocccoocooocoooooooooos floocococcocooccoccocccoocooccoooo dhmcocooo +

| ID | Label | CIDR |
ffococccooccooccoscoocccoocooocoooooooooos floocococcocooccoccocccoocooccoooo dhmcocooo +

| 4f 43c349- 956f - 4073- 9ef 6- 75bf 4e62a0e7 | functest - net | None |

| faefaabl-e503-41fc-875b-5e3112be49ed | provi der_network | None |
fooocccoccosccoscooscoscooocoooooooooos foococccocooccoccosccocsooocooos Pocooos +

https://rally.readthedocs.org/en/latest/tutorial/step_0_installation.html

Manual testing

vPing
You can run the vPing testcase by typing:

[user @ unphost]$ python <functest_repo_directory>/vPing/vPing.py -d <Your_functest_directory>

OpenDaylight
You can run ODL suite as follow:

[user @unphost]$ python <functest_repo_directory>testcases/ Controllers/CODL/Cl/start_tests.sh
ODL wiki page describes system preparation and running tests. See Integration Group CSIT.

Rally bench suite

You can run the script as follow:

[user @unphost]$ python <functest_repo_directory>/testcases/VIM QpenStack/Cl/libraries/run_rally.py <functest_repo_directory> <nodul e_to_be_tested>
with <module_to_be tested> set to:

* authenticate
* cinder
* nova
* requests
« glance
* keystone
* neutron
* quotas
o all
The script will:
« run rally with the selected scenario
* generate the html result page into <result_folder>/<timestamp>/opnfv-[module name].html
* generate the json result page into <result_folder>/<timestamp>/opnfv-[module name].json

« generate OK or NOK per test based on json result file

Tempest suite

It is possible to use Rally to perform Tempest tests (ref: tempest installation guide using Rally) You just
need to run:

rally verify start smoke

The different modes available are smoke, baremetal, compute, data_processing, identity, image, network,
object_storage, orchestration, telemetry, and volume. For Arno, it was decided to focus on smoke tests.

https://wiki.opendaylight.org/view/CrossProject:Integration_Group:CSIT
https://www.mirantis.com/blog/rally-openstack-tempest-testing-made-simpler/

Test results

vPing
vPing result is displayed in the console:

Functest: run vPing

2015-09- 13 22:11: 49,502 - vRPing- INFO - G ance image found 'functest-ing'

2015-09- 13 22:11: 49,502 - vPing- INFO - Creating neutron network functest-net...

2015-09-13 22:11:50,275 - vPing- INFO - Flavor found 'ml.snall"’

2015-09-13 22:11:50,318 - vPing- INFO - vPing Start Tine:'2015-09-13 22:11:50'

2015-09- 13 22:11:50,470 - vPing- INFO - Creating instance 'opnfv-vping-1'" with IP 192.168. 120. 30. ..
2015-09-13 22:11:58,803 - vPing- INFO - Instance 'opnfv-vping-1'" is ACTIVE.

2015-09- 13 22:11:58,981 - vRPing- INFO - Creating instance 'opnfv-vping-2' with I[P 192.168. 120. 40. ..
2015-09-13 22:12:09, 169 - vPing- INFO - Instance 'opnfv-vping-2' is ACTIVE.

2015-09-13 22:12: 09,169 - vRPing- INFO - Waiting for ping...

2015-09-13 22:13:11,329 - vPing- INFO - vPing detected!

2015-09-13 22:13:11,329 - vPing- INFO - vPing duration:'81.0'

2015-09- 13 22:13:11,329 - vRPing- INFO - Ceaning up...

2015-09-13 22:13:18,727 - vPing- INFO - Deleting network 'functest-net'...

015-09- 13 22:13:19,470 - vRPing- INFO - vPing K

A json file is produced and pushed into the test result database.

OpenDaylight
The results of ODL tests can be seen in the console:

Basi c. 010 Restconf OK :: Test suite to verify Restconf is OK

Get Controller Mddules :: Get the controller nodul es via Restconf | PASS |
Basi c. 010 Restconf OK :: Test suite to verify Restconf is K | PASS |
1 critical test, 1 passed, O failed

1 test total, 1 passed, 0 failed

Basi c | PASS |
1 critical test, 1 passed, O failed
1 test total, 1 passed, O failed

Qut put: /hone/jenkins-ci/workspace/functest-opnfv-junp-2/output.xm
Log: / hone/ j enki ns-ci / wor kspace/ f unct est - opnf v-j unp-2/1 og. ht m
Report: /hone/jenkins-ci/workspace/ functest-opnfv-junp-2/report. htn

Neutron. Del ete Networks :: Checking Network deleted in OpenStack a... | FAIL |
2 critical tests, 1 passed, 1 failed
2 tests total, 1 passed, 1 failed

Neutron :: Test suite for Neutron Plugin | FAIL |
18 critical tests, 15 passed, 3 failed
18 tests total, 15 passed, 3 failed

Qut put: /hone/jenkins-ci/workspace/functest-opnfv-junp-2/output.xm
Log: / hone/ j enki ns-ci / wor kspace/ f unct est - opnf v-j unp-2/1 og. ht m

Report: /home/j enkins-ci/workspace/functest-opnfv-junp-2/report. htm

3 result files are generated:

* output.xml
* log.html

* report.html
ODL result page

Generated
Neutron Test LDQ 20150602 08:35:12 GMT 0700
18 hours 0 minutes sgo
Test Statistics

Total Statistics + Total + Pass + Fail = Elapsed+ Pass / Fail
Critical Tests 18 15 3 00:00:14 | ———
All Tests 18 15 3 00:00:14 | T

Statistics by Tag ¢ Total + Pass = Fail = Elapsed = Pass / Fail
Check 4 3 1 00:00:00 |
Check port deleted OpenDaylight 1 0 1 00:00:00 |
Check subnet deleted OpenDaylight 1 0 1 00:00:00 |
Create Network OpenStack Meutron 1 1 0 00:00:02 | E——
Create port OpenStack Meutron 1 1 0 00:00:02 | ——
Create Subnet OpenStack Neutron 1 1 0 00:00:02 | E——
Delete Network OpenStack Meutron 1 1 0 00:00:02 |
Delete port OpenStack Meutron 1 1 0 00:00:02 | —
Delete Subnet OpenStack Meutron 1 1 0 00:00:02 |
Metwork Meutron OpenDaylight 1 1 0 00:00:00 | P
Metwork Meutron OpenStack 1 1 0 00:00:00 | EE——
MNetwork OpenDaylight 2 1 1 00:00:00 | D
Parts Meutron OpenDaylight 1 1 0 00:00:00 | ——
Parts Meutron OpenStack 1 1 0 00:00:00 |
subnet OpenDaylight 2 2 0 00:00:00 |
Subnets Neutron OpenDaylight 1 1 0 00:00:00 |
Subnets Meutron OpenStack 1 1 0 00:00:00 |

Siatistics by Suite ¢ Total + Pass = Fail =+ Elapsed+ Pass / Fail
Meutron 18 15 3 00:00:14 | ———
neuran. Metworks 4 4 0 00:00:02 | ——
neurmn. Subnets 4 4 0 00:00:02 |
Heurn_ POrts 4 4 0 00:00:02 | —
naran.Delete Ports 2 1 1 00:00:02 |
naran. Delete Subnets 2 1 1 00:00:02 |
neran. Delete Metworks 2 1 1 00:00:02 |

Known issues

Tests are expected to fail now:

» Check port deleted in OpenDaylight
» Check subnet deleted in OpenDaylight
» Check Network deleted in OpenDaylight

These failures to delete objects in OpenDaylight (when removed via OpenStack Neutron) are due to the
following bug: https://bugs.opendaylight.org/show_bug.cgi?id=3052.

More details on functest wiki (ODL section)

Rally bench suite

Results are available in the result folder through a html page and a json file.

It generates a result page per module and can be described as follow.

Benchmark overview

wwwww

> Glancelmages

Known issues

» some tests of Cinder suite may be failed due to time-out (timer could probably be extended in the
configuration file)

» some test of Nova & Neutron suite may fail due to network issues (previously created network not
properly cleaned and/or quota exceeded because of created ressources that have not be properly
cleaned) or ODL bugs (see ODL bug lists).

More details on functest wiki (Rally section).

Tempest suite

You can get the results of tempest by typing:

rally verify list

You shall see the results as follow:

Total results of verification:

B L T T T T Fem e eeeeeeeeeeeeeeeeeeenaa. Femmmmeaan Femmmmen Hommmmmeaen Fommm e eeeeeeeeeeeeeaaas Fommmmmeee e Hommmeeaan +
| wD | Depl oynent UUI D | Set nane | Tests | Failures | Created at | Duration | Status |
e 4eccccccncumcccccnancccccaacncsaanaanann Hecccnannan [R — Hecccnaanan e Fecccccmccncanana B —— +

| 546c678a- 19c4- 4b2e- 8f 24- 6f 8¢5f f 20635 | 9c13dbbe- 7a80- 43db- 8d6c- c4a6lf 257c7f | snoke | 111 | 15 | 2015-09-14 06:18: 54. 896224 | 0:00: 51. 804504 | finished |
B e B e o R e R LR R R R +

If you run this test several times, you will see as many lines as test attempts.
You can get more details on the test by typing:

rally verify show --uuid <UU D of the test>
rally verify detailed --uuid <UU D of the test>

"show" will show you all the restults including the time needed to execute the test. "detailed" will display
additional elements (errors)

Example of test result display:

https://bugs.opendaylight.org/show_bug.cgi?id=3052
https://wiki.opnfv.org/r1_odl_suite
https://bugs.opendaylight.org/buglist.cgi?component=General&product=neutron&resolution=---
https://wiki.opnfv.org/r1_rally_bench

+ +
| name | time | status |
B Rt T T T T L LT T T P Ao Hemmeenan +
tenpest.api.network.test_routers. RoutersTest.test_create_show	ist_update_del ete_router[id-f64403e2- 8483- 4b34-8ccd- b09a87bcc68c, snoke]	0.011466	FAIL
tenpest. api.network.test_security_groups. SecG oupl Pv6Test . test_create_	ist_update_show del ete_security_group[id- bf d128e5- 3c92- 44b6- 9d66- 7f 29d22c802, snoke]	1.234566	OK
tenpest.api.network.test_security_groups. SecG oupl Pv6Test.test_create_show del ete_security_group_rul e[id-cfb99e0Oe- 7410- 4a3d- 8alc- 959a63ee77e9, snoke]	1.060221	K	
tenpest.api.network.test_security_groups. SecGr oupl Pv6Test . test_	ist_security_groups[id-e30abd17-fef 9- 4739- 8617- dc26da88e686, smoke]	0.060797	OK
tenpest.api.network.test_security_groups. SecG oupTest.test_create_	ist_update_show del ete_security_group[id-bfd128e5- 3c92- 44b6- 9d66- 7f e29d22c802, snoke]	0.685149	K
tenpest.api.network.test_security_groups. SecG oupTest.test_create_show del ete_security_group_rul e[id-cfb99ele- 7410- 4a3d- 8aOc- 959a63ee77e9, snoke]	0.730561	K	
tenpest. api.network.test_security_groups. SecGroupTest.test_	ist_security_groups[id-e30abd17-fef 9- 4739- 8617- dc26da88e686, smoke]	0.116862	OK
		sk	
	[

tenpest . api . obj ect _storage. t est _account _quot as. Account Quot asTest 0.0

o

Known issues
Several tests are declared as failed. They can be divided in 2 main categories:
 Multiple possible networks found, use a Network ID to be more specific.

* Network errors

The Multiple possible netwok error occurs several times and may have different origins. It indicates that
the test needs a network context to be run properly. A change in the automatically generated tempest.conf
file could allow to precise the network ID.

The network errors are various and dealing with all the aspects of networking: create/update/delete
network/subnet/port/router. Some may be due to (possible) bug in tempest when it tries to delete networks
which should not be there for the following tests. Some may be caused by the ODL bugs, several bugs
related to tempest are already reported in ODL bug lists.

The follow-up of these tests can be found on the functest wiki (Tempest section).

Testing Automation

For Arno, the Cl job performs the following actions:

« clean and prepare functest environment
* run vPing

* run ODL tests

« run Rally Bench

e run Tempest

« clean functest environment

Connection of your platform

If you want to add your platform to the community automation, please follow the Octopus procedure.

Integrating into Cl Pipeline

Contact Octopus Team (#opnfv-octopus) and see pipeline document for more details.

References

OPNFV main site: opnfvmain.
OPNFV functional test page: opnfvfunctest.
IRC support chan: #opnfv-testperf

https://github.com/openstack/rally/blob/master/rally/verification/tempest/config.py
https://bugs.opendaylight.org/buglist.cgi?component=General&product=neutron&resolution=---
https://wiki.opnfv.org/r1_tempest
https://wiki.opnfv.org/octopus/jenkins_slave_connection/
https://wiki.opnfv.org/octopus/pipelines
http://www.opnfv.org
https://wiki.opnfv.org/opnfv_functional_testing

	Introduction
	Prerequisites
	Description of the test cases
	vPing
	OpenDaylight
	Rally bench test suite
	Tempest

	Tooling installation
	Configuration of config_functest.yaml

	Manual testing
	vPing
	OpenDaylight
	Rally bench suite
	Tempest suite

	Test results
	vPing
	OpenDaylight
	Known issues

	Rally bench suite
	Known issues

	Tempest suite
	Known issues

	Testing Automation
	Connection of your platform
	Integrating into CI Pipeline

	References

